首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The proton leak across the mitochondrial inner membrane   总被引:10,自引:0,他引:10  
The proton conductance of the mitochondrial inner membrane increases at high protonmotive force in isolated mitochondria and in mitochondria in situ in rat hepatocytes. Quantitative analysis of its importance shows that about 20-30% of the oxygen consumption by resting hepatocytes is used to drive a heat-producing cycle of proton pumping by the respiratory chain and proton leak back to the matrix. The flux control coefficient of the proton leak pathway over respiration rate varies between 0.9 and zero in mitochondria depending on the rate of respiration, and has a value of about 0.2 in hepatocytes. Changes in the proton leak pathway in situ will therefore change respiration rate. Mitochondria isolated from hypothyroid animals have decreased proton leak pathway, causing slower state 4 respiration rates. Hepatocytes from hypothyroid rats also have decreased proton leak pathway, and this accounts for about 30% of the decrease in hepatocyte respiration rate. Mitochondrial proton leak may be a significant contributor to standard metabolic rate in vivo.  相似文献   

2.
Mitochondrial uncoupling protein 1 (UCP1) mediates the thermogenic transport of protons through the inner mitochondrial membrane. This proton leak uncouples respiration from ATP synthesis. The current study assessed the possible contribution of UCP1 muscle gene transfer to impair mitochondrial respiration in a tissue lacking UCP1 gene expression. Rats received an intramuscular injection of plasmid pXC1 containing UCP1 cDNA in the right tibialis muscles, while left tibialis muscles were injected with empty plasmid as control. Ten days after DNA injection, mitochondria from tibialis anterior muscles were isolated and analyzed. UCP1 gene transfer resulted in protein expression as analyzed by inmunoblotting. Mitochondria isolated from UCP1-injected muscles showed a significant increase in state 2 and state 4 oxygen consumption rates and a decreased respiration control ratio in comparison to mitochondria from control muscles. Furthermore, UCP1-containing mitochondria had a lower membrane potential in those states (2 and 4) when compared with control mitochondria. Our results revealed that UCP1 muscle gene transfer is associated with an induced mitochondrial proton leak, which could contribute to increase energy expenditure.  相似文献   

3.
Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 +/- 2.2 mV) versus aerobic (185.8 +/- 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 +/- 2.9 mV). At the maximal attainable membrane potential, O(2) consumption (nmol O(2) x mg(-1) x min(-1)) did not differ between untreated or DCA-treated hearts (128.3 +/- 7.5 and 120.6 +/- 7.6, respectively) but was significantly greater than aerobic hearts (76.6 +/- 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H(+) production from glucose metabolism to 53% of untreated hearts. Because H(+) production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production.  相似文献   

4.
Mice having targeted inactivation of uncoupling protein 1 (UCP1) are cold sensitive but not obese (Enerb?ck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper M-E, and Kozak LP. Nature 387: 90-94, 1997). Recently, we have shown that proton leak in brown adipose tissue (BAT) mitochondria from UCP1-deficient mice is insensitive to guanosine diphosphate (GDP), a well known inhibitor of UCP1 activity (Monemdjou S, Kozak LP, and Harper M-E. Am J Physiol Endocrinol Metab 276: E1073-E1082, 1999). Moreover, despite a fivefold increase of UCP2 mRNA in BAT of UCP1-deficient mice, we found no differences in the overall kinetics of this GDP-insensitive proton leak between UCP1-deficient mice and controls. Based on these findings, which show no adaptive increase in UCP1-independent leak in BAT, we hypothesized that adaptive thermogenesis may be occurring in other tissues of the UCP1-deficient mouse (e.g., skeletal muscle), thus allowing them to maintain their normal resting metabolic rate, feed efficiency, and adiposity. Here, we report on the overall kinetics of the mitochondrial proton leak, respiratory chain, and ATP turnover in skeletal muscle mitochondria from UCP1-deficient and heterozygous control mice. Over a range of mitochondrial protonmotive force (Deltap) values, leak-dependent oxygen consumption is higher in UCP1-deficient mice compared with controls. State 4 (maximal leak-dependent) respiration rates are also significantly higher in the mitochondria of mice deficient in UCP1, whereas state 4 Deltap is significantly lower. No significant differences in state 3 respiration rates or Deltap values were detected between the two groups. Thus the altered kinetics of the mitochondrial proton leak in skeletal muscle of UCP1-deficient mice indicate a thermogenic mechanism favoring the lean phenotype of the UCP1-deficient mouse.  相似文献   

5.
6.
A significant proportion of standard metabolic rate is devoted to driving mitochondrial proton leak, and this futile cycle may be a site of metabolic control during hibernation. To determine if the proton leak pathway is decreased during metabolic depression related to hibernation, mitochondria were isolated from liver and skeletal muscle of nonhibernating (active) and hibernating arctic ground squirrels (Spermophilus parryii). At an assay temperature of 37 degrees C, state 3 and state 4 respiration rates and state 4 membrane potential were significantly depressed in liver mitochondria isolated from hibernators. In contrast, state 3 and state 4 respiration rates and membrane potentials were unchanged during hibernation in skeletal muscle mitochondria. The decrease in oxygen consumption of liver mitochondria was achieved by reduced activity of the set of reactions generating the proton gradient but not by a lowered proton permeability. These results suggest that mitochondrial proton conductance is unchanged during hibernation and that the reduced metabolism in hibernators is a partial consequence of tissue-specific depression of substrate oxidation.  相似文献   

7.
Uncoupling protein (UCP) 1 (UCP1) catalyzes a proton leak in brown adipose tissue (BAT) mitochondria that results in nonshivering thermogenesis (NST), but the extent to which UCP homologs mediate NST in other tissues is controversial. To clarify the role of UCP3 in mediating NST in a hibernating species, we measured Ucp3 expression in skeletal muscle of arctic ground squirrels in one of three activity states (not hibernating, not hibernating and fasted for 48 h, or hibernating) and housed at 5 degrees C or -10 degrees C. We then compared Ucp3 mRNA levels in skeletal muscle with Ucp1 mRNA and UCP1 protein levels in BAT in the same animals. Ucp1 mRNA and UCP1 protein levels were increased on cold exposure and decreased with fasting, with the highest UCP1 levels in thermogenic hibernators. In contrast, Ucp3 mRNA levels were not affected by temperature but were increased 10-fold during fasting and >3-fold during hibernation. UCP3 protein levels were increased nearly fivefold in skeletal muscle mitochondria isolated from fasted squirrels compared with nonhibernators, but proton leak kinetics in the presence of BSA were unchanged. Proton leak in BAT mitochondria also did not differ between fed and fasted animals but did show classical inhibition by the purine nucleotide GDP. Levels of nonesterified fatty acids were highest during hibernation, and tissue temperatures during hibernation were related to Ucp1, but not Ucp3, expression. Taken together, these results do not support a role for UCP3 as a physiologically relevant mediator of NST in muscle.  相似文献   

8.
A treatment of leaves of Spinacia oleracea L. with light or with the thiol reagent dithiothreitol in the dark led to partly uncoupled thylakoids. After induction in intact leaves, the partial uncoupling was irreversible at the level of isolated thylakoids. We distinguish between uncoupling by proton slip, which means a decrease of the H+/e-ratio due to less efficient proton pumping, and proton leak as defined by enhanced kinetics of proton efflux. Proton slip and proton leak made about equal contributions to the total uncoupling. The enhanced proton efflux kinetics corresponded to reduction of subunit CF1-γ of the ATP synthase as shown by fluorescence labeling of thylakoid proteins with the sulfhydryl probe 5-iodoacetamido fluorescein. The maximum value of the fraction of reduced CF1-γ was only 36%, which indicates that in vivo the reduction of CF1-γ could be limited by fast reoxidation and/or restricted accessibility of CF1-γ to thioredoxin. Measurements of the ratio ATP/2e indicated that only the uncoupling related to less efficient proton pumping led to a decrease in the ATP yield.  相似文献   

9.
Proton leak, as determined by the relationship between respiration rate and membrane potential, was lower in mitochondria from hypothyroid rats compared to euthyroid controls. Moreover, proton leak rates diminished even more when hypothyroid rats were fed a diet containing 5% of the lipid content as n-3 fatty acids. Similarly, proton leak was lower in euthyroid rats fed the 5% n-3 diet compared to one containing only 1% n-3 fatty acids. Lower proton leaks rates were associated with increased inner mitochondrial membrane levels of n-3 fatty acids and a decrease in the ratio of n-6/n-3 fatty acids. This trend was evident in the phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and cardiolipin phospholipid fractions. These results suggest that a significant portion of the effect of thyroid hormone status on proton leak is due to alterations in membrane fatty acid composition, primarily changes in n-3 content. Both the hypothyroid state and dietary effects appear to be mediated in part by inhibition of the Delta6- and Delta5-desaturase pathways.  相似文献   

10.
Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.  相似文献   

11.
12.
Aging is associated with a decline in performance in many organs and loss of physiological performance can be due to free radicals. Mitochondria are incompletely coupled: during oxidative phosphorylation some of the redox energy is dissipated as natural proton leak across the inner membrane. To verify whether proton leak occurs in mitochondria during aging, we measured the mitochondrial respiratory chain activity, membrane potential and proton leak in liver, kidneys and heart of young and old rats. Mitochondria from old rats showed normal rates of Complex I and Complex II respiration. However, they had a lower membrane potential compared to mitochondria from younger rats. In addition, they exhibited an increased rate of proton conductance which partially dissipated the mitochondrial membrane potential when the rate of electron transport was suppressed. This could compromise energy homeostasis in aging cells in conditions that require additional energy supply and could minimize oxidative damage to DNA.  相似文献   

13.
14.
A role for uncoupling protein (UCP) homologues in mediating the proton leak in mammalian mitochondria is controversial. We subjected insulinoma (INS-1) cells to adenoviral expression of UCP2 or UCP1 and assessed the proton leak as the kinetic relationship between oxygen use and the inner mitochondrial membrane potential. Cells were infected with different amounts of rat UCP2, and, in other experiments, with either UCP2 or UCP1. The relative molar expression of these subtypes was quantified through comparison with histidine-tagged UCP1 or UCP2 proteins engineered by expression in Escherichia coli. Adenoviral infection with UCP2, compared with beta-galactosidase, resulted in a dose-dependent shift in kinetics indicating increased H(+) flux at any given membrane potential. UCP1 also enhanced H(+) flux, but, on a relative molar basis, the overexpression of the endogenous protein, UCP2, was more potent than UCP1. These results were not due to nonspecific overexpression of mitochondrial protein since UCP1 activity was inhibited by GDP and because overexpression of another membrane carrier protein, the oxoglutarate malate carrier had no effect. UCP2-mediated H(+) conduction was not GDP sensitive. These data suggest that the UCP homologue, UCP2, mediates the proton leak in mitochondria of a mammalian cell wherein UCP2 is the native subtype.  相似文献   

15.
Histone blocks proton uptake by mitochondria incubated in the presence of valinomycin or DNP. In the presence of DNP valinomycin-induced H+ uptake is not affected by histone. H+ uptake induced by nigericin is not affected by histone as well. Postulated mechanism of histone action involves the immobilization of proton translocation in mitochondrial membrane and induction of local change in H+ concentration, the prevention of the interaction between H+ and natural K+-carrier and Mg2+ transport system or valinomycin.  相似文献   

16.
Reductions in cellular oxygen consumption (Vo2) and reactive oxygen species (ROS) production have been proposed as mechanisms underlying the anti-aging effects of calorie restriction (CR). Mitochondria are a cell's greatest "sink" for oxygen and also its primary source of ROS. The mitochondrial proton leak pathway is responsible for 20-30% of Vo2 in resting cells. We hypothesized that CR leads to decreased proton leak with consequential decreases in Vo2, ROS production, and cellular damage. Here, we report the effects of short-term (2-wk, 2-mo) and medium-term (6-mo) CR (40%) on rat muscle mitochondrial proton leak, ROS production, and whole animal Vo2. Whole body Vo2 decreased with CR at all time points, whereas mass-adjusted Vo2 was normal until the 6-mo time point, when it was 40% lower in CR compared with control rats. At all time points, maximal leak-dependent Vo2 was lower in CR rats compared with controls. Proton leak kinetics indicated that mechanisms of adaptation to CR were different between short- and medium-term treatments, with the former leading to decreases in protonmotive force (Deltap) and state 4 Vo2 and the latter to increases in Deltap and decreases in state 4 Vo2. Results from metabolic control analyses of oxidative phosphorylation are consistent with the idea that short- and medium-term responses are distinct. Mitochondrial H2O2 production was lower in all three CR groups compared with controls. Overall, this study details the rapid effects of short- and medium-term CR on proton leak, ROS production, and metabolic control of oxidative phosphorylation. Results indicate that a reduction in mitochondrial Vo2 and ROS production may be a mechanism for the actions of CR.  相似文献   

17.
Proton pumpingacross the mitochondrial inner membrane and proton leak back throughthe natural proton conductance pathway make up a futile cycle thatdissipates redox energy. We measured respiration and averagemitochondrial membrane potential in perfused rat hindquarter withmaximal tetanic contraction of the left gastrocnemius-soleus-plantaris muscle group, and we estimate that the mitochondrial proton cycle accounted for 34% of the respiration rate of the preparation. Similarmeasurements in rat hepatocytes given substrates to cause a high rateof gluconeogenesis and ureagenesis showed that the proton cycleaccounted for 22% of the respiration rate of these cells. Combiningthese in vitro values with literature values for the contribution ofskeletal muscle and liver to standard metabolic rate (SMR), wecalculate that the proton cycle in working muscle and liver may accountfor 15% of SMR in vivo. Although this value is less than the 20% ofSMR we calculated previously using data from resting skeletal muscleand hepatocytes, it is still large, and we conclude that the futileproton cycle is a major contributor to SMR.  相似文献   

18.
19.
20.
Sandra Amaral 《FEBS letters》2008,582(30):4191-4196
To address the possibility that mitochondria are involved in the age-related loss of testicular function, we characterized mitochondrial bioenergetics in rat testis. A peak of mitochondrial functionality was detected in adult animals, with a decrease in both young and older animals. In the latter group a decrease in mitochondrial function was matched with an increase in proton leak and expression and activity of uncoupling protein 2 (UCP2), suggesting that proton leak may be involved in managing age-dependent mitochondrial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号