首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
Structure of herbaceous plant assemblages in a forested riparian landscape   总被引:2,自引:0,他引:2  
We assessed patterns of herbaceous and woody species richness, plant-environment interactions, and correspondence between the herb and tree layer in a riparian landscape (the Ozark National Scenic Riverways, Missouri, USA). A total of 269 herb and 70 tree species were identified on 94 sample plots. Gradient analysis revealed that environmental variables and vegetation were influenced by a strong elevation gradient. However, high variability in environmental variables (pH, elevation, slope, sand, clay, organic matter) indicated a high level of substrate heterogeneity across the riparian landscape. We were unable to predict the composition of the herb understory from the canopy trees with any detailed accuracy and no clear characterization of herb species assemblages was found using cluster analysis or ecological land type (ELT) classifications. Canonical correspondence analysis (CCA) results for both tree and herb plots showed that elevation (height above river) and pH were the dominant environmental gradients influencing vegetation patterns on the first CCA axis while soil particle size exhibited the strongest correlation with the second CCA axis. Secondary gradients of importance included slope, soil container capacity, and organic matter. No significant linear or quadratic correlation was found between elevation and herb or woody species richness. Environmental variables alone or in combination, were weak predictors of herb and woody species richness, despite the patterns observed in the gradient analysis and the correlations observed in the CCA results. Ecotonal analysis showed that the herb layer exhibited a high species replacement rate at the lower elevations most susceptible to flooding (0–3 m). Above the flooding zone, there was more or less continuous species replacement, suggesting the presence of a gradual ecotone/ecocline. The tree layer exhibited much stronger discontinuities than the herb layer in the lower elevations along the height gradient (0–10 m). Recognizing the limitations of classification techniques for riparian herb assemblages and the importance of scale and heterogeneity in vegetation layers is especially important in light of mandates to preserve, protect, and manage for plant diversity.  相似文献   

2.
Woody and herbaceous plants are differentially influenced by the environment, with non‐random association with the evolutionary history of these taxa and their traits. In general, woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. Here, we explored and mapped how the patterns of species richness, phylogenetic diversity, and structures of total, woody, and herbaceous plants vary across the geographical regions and with respect to 12 environmental variables across Ethiopia and Eritrea, in the horn of Africa. Our result showed that both richness and phylogenetic diversity had almost the same tendency in total woody and herbaceous plants, in which they showed positive relationships with annual precipitation, precipitation annual range of climate, all the three variables of topography, and total nitrogen and total extractable phosphorus of soil, and negative relations with mean annual temperature. Compared with the total and herbaceous plants, the environmental variables explained greater variance both in the standardized effect size phylogenetic diversity and net relatedness index for woody plants. Our results highlight that, on the large spatial scales, the environmental filtering process has played a greater role in structuring species into local communities for woody plants than for herbaceous plants.  相似文献   

3.
It remains unclear whether the latitudinal diversity gradients of micro- and macro-organisms are driven by the same macro-environmental variables. We used the newly completed species catalog and distribution information of bryophytes in China to explore their spatial species richness patterns, and to investigate the underlying roles of energy availability, climatic seasonality, and environmental heterogeneity in shaping these patterns. We then compared these patterns to those found for woody plants. We found that, unlike woody plants, mosses and liverworts showed only weakly negative latitudinal trends in species richness. The spatial patterns of liverwort richness and moss richness were overwhelmingly explained by contemporary environmental variables, although explained variation was lower than that for woody plants. Similar to woody plants, energy and climatic seasonality hypotheses dominate as explanatory variables but show high redundancy in shaping the distribution of bryophytes. Water variables, that is, the annual availability, intra-annual variability and spatial heterogeneity in precipitation, played a predominant role in explaining spatial variation of species richness of bryophytes, especially for liverworts, whereas woody plant richness was affected most by temperature variables. We suggest that further research on spatial patterns of bryophytes should incorporate the knowledge on their ecophysiology and evolution.  相似文献   

4.
Previous studies on large‐scale patterns in plant richness and underlying mechanisms have mostly focused on forests and mountains, while drylands covering most of the world's grasslands and deserts are more poorly investigated for lack of data. Here, we aim to 1) evaluate the plant richness patterns in Inner Asian drylands; 2) compare the relative importance of contemporary environment, historical climate, vegetation changes, and mid‐domain effect (MDE); and 3) explore whether the dominant drivers of species richness differ across growth forms (woody vs herbaceous) and range sizes (common vs rare). Distribution data and growth forms of 13 248 seed plants were compiled from literature and species range sizes were estimated. Generalized linear models and hierarchical partitioning were used to evaluate the relative contribution of different factors. We found that habitat heterogeneity strongly affected both woody and herbaceous species. Precipitation, climate change since the mid‐Holocene and climate seasonality dominated herbaceous richness patterns, while climate change since the Last Glacial Maximum dominated woody richness patterns. Rare species richness was strongly correlated with precipitation, habitat heterogeneity and historical climatic changes, while common species richness was strongly correlated with MDE (woody) or climate seasonality (herbaceous). Temperature had little effects on the species richness patterns of all groups. This study represents the first evaluation of the large‐scale patterns of plant species richness in the Inner Asian drylands. Our results suggest that increasing water deficit due to anthropogenic activities combined with future global warming may increase the extinction risk of many grassland species. Rare species (both herbaceous and woody) may face severe challenges in the future due to increased habitat destruction caused by urbanization and resource exploitation. Overall, our findings indicate that the hypotheses on species richness patterns based on woody plants alone can be insufficient to explain the richness patterns of herbaceous species.  相似文献   

5.
We studied riparian forests along mountain streams in four large watersheds of western Oregon and far northern California, USA, to better understand the multiscale controls on woody riparian vegetation in a geographically complex region. In each of the four-study watersheds, we sampled woody riparian vegetation in161-ha sampling reaches that straddled the stream channel. Within each hectare, we sampled riparian vegetation and local environmental factors in 40 m2 sampling plots arrayed along topographic transects. We also surveyed natural disturbance gaps in 6 ha in each watershed to explore the effects of fine scale disturbance on species distributions. We compared species composition across our study watersheds and used Nonmetric Multidimensional Scaling (NMS) and chi-squared analyses to compare the relative importance of landscape scale climate variables and local topographic and disturbance variables in explaining species distributions at sampling plot and hectare scales. We noted substantial turnover in the riparian flora across the region, with greatest numbers of unique species in watersheds at the ends of the regional gradient. In NMS ordinations at both scales, variation in woody riparian species composition showed strongest correlations with climatic variables and Rubus spectabilis cover, but the latter was only an important factor in the two northern watersheds. At the smaller scale, topographic variables were also important. Chi-squared analyses confirmed that more species showed landscape scale habitat preferences (watershed associations) than associations with topographic position (94.7% vs. 42.7% of species tested) or gap versus forest setting (94.7% vs. 24.6% of species tested). The woody riparian flora of western Oregon shows important biogeographic variation; species distributions showed strong associations with climatic variables, which were the primary correlates of compositional change between riparian sites at both scales analyzed. Additional local variation in composition was explained by measures of topography and disturbance.  相似文献   

6.
The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA – Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals. There were differences among flow classes for riparian species richness, total abundance, and abundance of regenerating native trees and shrubs. There were also significant class differences in the occurrence of three common tree species, and 21 indicator species (mostly native taxa) further distinguished the vegetation characteristics of each flow class. We investigated the influence of key drivers of riparian vegetation structure (climate, depth to water table, stream‐specific power, substrate type, degree of hydrologic alteration, and land use) on riparian vegetation. Patterns were explained largely by climate, particularly annual rainfall and temperature. Strong covarying drivers (hydrology and climate) prevented us from isolating the independent influences of these drivers on riparian assemblage structure. The prevalence of species considered typically rheophytic in some flow classes implies a more substantial role for flow in these classes but needs further testing. No relationships were found between land use and riparian vegetation composition and structure. This study demonstrates the relevance of flow classification to the structure of riparian vegetation in a subtropical landscape, and the influence of covarying drivers on riparian patterns. Management of environmental flows to influence riparian vegetation assemblages would likely have most potential in sites dominated by rheophytic species where hydrological influences override other controls. In contrast, where vegetation assemblages are dominated by a diverse array of typical rainforest species, and other factors including broad‐scale climatic gradients and topographic variables have greater influence than hydrology, riparian vegetation is likely to be less responsive to environmental flow management.  相似文献   

7.
Abstract

Both local and regional predictors play a role in determining plant community structure and composition. Climate, soil features as well as different local history and management affect forest understorey and tree species composition, but to date their specific role is relatively unknown. Few studies have addressed the importance of these predictors, especially in the Mediterranean area, where environmental conditions and human impacts have generated heterogeneous forest communities. In this study, the relationships between environmental variables and species richness of different groups of vascular plants (vascular species, woody species and open habitat species) and bryophytes were investigated in Tuscan forests. A total of 37 environmental variables were used by generalised linear model fitting in order to find parsimonious sub-sets of environmental factors (predictors) that are able to explain species diversity patterns at the local scale. Moreover, the role of regional and local variable groups on species richness of the considered plant groups was estimated by using the variance partitioning approach. We found that local variables, such as forest management and structure, explained more variance than regional variables for total species richness, open habitat species richness and bryophyte species richness. On the other hand, regional variables (such as elevation) played a central role for woody species richness.  相似文献   

8.
We studied the influence of environmental factors relating to climate, soil and vegetation cover on total species richness, species richness of different life-forms and species composition of plant communities occurring in Quercus ilex woodlands, across a 450-km long transect in Northern Algeria constituting a gradient of aridity and human use. We sampled vegetation and collected environmental data in 81 10 m × 10 m plots in five zones representing the largest Q. ilex woodlands throughout the study area, analysing them within an a priori hypothesis framework with the use of Path Analysis. Changes in plant diversity were mainly influenced by environmental factors related to precipitation and temperature regimes, as well as by total plant cover. In particular, changes in species composition were determined by factors associated with the temperature regime through their influence on both woody and annual herbaceous plant richness, and by factors related to the precipitation regime through their influence on perennial herbaceous plant richness, likely due to the differential tolerances of these functional groups to cold and water stress. Our results emphasize the importance of differences in environmental adaptability of the most important life-forms with regard to explaining compositional change (beta diversity) along aridity gradients, and the mediator role of total plant cover in relation to the effects of soil conditions on plant diversity.  相似文献   

9.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

10.
Recent studies have shown that patterns of plant species richness and community biomass are best understood in a multivariate context. The objective of this study was to develop and evaluate a multivariate hypothesis about how herbaceous biomass and richness relate to gradients in soil conditions and woody plant cover in blackland prairies. Structural equation modeling was used to investigate how soil characteristics and shade by scattered Juniperus virginiana trees relate to standing biomass and species richness in 99 0.25 m2 quadrats collected in eastern Mississippi, USA. Analysis proceeded in two stages. In the first stage, we evaluated the hypothesis that correlations among soil parameters could be represented by two underlying (latent) soil factors, mineral content and organic content. In the second stage, we evaluated the hypothesis that richness and biomass were related to (1) soil properties, (2) tree canopy extent, and (3) each other (i.e. reciprocal effects between richness and biomass). With some modification to the details of the original model, it was found that soil properties could be represented as two latent variables. In the overall model, 51% and 53% of the observed variation in richness and biomass were explained. The order of importance for variables explaining variations in richness was (1) soil organic content, (2) soil mineral content, (3) community biomass, and (4) tree canopy extent. The order of importance for variables explaining biomass was (1) tree canopy and (2) soil organic content, with neither soil mineral content nor species richness explaining significant variation in biomass. Based on these findings, we conclude that variations in richness are uniquely related to both variations in soil conditions and variations in herbaceous biomass. We further conclude that there is no evidence in these data for effects of species richness on biomass.  相似文献   

11.
12.
This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert.  相似文献   

13.
Land‐use change is the most important driver of biodiversity loss worldwide and particularly so in the tropics, where natural habitats are transformed into large‐scale monocultures or heterogeneous landscape mosaics of largely unknown conservation value. Using birds as an indicator taxon, we evaluated the conservation value of a landscape mosaic in northeastern Madagascar, a biodiversity hotspot and the center of global vanilla production. We assessed bird species richness and composition by conducting point counts across seven prevalent land‐use types (forest‐ and fallow‐derived vanilla agroforests, woody and herbaceous fallow that are part of a shifting cultivation system, rice paddy, forest fragment and contiguous old‐growth forest). We find that old‐growth forest had the highest species richness, driven by a high share of endemics. Species richness and community composition in forest‐derived vanilla agroforest were similar to forest fragment, whereas fallow‐derived vanilla agroforest was most comparable to woody fallow. The open land‐use types herbaceous fallow and rice paddy had fewest species. Across forest fragments, vanilla agroforests, and woody fallows, endemic bird species richness was positively correlated to landscape‐scale forest cover. We conclude that both fallow‐ and forest‐derived vanilla agroforests play an important but contrasting role for bird conservation: Fallow‐derived agroforests are less valuable but take fallow land out of the shifting cultivation cycle, possibly preventing further degradation. Conversely, forest‐derived agroforests contribute to forest degradation but may avoid total loss of tree cover from forest fragments. Considering the land‐use history of agroforests may thus be a promising avenue for future research beyond the case of vanilla. Abstract in Malagasay is available with online material  相似文献   

14.
Wetland indicator status (WIS ) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species‐level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species‐level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA ), stem specific gravity (SSG ), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species‐level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG , seed mass, % leaf carbon and height, and for woody species occurred for height, SSG , and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low‐density stem tissue. Adaptations to drier habitats in the riparian zone include short, high‐density cavitation‐resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.  相似文献   

15.
Aim Urbanization is a major driver of global land‐use change, substantially modifying patterns of biodiversity. Managing these impacts has become a conservation priority. The creation and maintenance of greenways, such as river corridors, is frequently promoted as a strategy for mitigating habitat fragmentation in urban areas by bringing semi‐natural habitat cover into city centres. However, there is little evidence to support this assertion. Here, we examine whether riparian zones maintain semi‐natural habitat cover in urban areas and how species richness varies along such zones. Location Sheffield, Northern England. Methods Multiple taxonomic groups (birds, butterflies, plants) were surveyed at 105 sites spanning seven riparian corridors that transect the study system. For all groups, we model the relationships between species richness and environmental variables pertinent to an urban system. To test whether riparian zones can act to maintain semi‐natural habitats within a city, we modelled the proportion of semi‐natural land cover within 250 m grid squares that do, and do not, contain a river. Results Species richness varied markedly in relation to distance from the urban core. Trends differed both between taxonomic groups and between rivers, reflecting the complex patterns of environmental variation associated with cities. This suggests that biodiversity surveys that focus on a single group or transect cannot reliably be used as surrogates even within the same city. Nonetheless, there were common environmental predictors of species richness. Plant, avian and butterfly richness all responded positively to Habitat Diversity and the latter two declined with increases in sealed surface. Main conclusions Multiple transects and taxonomic groups are required to describe species richness responses to urbanization as no single pattern is evident. Although riparian zones are an important component of the mosaic of urban habitats, we find that river corridors do not disproportionately support tree and Natural Surface Cover when compared to non‐riverine urban areas.  相似文献   

16.
Plant species composition, dominance, richness, and diversity were measured across a 15-year chronosequence of created wetland sites in Virginia, USA. Using an age-class categorization (1?C2?years, 3?C5?years, 6?C10?years, or 11?C15?years), all classes had a predominance of herbaceous species with perennial life history strategy, and perennials contributed 68.6?% to the overall dominance measure (importance value; IV) averaged across all sites. There was no significant difference in species richness or diversity among age classes. Analysis of Similarity (ANOSIM) indicated that herbaceous species composition was similar between the youngest and oldest age classes, but not the intermediate classes. For woody shrubs and saplings, planted species were more prevalent in the youngest age classes, and volunteer species predominated in the oldest age classes. These results suggest that perennial herbaceous species are important in early plant development on created wetland sites, and may be influential in observed patterns of species composition over time. In the context of plant development in newly created wetlands, dominance shifts from planted to volunteer woody species suggest that planting early successional species, or species with reproductive strategies attuned to created wetland site management, may favor survivorship and recruitment of other species over time.  相似文献   

17.
Although the strong relationship between vegetation and climatic factors is widely accepted, other landscape composition and configuration characteristics could be significantly related with vegetation diversity patterns at different scales. Variation partitioning was conducted in order to analyse to what degree forest landscape structure, compared to other spatial and environmental factors, explained forest tree species richness in 278 UTM 10 × 10 km cells in the Mediterranean region of Catalonia (NE Spain). Tree species richness variation was decomposed through linear regression into three groups of explanatory variables: forest landscape (composition and configuration), environmental (topography and climate) and spatial variables. Additionally, the forest landscape characteristics which significantly contributed to explain richness variation were identified through a multiple regression model. About 60% of tree species richness variation was explained by the whole set of variables, while their joint effects explained nearly 28%. Forest landscape variables were those with a greater pure explanatory power for tree species richness (about 15% of total variation), much larger than the pure effect of environmental or spatial variables (about 2% each). Forest canopy cover, forest area and land cover diversity were the most significant composition variables in the regression model. Landscape configuration metrics had a minor effect on forest tree species richness, with the exception of some shape complexity indices, as indicators of land use intensity and edge effects. Our results highlight the importance of considering the forest landscape structure in order to understand the distribution of vegetation diversity in strongly human-modified regions like the Mediterranean.  相似文献   

18.
The aim of this study was to evaluate the relative contributions of the environment, landscape patterns, and spatial structure to explaining the variation in richness of rare woody species at three levels of rarity (low, medium, and high) and at different grain sizes and spatial extents. We used herbarium records of 195 rare woody species to quantify species richness—overall and for three levels of rarity—of the Yucatan Peninsula, Mexico. We assessed relationships between rare species richness and different sets of explanatory variables (environmental, landscape patterns, and spatial structure of sampling units) using linear regression and variation partitioning analyses at three grain sizes (625, 400, and 225 km2). We also conducted a principle coordinates of neighbor matrices analysis to allow interpretation of the results in terms of different spatial extents. The percentage of variation in rare species richness explained by the models was highest for the largest grain size and spatial extent. At the larger extents, rare species richness was explained mainly by the environment, whereas landscape patterns played a more prominent role at the local extent. Landscape patterns also contributed more to explaining species richness at low to medium levels of rarity, whereas the richness of extremely rare species was better explained by spatial structure. We conclude that the relative contribution of the factors explaining the variation of rare species richness depends on both grain and extent, as well as on the level of rarity. These results underscore the importance of considering the different components of scale (grain and extent) as well as different levels of species rarity in order to better understand the patterns of distribution of rare species richness and to be able to frame appropriate conservation strategies.  相似文献   

19.
The study of changes in species richness and composition along rivers has focused on large spatial scales. It has been ignored that in different sections of the river (high mountain area, middle zone, and mouth of the river) the specific environmental conditions can generate different longitudinal patterns of the species richness and composition. In this study, we determine whether species richness and composition of the riparian plant communities change along a mountain river and whether these changes are related to environmental variables. We expect an increase in species richness and turnover along the river, that the upstream communities would be a subset of the downstream communities, and that such would be related to edaphic and hydrologic conditions. To test this, we sampled three strata of the riparian vegetation (upper: individuals with <1 cm of ND, middle: individuals with >1 cm of ND, low: individuals with >1 m tall) in a set of 15 sites that we place along a mountain river. Additionally, we recorded topographic, hydrological, morphological, and soil variables. We performed correlation analyzes to determine whether changes in species richness and turnover were related to increased distance to the origin of the river. Also, we obtained the nestedness and evaluated the importance of environmental variables with GLM, LASSO regression, and CCA. With the increase in distance, the species richness decreases in the upper stratum, but not in the middle and the low stratum (although the highest values were observed near the origin of the river), the turnover increase in all strata and the upstream communities were not a subset of the downstream communities. The changes in species richness and composition were related to topographic (altitude), hydrological (flow), and edaphic (conductivity and pH) variables. Our results indicate that at small spatial scales the patterns of richness and composition differ from what has been found at larger spatial scales and that these patterns are associated with environmental changes in the strong altitude gradients of mountain rivers.  相似文献   

20.
In this study, we aimed to assess the processes controlling compositional change in a Northern Andean páramo highly affected by human‐induced disturbances over the last few decades (La Rusia, Colombia). Along the 3000–3800 m asl altitudinal range, we randomly sampled fifty 10 × 10 m plots. Therein, we measured altitude and variables related to soil conditions (i.e., moisture, nutrient contents, bulk density, and texture), occurrence of human‐induced disturbances (i.e., fire, vegetation clearing, potato cultivation, and cattle grazing), and land‐use history. We also recorded richness and abundance of plant species, identifying them as exotic or native. We differentiated four groups of plots according to their species composition. The groups had significant differences in altitude, soil conditions, land‐use history, and particularly, in richness of exotic species and exotic/native cover ratio. They could be ascribed to shrub‐ and grass‐páramo vegetation types based on their relative dominance of woody and herbaceous species; however, these groups were not arranged according to the hypothetical composition of altitudinal belts, but rather formed a mosaic of patches. This mosaic was determined not only by altitude but also by soil conditions and disturbance history of sites. Our results corroborate recent findings which highlight shrub‐ and grass‐páramo vegetation types as patches of contrasting species composition and structure that depend on local environmental variables, as well as human‐induced disturbances as a major determinant of compositional discontinuities in these ‘high mountain’ tropical ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号