首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquatic biodiversity faces increasing threats from climate change, escalating exploitation of water and land use intensification. Loss of vegetation in catchments (= watersheds) has been identified as a substantial problem for many river basins, and there is an urgent need to better understand how climate change may interact with changes in catchment vegetation to influence the ecological condition of freshwater ecosystems. We used 20 years of biological monitoring data from Victoria, southeastern Australia, to explore the influences of catchment vegetation and climate on stream macroinvertebrate assemblages. Southeastern Australia experienced a severe drought from 1997 to 2009, with reductions of stream flows >50% in some areas. The prolonged drying substantially altered macroinvertebrate assemblages, with reduced prevalence of many flow‐dependent taxa and increased prevalence of taxa that are tolerant of low‐flow conditions and poor water quality. Stream condition, as assessed by several commonly used macroinvertebrate indices, was consistently better in reaches with extensive native tree cover in upstream catchments. Prolonged drought apparently caused similar absolute declines in macroinvertebrate condition indices regardless of vegetation cover, but streams with intact catchment and riparian vegetation started in better condition and remained so throughout the drought. The largest positive effects of catchment tree cover on both water quality and macroinvertebrate assemblages occurred above a threshold of ca. 60% areal tree cover in upstream catchments and in higher rainfall areas. Riparian tree cover also had positive effects on macroinvertebrate assemblages, especially in warmer catchments. Our results suggest that the benefits of extensive tree cover via improved water quality and in‐channel habitat persist during drought and show the potential for vegetation management to reduce negative impacts of climatic extremes for aquatic ecosystems.  相似文献   

2.
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.  相似文献   

3.
The rate of freshwater invasions may be increasing, and macroinvertebrate invaders can have significant impacts on native macroinvertebrate assemblage structure through biotic interactions. More pollution-tolerant invaders can often replace native species. We examined implications of a species replacement for accurate biological monitoring of river systems using biotic indices. Our study uses Northern Ireland and the Isle of Man as examples of countries that possess river networks with many riverine macroinvertebrate assemblages subject to invasion. The introduced amphipod crustacean Gammarus pulex has replaced the native species G. duebeni celticus in many rivers in N. Ireland and the Isle of Man. Extensive seasonal data sets (119 sites) from three river networks, Lough Neagh and the Lagan in N. Ireland, and island-wide in the Isle of Man, were used to investigate the assumed equivalence of the native and invader in biotic indices concerned with the water quality monitoring system. Based on the derivation of the Biological Monitoring Working Party (BMWP) score, the Average Score Per Taxon (ASPT), as an example of a commonly used biotic index of water quality, we found index scores were lower in G. pulex sites compared to G. d. celticus-only sites. This indicated that assemblages were dominated by taxa more tolerant of organic pollution in the invader sites and more sensitive in the native sites. Inclusion of the invader in generation of the ASPT index, overinflated the ASPT values obtained compared to those with the native’s inclusion. This questions the accuracy of the ASPT and similar indices in rivers where the invader had replaced the native. We argue that with invasion pressures increasing, the validity of water quality indices such as the BMWP/ASPT needs to be re-examined in catchments where invaders have replaced natives. Indices such as the BMWP/ASPT are based on family level taxa and are inevitably coarse in their resolution given the wide range of water qualities tolerated by different genera within families. We argue that this resolution is even more compromised by the presence of very pollution-tolerant invaders, who may have replaced natives in disturbed or degraded river systems. The whole structure of water quality indices such as the BMWP/ASPT may need revising to take into account the presence of invasive species within monitored assemblages.  相似文献   

4.
1. Many studies have shown traditional species diversity indices to perform poorly in discriminating anthropogenic influences on biodiversity. By contrast, in marine systems, taxonomic distinctness indices that take into account the taxonomic relatedness of species have been shown to discriminate anthropogenic effects. However, few studies have examined the performance of taxonomic distinctness indices in freshwater systems. 2. We studied the performance of four species diversity indices and four taxonomic distinctness indices for detecting anthropogenic effects on stream macroinvertebrate assemblages. Further, we examined the effects of catchment type and area, as well as two variables (pH and total phosphorus) potentially describing anthropogenic perturbation on biodiversity. 3. We found no indications of degraded biodiversity at the putatively disturbed sites. However, species density, rarefied species richness, Shannon's diversity and taxonomic diversity showed higher index values in streams draining mineral as opposed to peatland catchments. 4. Of the major environmental gradients analysed, biodiversity indices showed the strongest relationships with catchment area, lending further support to the importance of stream size for macroinvertebrate biodiversity. Some of the indices also showed weak linear and quadratic relationships to pH and total phosphorus, and residuals from the biodiversity index‐catchment area regressions (i.e. area effect standardized) were more weakly related to pH and total phosphorus than the original index values. 5. There are a number of reasons why the biodiversity indices did not respond to anthropogenic perturbation. First, some natural environmental gradients may mask the effects of perturbation on biodiversity. Secondly, perturbations of riverine ecosystems in our study area may not be strong enough to cause drastic changes in biodiversity. Thirdly, multiple anthropogenic stressors may either increase or decrease biodiversity, and thus the coarse division of sites into reference and altered streams may be an oversimplification. 6. Although neither species diversity nor taxonomic distinctness indices revealed anthropogenic degradation of macroinvertebrate assemblages in this study, the traditional species diversity and taxonomic distinctness indices were very weakly correlated. Therefore, we urge that biodiversity assessment and conservation planning should utilize a number of different indices, as they may provide complementary information about biotic assemblages.  相似文献   

5.
This study compares the relative influences of physiography and anthropogenic pressures on river biota at catchment, riparian corridor, and reach scales. Environmental data, catchment and riparian corridor land use, anthropogenic modifications and biological data were compiled for 301 French sites sampled from 2005 to 2008. First, relationships between anthropogenic pressures and fish and macroinvertebrate assemblages were analysed using redundancy analysis. Second, the influences of physiography and the three scales of human pressures on biological assemblages were measured using variance partitioning. Distributions of fish and macroinvertebrate taxa along the pressure gradients agreed with bio-ecological knowledge. At the reach scale, assemblage variability among the 301 French sites was related to the presence of an impoundment and to poor water quality, while at larger scales it was linked to a gradient from forest to agricultural covers. In addition, a large proportion of the explained variability in assemblage composition was related to complex interactions among factors (~40%) and to physiographic variables (~30%). Furthermore, our results highlight that catchment land use better reflects local water quality impairments than hydromorphological degradations. Finally, this study supports the idea that human pressure effects on river communities are linked at several spatial scales and must be considered jointly.  相似文献   

6.
SUMMARY 1. The effects of catchment urbanisation on water quality were examined for 30 streams (stratified into 15, 50 and 100 km2 ± 25% catchments) in the Etowah River basin, Georgia, U.S.A. We examined relationships between land cover (implying cover and use) in these catchments (e.g. urban, forest and agriculture) and macroinvertebrate assemblage attributes using several previously published indices to summarise macroinvertebrate response. Based on a priori predictions as to mechanisms of biotic impairment under changing land cover, additional measurements were made to assess geomorphology, hydrology and chemistry in each stream. 2. We found strong relationships between catchment land cover and stream biota. Taxon richness and other biotic indices that reflected good water quality were negatively related to urban land cover and positively related to forest land cover. Urban land cover alone explained 29–38% of the variation in some macroinvertebrate indices. Reduced water quality was detectable at c. >15% urban land cover. 3. Urban land cover correlated with a number of geomorphic variables such as stream bed sediment size (–) and total suspended solids (+) as well as a number of water chemistry variables including nitrogen and phosphorus concentrations (+), specific conductance (+) and turbidity (+). Biotic indices were better predicted by these reach scale variables than single, catchment scale land cover variables. Multiple regression models explained 69% of variation in total taxon richness and 78% of the variation in the Invertebrate Community Index (ICI) using phi variability, specific conductance and depth, and riffle phi, specific conductance and phi variability, respectively. 4. Indirect ordination analysis was used to describe assemblage and functional group changes among sites and corroborate which environmental variables were most important in driving differences in macroinvertebrate assemblages. The first axis in a non‐metric multidimensional scaling ordination was highly related to environmental variables (slope, specific conductance, phi variability; adj. R2=0.83) that were also important in our multiple regression models. 5. Catchment urbanisation resulted in less diverse and more tolerant stream macroinvertebrate assemblages via increased sediment transport, reduced stream bed sediment size and increased solutes. The biotic indices that were most sensitive to environmental variation were taxon richness, EPT richness and the ICI. Our results were largely consistent over the range in basin size we tested.  相似文献   

7.
Prudent management of lotic systems requires information on their ecological status that can be estimated by monitoring water quality and biodiversity attributes. To understand environmental conditions in Gatharaini drainage basin in Central Kenya, a study was carried out to establish the relationship between water quality and macroinvertebrate assemblages between the months of March and September 1996. Six sampling sites, each 25 m long were selected along a 24‐km stretch of the stream, which drained land under agricultural, residential and industrial use. Water physico‐chemical data was explored using multivariate analysis of Principal Component Analysis to detect environmental trends downstream. Both macroinvertebrates and water physico‐chemical data of suggested trends were analysed for variations and correlations. Temperatures and invertebrate densities changed significantly between the dry and wet season (P < 0.01) but the fluctuations were not evident downstream. Water physico‐chemical characteristics (total dissolved solids (TDS), pH, turbidity, dissolved oxygen) and biodiversity indices (species richness, diversity, dominance, evenness) changed markedly downstream (P < 0.01). Biodiversity indices correlated inversely with TDS, pH and turbidity but positively with dissolved O2. It was evident macroinvertebrate assemblages changed significantly downstream as opposed to functional feeding groups. Diptera was important in most sites whilst Oligochaeta dominance increased downstream corresponding to the deterioration in water quality. Collectors/browsers were the dominant functional feeding groups at most sites. This study showed that significant changes in aquatic macroinvertebrate assemblages were primarily due to water quality rather than prevailing climatic conditions.  相似文献   

8.
Limnology - Benthic macroinvertebrate assemblages are used to assess anthropogenic stressors and pressures globally—although considerable spatial and temporal variability in those assemblages...  相似文献   

9.
Turloughs, ephemeral water bodies associated with karstified limestone, are an important habitat found in the West of Ireland. They are a priority habitat under the European Habitats Directive (92/43/EEC) and are groundwater-dependent habitats under the European Water Framework Directive (2000/60/EC; WFD). Sampling to meet the objectives of either Directive requires discrimination of inherent natural variation from anthropogenically induced disturbances and accounting for both spatial and seasonal patterns of biotic distribution. This study reports within- (submerged grassland) and between-habitat (submerged and emergent grassland) variability of macroinvertebrate communities in six turloughs. Two different habitat types were sampled from two turloughs in April 2007, and further assessment of spatial pattern in commonly found submerged grassland habitat was determined from four additional turloughs in spring 2008. While cluster analysis and non-metric multidimensional scaling identified differences in macroinvertebrate community structures between habitats in one out of two turloughs, congruence of invertebrate communities was, nevertheless, greater within than among turloughs. Within-habitat variability of macroinvertebrate communities across sampling locations of submerged grassland habitat was sufficiently low so that samples collected at any location of a turlough can provide a reliable metric of the macroinvertebrate community of a turlough as a whole. A standardized submerged grassland sampling approach for routine turlough sampling is recommended as a pressure response method to fulfil the requirements of the WFD. For a comprehensive conservation assessment, however, as demanded under the EC Habitats Directive, we suggest a multi-habitat sampling approach to obtain a thorough assessment of turlough macroinvertebrate biodiversity.  相似文献   

10.
11.
Identifying seasonal shifts in community assembly for multiple biological groups is important to help enhance our understanding of their ecological dynamics. However, such knowledge on lotic assemblages is still limited. In this study, we used biological traits and functional diversity indices in association with null model analyses to detect seasonal shifts in the community assembly mechanisms of lotic macroinvertebrates and diatoms in an unregulated subtropical river in China. We found that functional composition and functional diversity (FRic, FEve, FDis, MNN, and SDNN) showed seasonal variation for macroinvertebrate and diatom assemblages. Null models suggested that environmental filtering, competitive exclusion, and neutral process were all important community assembly mechanisms for both biological groups. However, environmental filtering had a stronger effect on spring macroinvertebrate assemblages than autumn assemblages, but the effect on diatom assemblages was the same in both seasons. Moreover, macroinvertebrate and diatom assemblages were shaped by different environmental factors. Macroinvertebrates were filtered mainly by substrate types, velocity, and CODMn, while diatoms were mainly shaped by altitude, substrate types, and water quality. Therefore, our study showed (a) that different biological assemblages in a river system presented similarities and differences in community assembly mechanisms, (b) that multiple processes play important roles in maintaining benthic community structure, and (c) that these patterns and underlying mechanisms are seasonally variable. Thus, we highlight the importance of exploring the community assembly mechanisms of multiple biological groups, especially in different seasons, as this is crucial to improve the understanding of river community changes and their responses to environmental degradation.  相似文献   

12.
The present work aims to analyze the spatio-temporal variability in benthic macroinvertebrate assemblages and biotic indices in an undisturbed and unpolluted Pyrenean river. Samples were collected seasonally over 2 year-cycles (2001–2002) at fifteen sampling sites along the Erro River (Ebro River Basin, Spain) during a exhaustive biomonitoring program following the IBMWP–IASPT scoring system protocol routinely applied in Iberia. Despite absolute values of the biotic indices showed high spatio-temporal variation, the IBMWP–IASPT scoring system proved useful because water quality classes were consistent throughout seasons and years as well as along-river. The original macroinvertebrate families’ presence/absence data matrix was reduced in a number of ways to conduct different statistical procedures in order to detect and separate the underlying near-natural spatial and temporal gradients of the assemblage composition in the Erro River. Along-river, spatial variation of the macroinvertebrate community composition was well assessed by similarity analysis, which clearly detected physical features on the river (drought-affected reach, gorge, towns and flow gauging weirs). Categorical principal component analysis (CATPCA) synthesized and jointly ordered macroinvertebrate samples in a spatio-temporal gradient in the factorial map defined by the first two principal components providing a parsimonious way to assess the assemblages’ variation. These two variation gradients throughout the macroinvertebrate families’ occurrence data were subsequently confirmed separately by several correspondence analyses and revealed additional information, as the representative families for each sampling site group and season could be identified. Furthermore, these spatio-temporal gradients were discussed and put in relation with changes in the aquatic habitat (water temperature, conductivity, total dissolved solids, water velocity, channel width, canopy cover, etc.). The near-natural functioning of the Erro River promoted us to emphasize that conservation efforts should aim to maintain the free-flowing as a permanent source of variability.  相似文献   

13.
Structure and composition of benthic macroinvertebrate assemblages were investigated in seven sampling sites with a gradient of environmental integrity and water quality conditions. Composite samples of the four most representative substrates were collected in order to characterize the riffle-pool dynamic in each sampling site. Spatial and temporal variability of macroinvertebrate assemblages were analyzed at two scales: using substrates and grouping samples for comparing sampling sites. Distribution of macroinvertebrates was influenced primarily by substrate type, but also by environmental integrity, water quality and sampling period. Species occurrence was highly dependent on substrate type. At local spatial scale, environmental degradation measured by the Riparian Channel Environmental Inventory and water chemistry were the determinants of assemblage patterns. We evaluated to which extent the substrates were influenced by environmental integrity and water chemistry, and we found that degradation influenced significantly the macroinvertebrate fauna on the four substrate types, although they were not responding to the same variables. Our results show that qualitatively communities were not influenced by seasonal changes, but abundance was stochastically dependent on rainfall.  相似文献   

14.
15.
The ecological quality of the Andorran streams was assessed in 1998-1999, based on the survey of the water chemistry and the benthic macroinvertebrate assemblages. Two types of modification of the water quality were observed in the Andorran rivers: (i) a progressive degradation along the longitudinal gradient with a chronic degradation in the lower water courses; (ii) a seasonal modification in the mid-elevation sites. Two responses of the benthic macroinvertebrate assemblages to these disturbances were observed: an extreme simplification of the composition and a change of the trophic structure of the assemblages in the more impacted sites.  相似文献   

16.
Clarification of carbon content characteristics, on their spatial variability in density, of tropical peatlands is needed for more accurate estimates of the C pools and more detailed C cycle understandings. In this study, the C density characteristics of different peatland types and at various depths within tropical peats in Central Kalimantan were analyzed. The peatland types and the land cover types were classified by land system map and remotely sensed data of multi-temporal AVHRR composites (1-km pixel size), respectively. Differences in the mean values of volumetric C density (CDV) were found among peatland types owing to the variability in physical consolidation from peat decomposition or nutrient inputs, although no vertical trends of CDV were found. Using a step-wise regression technique, geographic variables and the categories of peatland type and land cover type were found to explain 54% of the variability of CDV within tropical peatlands in some conditions.  相似文献   

17.
Using a novel approach to the assessment of ecological quality status of estuarine ecosystems, this study hypothesizes that compared to adult fishes and other components, the younger fish stages will be more sensitive and act as an early warning and will reflect more effectively the ecological status of estuaries. Larval stages of fishes were used to assess the ecological quality status (EQS) of four NW Portuguese estuaries, with different types and magnitudes of human pressures. The larval fish assemblages, together with water column characteristics and pollution indicators (faecal contamination and nutrient load) were sampled in the Lima, Cávado, Ave and Douro estuaries, during spring and autumn 2009. The four estuaries were classified in terms of human pressures by a global pressure index that identified the Cávado estuary as the least impacted estuary, followed by the Ave and Lima, both classified as moderately impacted system, while the Douro was classified as a highly impacted system. The Ave emerged as the most polluted system, carrying the highest nutrient load and sewage contamination. Larval fish assemblages included estuarine species, marine migrants, marine stragglers and the larger estuaries had higher species richness. Compared to adult fishes, three multimetric fish-based indices classified the Cávado, Ave and Douro estuaries with a lower ecological status when fish larvae were used. Similarly, the EQS assessed by macroinvertebrates were equal or higher when compared with fish larvae results. The EQS assessed by fish larvae was negatively correlated with sewage contamination and nitrogen nutrients, but did not reflect other anthropogenic pressures expressed by the global pressure index, which was only detected by adult fish. Fish larvae assessments were able to detect short-time events of hydrological manipulations observed in the Cávado estuary, as well as a seasonal decrease of water quality especially evident in the Ave estuary. The indices used denoted some limitations to the use of fish larvae data, thus emphasising the need for new indices to test the observed tendency for lower EQS given by fish larvae. The advantages and disadvantages of using fish larvae as more sensitive and accurate bioindicators of ecosystem integrity is also discussed as a means of providing strategically important information for improved estuarine management.  相似文献   

18.
Highly seasonal rivers can experience extended low flow, and often dry, periods. Macroinvertebrate and flow data were used to explore hypotheses on the effects of antecedent hydrology and the low-flow, dry-season period on macroinvertebrate assemblages in northern Australia. Composition differed between early and late dry seasons. Taxa were more sensitive to water quality and more rheophilous in the early dry season when their habitats were lotic than when habitats later became lentic. As flow magnitudes in the antecedent dry season and on the sampling day increased, the habitats became more oxygenated and, in turn, macroinvertebrate richness increased. Higher wet-season flow magnitudes, flow variability and rates of fall were correlated with lower richness in the following dry season. Alteration of the flow-disturbance regime that increases the likelihood of flow cessation in macroinvertebrate habitats, or extends the duration of the dry season beyond that previously experienced in these highly seasonal systems, may alter the resistance and resilience of assemblages such that the seasonal decline and recovery of biodiversity may no longer be so reliable. Given the projected increase in low-flow incidence in many regions of the world, future research needs to examine the effects of reduced flow, flow cessation and stream drying as multiple, interacting stressors on stream biota.  相似文献   

19.
1. The structure of lotic macroinvertebrate communities may be strongly influenced by land‐use practices within catchments. However, the relative magnitude of influence on the benthos may depend upon the spatial arrangement of different land uses in the catchment. 2. We examined the influence of land‐cover patterns on in‐stream physico‐chemical features and macroinvertebrate assemblages in nine southern Appalachian headwater basins characterized by a mixture of land‐use practices. Using a geographical information system (GIS)/remote sensing approach, we quantified land‐cover at five spatial scales; the entire catchment, the riparian corridor, and three riparian ‘sub‐corridors’ extending 200, 1000 and 2000 m upstream of sampling reaches. 3. Stream water chemistry was generally related to features at the catchment scale. Conversely, stream temperature and substratum characteristics were strongly influenced by land‐cover patterns at the riparian corridor and sub‐corridor scales. 4. Macroinvertebrate assemblage structure was quantified using the slope of rank‐abundance plots, and further described using diversity and evenness indices. Taxon richness ranged from 24 to 54 among sites, and the analysis of rank‐abundance curves defined three distinct groups with high, medium and low diversity. In general, other macroinvertebrate indices were in accord with rank‐abundance groups, with richness and evenness decreasing among sites with maximum stream temperature. 5. Macroinvertebrate indices were most closely related to land‐cover patterns evaluated at the 200 m sub‐corridor scale, suggesting that local, streamside development effectively alters assemblage structure. 6. Results suggest that differences in macroinvertebrate assemblage structure can be explained by land‐cover patterns when appropriate spatial scales are employed. In addition, the influence of riparian forest patches on in‐stream habitat features (e.g. the thermal regime) may be critical to the distribution of many taxa in headwater streams draining catchments with mixed land‐use practices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号