首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have shown that long-chain polyunsaturated fatty acids can kill cancer cells in vitro as well as in vivo, while normal cells remain unaffected. Unfortunately, the cellular and molecular mechanisms responsible for this phenomenon are still poorly understood. The aim of this study was to investigate the potential chemopreventative/antiproliferative potential of docosahexaenoic acid (DHA) in an adenocarcinoma cell line (CaCo2 cells) and to evaluate the signalling pathways modulated by it. DHA (5-50 microM) significantly inhibited cell viability in a dose-dependent manner in CaCo2 cells, while the viability of normal colon cells (NCM460 cells) was not compromised. DHA also induced apoptosis in CaCo2 cells, as indicated by increases in caspase-3 activation and poly-ADP-ribose polymerase cleavage. Signalling proteins, which include extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), Akt and p53 were analysed by Western blotting using phosphospecific and total antibodies. The protein inhibitors wortmannin (phosphoinositide 3 kinase inhibitor), PD 98059 (MEK inhibitor) and SB 203580 (p38 inhibitor) as well as silencing RNA [small interfering RNA (siRNA)] of the p38 MAPK protein, were used to investigate cross-talk between signalling pathways. DHA supplementation significantly suppressed Akt phosphorylation, which also correlated with decreased cell viability and increased apoptosis in CaCo2 cells. Furthermore, siRNA experiments suggested a possible role for p38 MAPK in the phosphorylation of p53 at Ser15, a site which is associated with DNA damage. DHA might thus exert its beneficial effects by means of increased apoptosis and suppression of the important survival-related kinase, Akt.  相似文献   

2.
Some studies have shown that dietary intake of polyunsaturated fatty acids of the n-3 series may have inhibitory effect on the growth of tumor cells both in vivo and in vitro. However, the cellular and molecular mechanisms by which n-3 fatty acids reduce the growth of tumor cells remain poorly understood. In the present studies, we compared the potency of a variety of n-3 and n-6 fatty acids in modulating the apoptotic cell death in HT-29 colon cancer cells. Of all fatty acids examined, we found that docosahexaenoic acid (22:6n-3; DHA) is a potent inducer of apoptosis in a time- and dose-dependent manner. Indomethacin, a cyclooxygenase inhibitor, is ineffective in blocking the apoptosis induced by DHA, suggesting that DHA-induced apoptosis in HT-29 cells is not mediated through the cyclooxygenase pathway. In contrast, the DHA-induced apoptosis is partially reversed by a synthetic antioxidant, butylated hydroxytoluene, indicating that lipid peroxidation may be involved in apoptotic signaling pathway induced by DHA. DHA treatment decreased bcl-2 levels in association with apoptosis, whereas bax levels remained unchanged. These results suggest that decreased expression of bcl-2 by DHA might increase the sensitivity of cells to lipid peroxidation and to programmed cell death.  相似文献   

3.
Conjugated linoleic acid (CLA) has chemoprotective properties in experimental cancer models, and in vitro studies have shown that CLA inhibits HT-29 colon cancer cell growth. ErbB2 and ErbB3 have been implicated in the development of colon cancer, and both proteins are expressed at high levels in the HT-29 cell line. Activation of ErbB2/ErbB3 heterodimers is regulated by the ErbB3 ligand heregulin. To examine CLA regulation of HT-29 cell proliferation and apoptosis and the influence of CLA on the ErbB3 signaling pathway, HT-29 cells were cultured in the presence of CLA and/or heregulin. CLA inhibited DNA synthesis and induced apoptosis of HT-29 cells. Although the addition of heregulin-alpha led to an increase in cell number, it was not able to counteract the negative growth regulatory effect of CLA. Immunoprecipitation/Western blot studies revealed that CLA inhibited heregulin-alpha-stimulated phosphorylation of ErbB2 and ErbB3, recruitment of the p85 subunit of phosphoinositide 3-kinase (PI3-kinase) to the ErbB3 receptor, ErbB3-associated PI3-kinase activities, and phosphorylation of Akt. CLA decreased ErbB2 and ErbB3 mRNA and protein levels in a dose-dependent manner. In conclusion, we demonstrate that CLA inhibits cell proliferation and stimulates apoptosis in HT-29 cells and that this may be mediated by its ability to downregulate ErbB3 signaling and the PI3-kinase/Akt pathway.  相似文献   

4.
【背景】大量文献报道ω-3多不饱和脂肪酸尤其是二十二碳六烯酸(Docosahexaenoic Acid,DHA)与二十碳五烯酸(Eicosapentaenoic Acid,EPA)具有抗肿瘤作用,但是其抗肿瘤机制还不够完善。【目的】探究ω-3多不饱和脂肪酸、具核梭杆菌以及结直肠癌三者之间的关联。【方法】在检测二十二碳六烯酸、二十碳五烯酸、α-亚麻酸(α-Linolenic Acid,ALA)等ω-3多不饱和脂肪酸对人结直肠腺癌细胞Caco-2、正常结肠上皮细胞NCM460生长影响的基础上,检测DHA等3种多不饱和脂肪酸对具核梭杆菌黏附人体细胞以及Fap2、FadA、RadD等具核梭杆菌毒力关键基因表达的影响。【结果】30μg/mL的DHA、EPA、ALA对Caco-2生长抑制分别为9.09%、4.95%、7.52%,而对NCM460生长抑制达31.15%、25.48%、29.11%,而且相关抑制作用仅具有浓度依赖性而无时间依赖性。经30μg/mL的DHA、EPA、ALA预处理的具核梭杆菌黏附Caco-2细胞的能力分别下降81.04%(P=0)、93.63%(P=0)和68.63%(P=0);而共培养时加入DHA、EPA、ALA对具核梭杆菌黏附Caco-2细胞的能力没有显著影响。同时,30μg/mLDHA处理导致F.nucleatum的Fap2基因显著下降10.22%(P=0.027);30μg/mL EPA处理导致FadA、Fap2基因分别显著下降23.49%(P=0)、15.09%(P=0.003);30μg/mL ALA处理导致FadA基因显著下降26.75%(P=0.012)。【结论】综合上述实验结果以及DHA、EPA、ALA仅能短时间抑制具核梭杆菌生长等文献报道,我们认为,DHA、EPA等ω-3多不饱和脂肪酸并非简单地直接杀伤或抑制肿瘤细胞和F.nucleatum;抑制FadA、Fap2等黏附相关基因表达,降低F.nucleatum黏附宿主细胞能力是其抗肿瘤作用的关键组成部分。ω-3多不饱和脂肪酸等活性物质对F.nucleatum等在结直肠肿瘤发生、发展中发挥重要作用的肠道细菌的影响与机制应深入开展研究。  相似文献   

5.
3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (HRIs) are widely used to reduce serum cholesterol in patients with hypercholesterolemia. Previous studies have shown that HRIs can induce apoptosis in colon cancer cells. In this study, we investigated the mechanisms underlying the apoptosis-inducing effect of HRIs in greater detail. The HRI lovastatin induced apoptosis in the human colon cancer cell line SW480 by blocking the cholesterol synthesis pathway. Immunoblot analysis of antiapoptotic molecules, including survivin, XIAP, cIAP-1, cIAP-2, Bcl-2, and Bcl-X(L), revealed that only survivin expression was decreased by lovastatin. Survivin down-regulation by RNA interference induced apoptosis, and survivin overexpression rendered the cells resistant to lovastatin-induced growth inhibition. These results indicate that survivin down-regulation contributes substantially to the proapoptotic properties of lovastatin. Farnesyl pyrophosphate and geranylgeranyl pyrophosphate, two downstream intermediates in the cholesterol synthesis pathway, simultaneously reversed survivin down-regulation and the blocking of Ras isoprenylation by lovastatin. Ras isoprenylation is important for the activation of Ras-mediated signaling, including the activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The PI3-kinase inhibitor down-regulated survivin in SW480 cells. In addition, lovastatin blocked Ras activation and Akt phosphorylation. We conclude that survivin down-regulation is crucial in lovastatin-induced apoptosis in cancer cells and that lovastatin decreases survivin expression by inhibiting Ras-mediated PI3-kinase activation via the blocking of Ras isoprenylation.  相似文献   

6.
Whereas most mammalian cells require extracellular signals to suppress apoptosis, preimplantation embryos can survive and develop to the blastocyst stage in defined medium without added serum or growth factors. Since cells of these embryos are capable of undergoing apoptosis, it has been suggested that their lack of dependence upon exogenous growth factors results from the production of endogenous growth factors that suppress apoptosis by an autocrine signaling mechanism. In the present study, we have examined the growth factor requirements and intracellular signaling pathways that suppress apoptosis in both mouse preimplantation embryos and embryonic stem (ES) cells, which are derived from the blastocyst inner cell mass. Cultured ES cells, in contrast to intact embryos, required serum growth factors to prevent apoptosis. Suppression of ES cell apoptosis by serum growth factors required the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway, since apoptosis was rapidly induced by inhibition of PI 3-kinase with LY294002. In contrast, inhibition of MEK/ERK signaling with U0126 or of mTOR with rapamycin had no detectable effect on ES cell survival. Thus, like most mammalian cells, the survival of ES cells is mediated by growth factor stimulation of PI 3-kinase signaling. Treatment with LY294002 (but not with U0126 or rapamycin) similarly induced apoptosis of mouse blastocysts in serum-free medium, indicating that intact preimplantation embryos are also dependent upon PI 3-kinase signaling for survival. These results demonstrate that PI 3-kinase signaling is required to suppress apoptosis of both ES cells and intact preimplantation embryos, consistent with the hypothesis that survival of preimplantation embryos is maintained by endogenous growth factors that stimulate the PI 3-kinase pathway.  相似文献   

7.
The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM.  相似文献   

8.
Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation.  相似文献   

9.
The intestinal mucosa is a rapidly-renewing tissue characterized by cell proliferation, differentiation, and eventual apoptosis with progression up the vertical gut axis. The inhibition of phosphatidylinositol (PI) 3-kinase by specific chemical inhibitors or overexpression of the lipid phosphatase PTEN enhances enterocyte-like differentiation in human colon cancer cell models of intestinal differentiation. In this report, we examined the role of PI 3-kinase inhibition in the regulation of apoptotic gene expression in human colon cancer cell lines HT29, HCT-116, and Caco-2. Inhibition of PI 3-kinase with the chemical inhibitor wortmannin increased TNF-related apoptosis-inducing ligand (TRAIL; Apo2) mRNA and protein expression. Similarly, overexpression of the tumor suppressor protein PTEN, an antagonist of PI 3-kinase signaling, resulted in the increased expression of TRAIL. Activation of PI 3-kinase by pretreatment with IGF-1, a gut trophic factor, markedly attenuated the induction of TRAIL by wortmannin. Moreover, overexpression of active Akt, a downstream target of PI 3-kinase, or inhibition of GSK-3, a downstream target of active Akt, completely blocked the induction of TRAIL by wortmannin. Consistent with findings that TRAIL is induced by agents that enhance intestinal cell differentiation, TRAIL expression was specifically localized to the differentiated cells of the colon and small bowel. Adenovirus-mediated overexpression of TRAIL increased DNA fragmentation of HCT-116 cells, demonstrating the functional activity of TRAIL induction. Taken together, our findings demonstrate induction of the TRAIL by inhibition of PI 3-kinase in colon cancer cell lines. These results identify TRAIL, a novel TNF family member, as a downstream target of the PI 3-kinase/Akt/GSK-3 pathway and may have important implications for better understanding the role of the PI 3-kinase pathway in intestinal cell homeostasis.  相似文献   

10.
We aimed to study the effects of LY294002, an inhibitor of class I phosphatidylinositol 3-kinase (PI3K), on proliferation, apoptosis, and autophagy in gastric cancer cell line SGC7901. In this study, we showed that LY294002 inhibited the viability of gastric cancer SGC7901 cells. We also showed that LY294002 increased the expression of microtubule-associated protein 1 light chain 3 (LC3), and increased monodansylcadaverine (MDC)-labeled vesicles. LY294002 activated autophagy by activating p53 and caspase-3, and induced apoptosis by up-regulatingp53 and p53-up-regulated modulator of apoptosis ( PUMA ). Therefore, LY294002 might induce cytotoxicity in SGC7901 cells through activation of p53 and the downstream point PUMA . These findings suggest that inhibition of the class I PI3K signaling pathway is a potential strategy for managing gastric cancers.  相似文献   

11.
The short-chain and n-3 polyunsaturated fatty acids exhibit anticancer properties, and they may mutually interact within the colon. However, the molecular mechanisms of their action in colon cancer cells are still not fully understood. Our study focused on the mechanisms responsible for the diverse effects of sodium butyrate (NaBt), in particular when interacting with docosahexaenoic acid (DHA), in distinct colon cancer cell types, in which NaBt either induces cell differentiation or activates programmed cell death involving mitochondrial pathway. NaBt activated autophagy both in HT-29 cells, which are sensitive to induction of differentiation, and in nondifferentiating HCT-116 cells. However, autophagy supported cell survival only in HT-29 cells. Combination of NaBt with DHA-promoted cell death, especially in HCT-116 cells and after longer time intervals. The inhibition of autophagy both attenuated differentiation and enhanced apoptosis in HT-29 cells treated with NaBt and DHA, but it had no effect in HCT-116 cells. NaBt, especially in combination with DHA, activated PPARγ in both cell types. PPARγ silencing decreased differentiation and increased apoptosis only in HT-29 cells, therefore we verified the role of caspases in apoptosis, differentiation and also PPARγ activity using a pan-caspase inhibitor. In summary, our data suggest that diverse responses of colon cancer cells to fatty acids may rely on their sensitivity to differentiation, which may in turn depend on distinct engagement of autophagy, caspases and PPARγ. These results contribute to understanding of mechanisms underlying differential effects of NaBt, when interacting with other dietary fatty acids, in colon cancer cells.  相似文献   

12.
Identifying the trophic factors for retina photoreceptors and the intracellular pathways activated to promote cell survival is crucial for treating retina neurodegenerative diseases. Docosahexaenoic acid (DHA), the major retinal polyunsaturated fatty acid, prevents photoreceptor apoptosis during early development in vitro , and upon oxidative stress. However, the signaling mechanisms activated by DHA are still unclear. We investigated whether the extracellular signal regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) or the phosphatidylinositol-3-kinase (PI3K) pathway participated in DHA protection. 1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophynyltio) butadiene (U0126), a specific MEK inhibitor, completely blocked the DHA anti-apoptotic effect. DHA rapidly increased ERK phosphorylation in photoreceptors, whereas U0126 blocked this increase. U0126 hindered DHA prevention of mitochondrial depolarization, and blocked the DHA-induced increase in opsin expression. On the contrary, PI3K inhibitors did not diminish the DHA protective effect. DHA promoted the early expression of Bcl-2, decreased Bax expression and reduced caspase-3 activation in photoreceptors. These results suggest that DHA exclusively activates the ERK/MAPK pathway to promote photoreceptor survival during early development in vitro and upon oxidative stress. This leads to the regulation of Bcl-2 and Bax expression, thus preserving mitochondrial membrane potential and inhibiting caspase activation. Hence, DHA, a lipid trophic factor, promotes photoreceptor survival and differentiation by activating the same signaling pathways triggered by peptidic trophic factors.  相似文献   

13.
Docosahexaenoic acid (22:6n-3, DHA) is highly enriched in neuronal membranes and is considered to be essential for proper brain function. We have previously demonstrated in Neuro 2A cells that DHA as a membrane component protects cells from apoptotic death induced by serum deprivation (Kim et al. 2000). In the present study we demonstrate that staurosporine (ST) induces apoptosis in Neuro 2A cells and DHA enrichment prior to the ST treatment significantly inhibits the apoptotic cell death, as evidenced by the reduction of caspase-3 activity, cleavage of pro-caspase-3 to active caspase-3, DNA strand-breaking and laddering. Enrichment of cells with other fatty acids such as oleic and arachidonic acids did not exert such an effect, indicating that the antiapoptotic effect was specific to DHA enrichment. Among the several protein kinase inhibitors, only phosphatidylinositol 3-kinase (PI3-K) inhibitors, wortmanin, and LY-294002 abolished the protective effect of DHA in ST-induced apoptosis. Concurrently, ST-treatment significantly decreased the phosphorylation status of Akt at Ser-473 and Thr-308 as well as Akt activity, and this reduction was partially prevented by DHA enrichment. The extent of the antiapoptotic effect of DHA correlated with a time-dependent increase in the phosphatidylserine (PS) content upon DHA enrichment. When cells were enriched with DHA in serine-free medium, the PS increase diminished and the DHA effect on caspase-3 activation as well as Akt phosphorylation in ST-induced apoptosis was no longer apparent, suggesting that DHA's role in accumulating membrane PS is an important component for the observed protection. In summary, DHA enrichment uniquely protects ST-induced apoptosis in a PS- and PI3-K-dependent manner. From these data, we suggest that the antiapoptotic effect of DHA is mediated at least in part through the PI3-K/Akt pathway, facilitated by DHA-induced PS accumulation.  相似文献   

14.
Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival signaling cascades, which thereby constitute possible targets for cancer therapy. In previous studies we introduced two plant derived isomeric flavonoids, flavone A and flavone B which induce apoptosis in highly tumorigenic cancer cells of the breast, colon, pancreas, and the prostate. Flavone A displayed potent cytotoxic activity against more differentiated carcinomas of the colon (CaCo-2) and the pancreas (Panc28), whereas flavone B cytotoxic action is observed on poorly differentiated carcinomas of the colon (HCT 116) and pancreas (MIA PaCa). Apoptosis is induced by flavone A in better differentiated colon cancer CaCo-2 and pancreatic cancer Panc 28 cells via the intrinsic pathway by the inhibition of the activated forms of extracellular signal-regulated kinase (ERK) and pS6, and subsequent loss of phosphorylation of Bcl-2 associated death promoter (BAD) protein, while apoptosis is triggered by flavone B in poorly differentiated colon cancer HCT 116 and MIA PaCa pancreatic cancer cells through the extrinsic pathway with the concomitant upregulation of the phosphorylated forms of ERK and c-JUN at serine 73. These changes in protein levels ultimately lead to activation of apoptosis, without the involvement of AKT.  相似文献   

15.
Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR) and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor) synergized with gefitinib (an EGFR inhibitor) to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1) which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA) depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon cancer.  相似文献   

16.
Toll-like receptor-4 (TLR4) can be activated by nonbacterial agonists, including saturated fatty acids. However, downstream signaling pathways activated by nonbacterial agonists are not known. Thus, we determined the downstream signaling pathways derived from saturated fatty acid-induced TLR4 activation. Saturated fatty acid (lauric acid)-induced NFkappaB activation was inhibited by a dominant-negative mutant of TLR4, MyD88, IRAK-1, TRAF6, or IkappaBalpha in macrophages (RAW264.7) and 293T cells transfected with TLR4 and MD2. Lauric acid induced the transient phosphorylation of AKT. LY294002, dominant-negative (DN) phosphatidylinositol 3-kinase (PI3K), or AKT(DN) inhibited NFkappaB activation, p65 transactivation, and cyclooxygenase-2 (COX-2) expression induced by lauric acid or constitutively active (CA) TLR4. AKT(DN) blocked MyD88-induced NFkappaB activation, suggesting that AKT is a MyD88-dependent downstream signaling component of TLR4. AKT(CA) was sufficient to induce NFkappaB activation and COX-2 expression. These results demonstrate that NFkappaB activation and COX-2 expression induced by lauric acid are at least partly mediated through the TLR4/PI3K/AKT signaling pathway. In contrast, docosahexaenoic acid (DHA) inhibited the phosphorylation of AKT induced by lipopolysaccharide or lauric acid. DHA also suppressed NFkappaB activation induced by TLR4(CA), but not MyD88(CA) or AKT(CA), suggesting that the molecular targets of DHA are signaling components upstream of MyD88 and AKT. Together, these results suggest that saturated and polyunsaturated fatty acids reciprocally modulate the activation of TLR4 and its downstream signaling pathways involving MyD88/IRAK/TRAF6 and PI3K/AKT and further suggest the possibility that TLR4-mediated target gene expression and cellular responses are also differentially modulated by saturated and unsaturated fatty acids.  相似文献   

17.
Polygonatum cyrtonema lectin (PCL), a mannose/sialic acid-binding lectin, has been reported to display remarkable anti-proliferative and apoptosis-inducing activities toward a variety of cancer cells; however, the precise molecular mechanisms by which PCL induces cancer cell death are still elusive. In the current study, we found that PCL could induce apoptosis and autophagy in murine fibrosarcoma L929 cells. Subsequently, we demonstrated that inhibition of Ras could promote L929 cell death, suggesting that Ras–Raf signaling pathway plays the key negative regulator in PCL-induced apoptosis. And, we showed that Ras-Raf signaling pathway was also involved in PCL-induced autophagy as the negative regulator. In addition, we found that class I phosphatidylinositol 3-kinase (PI3K)–Akt signaling pathway could play the negative regulator in PCL-induced apoptosis and autophagy. Taken together, these results demonstrate that PCL induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K–Akt signaling pathways.  相似文献   

18.
Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21Waf1/Cip1 and p27Kip1; and knockdown of p27kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.  相似文献   

19.
The emergence of resistance to chemotherapy remains a principle problem in the treatment of small-cell lung cancer (SCLC). We demonstrate that extracellular matrix (ECM) activates phosphatidyl inositol 3-kinase (PI3-kinase) signaling in SCLC cells and prevents etoposide-induced caspase-3 activation and subsequent apoptosis in a beta1 integrin/PI3-kinase-dependent manner. Crucially we show that etoposide and radiation induce G2/M cell cycle arrest in SCLC cells prior to apoptosis and that ECM prevents this by overriding the upregulation of p21(Cip1/WAF1) and p27(Kip1) and the downregulation of cyclins E, A and B. These effects are abrogated by pharmacological and genetic inhibition of PI3-kinase signaling. Importantly we show that chemoprotection is not mediated by altered SCLC cell proliferation or DNA repair. Thus, ECM via beta1 integrin-mediated PI3-kinase activation overrides treatment-induced cell cycle arrest and apoptosis, allowing SCLC cells to survive with persistent DNA damage, providing a model to account for the emergence of acquired drug resistance.  相似文献   

20.
Sapylin (OK-432) revealed biological properties in cancers. In this study, the effect of sapylin on lung cancer cell A549 was investigated. A549 cell lines were treated with sapylin (0.1, 0.5, and 1 KE/mL) for different time intervals. A549 cell proliferation and apoptosis was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide/Ki67 assay and flow cytometry, respectively. Western blot was used to determine the expressions of proteins involved in proliferation, apoptosis, and phosphoinositide 3-kinase/serine/threonine kinase (PI3K/AKT), Wnt3a/β-catenin signaling pathway. Level of intracellular reactive oxygen species (ROS) was insured by using the ROS kit. Sapylin inhibited A549 cell viability and the expressions of proliferation-related proteins (cyclin E1 and D1) in dose- and time-dependent manners. Sapylin promoted apoptosis in a dose- and time-dependent manners. Sapylin also promoted the expressions of apoptotic proteins (cleaved caspase-3 and 8) in dose- and time-dependent manners. Furthermore, sapylin increased the intracellular concentration of ROS in a dose-dependent manner. Besides, the high expression of ROS level might induce inhibition of cell viability and increase cell apoptosis. The mechanistic study revealed that sapylin inactivated the PI3K/AKT and Wnt3a/β-catenin signaling pathways. Our findings suggest that sapylin inhibits proliferation and promotes apoptosis in lung cancer cells, thus providing a new theoretical basis for the treatment of lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号