首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Komori  F Matsunaga  Y Higuchi  M Ishiai  C Wada    K Miki 《The EMBO journal》1999,18(17):4597-4607
The initiator protein (RepE) of F factor, a plasmid involved in sexual conjugation in Escherichia coli, has dual functions during the initiation of DNA replication which are determined by whether it exists as a dimer or as a monomer. A RepE monomer functions as a replication initiator, but a RepE dimer functions as an autogenous repressor. We have solved the crystal structure of the RepE monomer bound to an iteron DNA sequence of the replication origin of plasmid F. The RepE monomer consists of topologically similar N- and C-terminal domains related to each other by internal pseudo 2-fold symmetry, despite the lack of amino acid similarities between the domains. Both domains bind to the two major grooves of the iteron (19 bp) with different binding affinities. The C-terminal domain plays the leading role in this binding, while the N-terminal domain has an additional role in RepE dimerization. The structure also suggests that superhelical DNA induced at the origin of plasmid F by four RepEs and one HU dimer has an essential role in the initiation of DNA replication.  相似文献   

2.
DNA replication of plasmid P1 requires a plasmid-encoded origin DNA-binding protein, RepA. RepA is an inactive dimer and is converted by molecular chaperones into an active monomer that binds RepA binding sites. Although the sequence of RepA is not homologous to that of F plasmid RepE, we found by using fold-recognition programs that RepA shares structural homology with RepE and built a model based on the RepE crystal structure. We constructed mutants in the two predicted DNA binding domains to test the model. As expected, the mutants were defective in P1 DNA binding. The model predicted that RepA binds the first half of the binding site through interactions with the C-terminal DNA binding domain and the second half through interactions with the N-terminal domain. The experiments supported the prediction. The model was further supported by the observation that mutants defective in dimerization map to the predicted subunit interface region, based on the crystal structure of pPS10 RepA, a RepE family member. These results suggest P1 RepA is structurally homologous to plasmid initiators, including those of F, R6K, pSC101, pCU1, pPS10, pFA3, pGSH500, Rts1, RepHI1B, RepFIB, and RSF1010.  相似文献   

3.
Cadherin-mediated cell adhesion is achieved through dimerization of cadherin N-terminal extracellular (EC1) domains presented from apposed cells. The dimer state is formed by exchange of N-terminal beta strands and insertion of conserved tryptophan indole side chains from one monomer into hydrophobic acceptor pockets of the partner molecule. The present work characterizes individual monomer and dimer states and the monomer-dimer equilibrium of the mouse Type II cadherin-8 EC1 domain using NMR spectroscopy. Limited picosecond-to-nanosecond timescale dynamics of the tryptophan indole moieties for both monomer and dimer states are consistent with well-ordered packing of the N-terminal beta strands intramolecularly and intermolecularly, respectively. However, pronounced microsecond-to-millisecond timescale dynamics of the side chains are observed for the monomer but not the dimer state, suggesting that monomers transiently sample configurations in which the indole moieties are exposed. The results suggest possible kinetic mechanisms for EC1 dimerization.  相似文献   

4.
5.
Annexin A2 (AnxA2) is a Ca(2+)- and acidic phospholipid-binding protein involved in many cellular processes. It undergoes Ca(2+)-mediated membrane bridging at neutral pH and has been demonstrated to be involved in an H(+)-mediated mechanism leading to a novel AnxA2-membrane complex structure. We used fluorescence techniques to characterize this H(+)-dependent mechanism at the molecular level; in particular, the involvement of the AnxA2 N-terminal domain. This domain was labeled at Cys-8 either with acrylodan or pyrene-maleimide fluorescent probes. Steady-state and time-resolved fluorescence analysis for acrylodan and fluorescence quenching by doxyl-labeled phospholipids revealed direct interaction between the N-terminal domain and the membrane. The absence of pyrene excimer suggested that interactions between N termini are not involved in the H(+)-mediated mechanism. These findings differ from those previously observed for the Ca(2+)-mediated mechanism. Protein titration experiments showed that the protein concentration for half-maximal membrane aggregation was twice for Ca(2+)-mediated compared with H(+)-mediated aggregation, suggesting that AnxA2 was able to bridge membranes either as a dimer or as a monomer, respectively. An N-terminally deleted AnxA2 was 2-3 times less efficient than the wild-type protein for H(+)-mediated membrane aggregation. We propose a model of AnxA2-membrane assemblies, highlighting the different roles of the N-terminal domain in the H(+)- and Ca(2+)-mediated membrane bridging mechanisms.  相似文献   

6.
Phototropin is a membrane-bound UV-A/blue light photoreceptor of plants responsible for phototropism, chloroplast migration and stomatal opening. Characteristic are two LOV domains, each binding one flavin mononucleotide, in the N-terminal half and having a serine/threonine kinase domain in the C-terminal half of the molecule. We purified the N-terminal half of oat phototropin 1, containing LOV1 and LOV2 domains, as a soluble fusion protein with the calmodulin binding peptide (CBP) by expression in Escherichia coli. Gel chromatography showed that it was dimeric in solution. While the fusion protein CBP-LOV2 was exclusively monomeric in solution, the fusion protein CBP-LOV1 occurred as monomer and dimer. The proportion of dimer increased on prolonged incubation. We conclude that native phototropin is a dimer and that the LOV1 domain is probably responsible for dimerization.  相似文献   

7.
8.
The crystal structure of the C-terminal domain of a hook-capping protein FlgD from the plant pathogen Xanthomonas campestris (Xc) has been determined to a resolution of ca 2.5 Å using X-ray crystallography. The monomer of whole FlgD comprises 221 amino acids with a molecular mass of 22.7 kDa, but the flexible N-terminus is cleaved for up to 75 residues during crystallization. The final structure of the C-terminal domain reveals a novel hybrid comprising a tudor-like domain interdigitated with a fibronectin type III domain. The C-terminal domain of XcFlgD forms three types of dimers in the crystal. In agreement with this, analytical ultracentrifugation and gel filtration experiments reveal that they form a stable dimer in solution. From these results, we propose that the Xc flagellar hook cap protein FlgD comprises two individual domains, a flexible N-terminal domain that cannot be detected in the current study and a stable C-terminal domain that forms a stable dimer.  相似文献   

9.
p13suc1 (suc1) has two native states, a monomer and a domain-swapped dimer. The structure of each subunit in the dimer is identical to that of the monomer, except for the hinge loop that connects the exchanging domains. Here we find that single point mutations at sites throughout the protein and ligand binding both shift the position of the equilibrium between monomer and dimer. The hinge loop was shown previously to act as a loaded molecular spring that releases tension present in the monomer by adopting an alternative conformation in the dimer. The results here indicate that the release of strain propagates throughout the entire protein and alters the energetics of regions remote from the hinge. Our data illustrate how the signal conferred by the conformational change of a protein loop, elicited by domain swapping, ligand binding or mutation, can be sensed by a distant active site. This work highlights the potential role of strained loops in proteins: the energy they store can be used for both signal transduction and allostery, and they could steer the evolution of protein function. Finally, a structural mechanism for the role of suc1 as an adapter molecule is proposed.  相似文献   

10.
The human centromere protein B (CENP-B), a centromeric heterochromatin component, forms a homodimer that specifically binds to a distinct DNA sequence (the CENP-B box), which appears within every other alpha-satellite repeat. Previously, we determined the structure of the human CENP-B DNA-binding domain, CENP-B-(1-129), complexed with the CENP-B box DNA. In the present study, we determined the crystal structure of its dimerization domain (CENP-B-(540-599)), another functional domain of CENP-B, at 1.65-A resolution. CENP-B-(540-599) contains two alpha-helices, which are folded into an antiparallel configuration. The CENP-B-(540-599) dimer formed a symmetrical, antiparallel, four-helix bundle structure with a large hydrophobic patch in which 23 residues of one monomer form van der Waals contacts with the other monomer. In the CENP-B-(540-599) dimer, the N-terminal ends of CENP-B-(540-599) are oriented on opposite sides of the dimer. This CENP-B dimer configuration may be suitable for capturing two distant CENP-B boxes during centromeric heterochromatin formation.  相似文献   

11.
The solution structure, thermodynamic stability and hydrodynamic properties of the 55-residue C-terminal domain of UvrB that interacts with UvrC during excision repair in E. coli have been determined using a combination of high resolution NMR, ultracentrifugation, 15N NMR relaxation, gel permeation, NMR diffusion, circular dichroism and differential scanning calorimetry. The subunit molecular weight is 7,438 kDa., compared with 14.5+/-1.0 kDa. determined by equilibrium sedimentation, indicating a dimeric structure. The structure determined from NMR showed a stable dimer of anti-parallel helical hairpins that associate in an unusual manner, with a small and hydrophobic interface. The Stokes radius of the protein decreases from a high plateau value (ca. 22 A) at protein concentrations greater than 4 microM to about 18 A at concentrations less than 0.1 microM. The concentration and temperature-dependence of the far UV circular dichroism show that the protein is thermally stable (Tm ca. 71.5 degrees C at 36 microM). The simplest model consistent with these data was a dimer dissociating into folded monomers that then unfolds co-operatively. The van't Hoff enthalpy and dissociation constant for both transition was derived by fitting, with deltaH1=23 kJ mol(-1). K1(298)=0.4 microM and deltaH2= 184 kJ mol(-1). This is in good agreement with direct calorimetric analysis of the thermal unfolding of the protein, which gave a calorimetric enthalpy change of 181 kJ mol(-1) and a van't Hoff enthalpy change of 354 kJ mol(-1), confirming the dimer to monomer unfolding. The thermodynamic data can be reconciled with the observed mode of dimerisation. 15N NMR relaxation measurements at 14.1 T and 11.75 T confirmed that the protein behaves as an asymmetric dimer at mM concentrations, with a flexible N-terminal linker for attachment to the remainder of the UvrB protein. The role of dimerisation of this domain in the excision repair mechanism is discussed.  相似文献   

12.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8A resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.  相似文献   

13.
14.
The scaffolding protein insulin receptor tyrosine kinase substrate p53 (IRSp53), a ubiquitous regulator of the actin cytoskeleton, mediates filopodia formation under the control of Rho-family GTPases. IRSp53 comprises a central SH3 domain, which binds to proline-rich regions of a wide range of actin regulators, and a conserved N-terminal IRSp53/MIM homology domain (IMD) that harbours F-actin-bundling activity. Here, we present the crystal structure of this novel actin-bundling domain revealing a coiled-coil domain that self-associates into a 180 A-long zeppelin-shaped dimer. Sedimentation velocity experiments confirm the presence of a single molecular species of twice the molecular weight of the monomer in solution. Mutagenesis of conserved basic residues at the extreme ends of the dimer abrogated actin bundling in vitro and filopodia formation in vivo, demonstrating that IMD-mediated actin bundling is required for IRSp53-induced filopodia formation. This study promotes an expanded view of IRSp53 as an actin regulator that integrates scaffolding and effector functions.  相似文献   

15.
16.
17.
The enzyme biotin carboxylase (BC) uses adenosine triphosphate (ATP) to carboxylate biotin and is involved in fatty acid synthesis. Structural evidence suggests that the B domain of BC undergoes a large hinge motion of ~45° when binding and releasing substrates. Escherichia coli BC can function as a natural homodimer and as a mutant monomer. Using molecular dynamics simulations, we evaluate the free energy profile along a closure angle of the B domain of E. coli BC for three cases: a monomer without bound Mg(2)ATP, a monomer with bound Mg(2)ATP, and a homodimer with bound Mg(2)ATP in one subunit. The simulation results show that a closed state is the most probable for the monomer with or without bound Mg(2)ATP. For the dimer with Mg(2)ATP in one of its subunits, communication between the two subunits was observed. Specifically, in the dimer, the opening of the subunit without Mg(2)ATP caused the other subunit to open, and hysteresis was observed upon reclosing it. The most stable state of the dimer is one in which the B domain of both subunits is closed; however, the open state for the B domain without Mg(2)ATP is only approximately 2k(B)T higher in free energy than the closed state. A simple diffusion model indicates that the mean times for opening and closing of the B domain in the monomer with and without Mg(2)ATP are much smaller than the overall reaction time, which is on the order of seconds.  相似文献   

18.
A Chinese hamster ovary cell line has been established which secretes the N-terminal domain of human mGlu1 receptor. The secreted protein has been modified to contain a C-terminal hexa-histidine tag and can be purified by metal-chelate chromatography to yield a protein with an apparent molecular weight of 130 kDa. Following treatment with dithiothreitol the apparent molecular weight is reduced to 75 kDa showing that the protein is a disulphide-bonded dimer. N-terminal protein sequencing of both the reduced and unreduced forms of the protein yielded identical sequences, confirming that they were derived from the same protein, and identifying the site of signal-peptide cleavage of the receptor as residue 32 in the predicted amino acid sequence. Endoglycosidase treatment of the secreted and intracellular forms of the protein showed that the latter was present as an endoglycosidase H-sensitive dimer, indicating that dimerization is taking place in the endoplasmic reticulum. Characterization of the binding of [3H]quisqualic acid showed that the protein was secreted at levels of up to 2.4 pmol/mL and the secreted protein has a Kd of 5.6 +/- 1.8 nm compared with 10 +/- 1 nm for baby hamster kidney (BHK)-mGlu1alpha receptor-expressing cell membranes. The secreted protein maintained a pharmacological profile similar to that of the native receptor and the binding of glutamate and quisqualate were unaffected by changes in Ca2+ concentration.  相似文献   

19.
Dimerization of the operator binding domain of phage lambda repressor   总被引:2,自引:0,他引:2  
Dimerization of lambda repressor is required for its binding to operator DNA. As part of a continuing study of the structural basis of the coupling between dimer formation and operator binding, we have undertaken 1H NMR and gel filtration studies of the dimerization of the N-terminal domain of lambda repressor. Five protein fragments have been studied: three are wild-type fragments of different length (1-102, 1-92, and 1-90), and two are fragments bearing single amino acid substitutions in residues involved in the dimer interface (1-102, Tyr-88----Cys; 1-92, Ile-84----Ser). The tertiary structure of each species is essentially the same, as monitored by the 1H NMR resonances of internal aromatic groups. However, significant differences are observed in their dimerization properties. 1H NMR resonances of aromatic residues that are involved in the dimer contact allow the monomer-dimer equilibrium to be monitored in solution. The structure of the wild-type dimer contact appears to be similar to that deduced from X-ray crystallography and involves the hydrophobic packing of symmetry-related helices (helix 5) from each monomer. Removal of two contact residues, Val-91 and Ser-92, by limited proteolysis disrupts this interaction and also prevents crystallization. The Ile-84----Ser substitution also disrupts this interaction, which accounts for the severely reduced operator affinity of this mutant protein.  相似文献   

20.
Leucine-rich repeat kinase 2 gene is a key factor for Parkinson's disease and encodes for a large protein kinase LRRK2 (280 kDa) with multiple domains, including the different repeat sequences at the N-terminus such as ankyrin domain. Here, we successfully expressed and purified two kinds of LRRK2's N-terminal fragments N1 (aa12–320) and N2 (aa12–860). The purified N2 protein was identified by mass spectrometry and N1's molecular weight was determined to be 33.23 kDa. Gel filtration revealed that N1 exhibits as monomer, dimer and tetramer and N2 as oligomer in solution. N1's multiple oligomeric states were further proved by native-page and cross-linking gel experiments. Circular dichroism spectrum indicated that N1 and N2 contain both α helixes and β sheets. The polymerization character of LRRK2 N-terminal region would be speculated to relate with its biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号