首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reveal the allelic differentiations at the two genes for fertility restoration (Rf) on chromosomes 1 (Rf3) and 10 (Rf4), 15 chromosome single segment substitution lines (SSSLs) with the Rf3 locus and 18 SSSLs with the Rf4 locus were crossed with Bobai A (BbA), a cytoplasmic male sterility line with wild abortive type of cytoplasm (WA-CMS), respectively. Based on the pollen and seed fertility of the F1 hybrids, the Rf3 and Rf4 genes were each classified into four alleles, namely Rf3-1, Rf3-2, Rf3-3, and Rf3-4 for Rf3, and Rf4-1, Rf4-2, Rf4-3, and Rf4-4 for Rf4. Out of the 33 SSSLs, an SSSL W23-19-06-06-11 carrying the genotype Rf3-4Rf3-4/Rf4-4Rf4-4 possessed the strongest restoring ability for BbA. To determine the genetic effects of Rf3 and Rf4 for WA-CMS, one BC3F2 population possessing the genetic background of W23-19-06-06-11 was generated from the cross between W23-19-06-06-11 and BbA by backcrossing and marker-assisted selection. In the BC3F2 population, the plants carrying the Rf3Rf3/Rf4Rf4, Rf3Rf3/rf4rf4, and rf3rf3/Rf4Rf4 genotypes were selected and their phenotyping for pollen and spikelet fertility were evaluated. The result showed that under the genetic background of SSSL W23-19-06-06-11, the effect of Rf4 appeared to be slightly larger than that of Rf3 and their effects were additive for WA-CMS system. These studies will lead to the transfer of Rf genes into adapted cultivars through marker-assisted selection in active hybrid rice breeding programs.  相似文献   

2.
3.
4.
Cytoplasmic male sterility (CMS) is a maternally inherited trait that causes dysfunctions in pollen and anther development. CMS is caused by the interaction between nuclear and mitochondrial genomes. A product of a CMS-causing gene encoded by the mitochondrial genome affects mitochondrial function and the regulation of nuclear genes, leading to male sterility. In contrast, the RESTORER OF FERTILITY gene (Rf gene) in the nuclear genome suppresses the expression of the CMS-causing gene and restores male fertility. An alloplasmic CMS line is often bred as a result of nuclear substitution, which causes the removal of functional Rf genes and allows the expression of a CMS-causing gene in mitochondria. The CMS/Rf system is an excellent model for understanding the genetic interactions and cooperative functions of mitochondrial and nuclear genomes in plants, and is also an agronomically important trait for hybrid seed production. In this review article, pollen and anther phenotypes of CMS, CMS-associated mitochondrial genes, Rf genes, and the mechanism that causes pollen abortion and its agronomical application for rice are described.  相似文献   

5.
Wild-abortive (WA), Honglian (HL) and Baro-II (BT) are three important cytoplasmic male sterility (CMS) types in rice. It is essential to investigate genetic mode and allelism of fertility restorer (Rf) genes and the relationship between Rf and CMS. Fertility of the all test-cross F1 plants shows that the restorer-maintainer relationship is similar for HL-CMS and BT-CMS, while that is variance for WA-CMS and HL-CMS (or BT-CMS), respectively. Genetic analysis of Rf genes indicates that HL-or BT-CMS are controlled by single dominant Rf gene and WA-CMS is controlled by one or two pairs of dominant Rf genes, which reflects the characters of the gametophytic and sporophytic restoration CMS type. It is concluded that there are at least three Rf loci in different accessions with Rf genes for each CMS type.  相似文献   

6.
Iso-cytoplasmic restorers possess the same male sterile cytoplasm as the cytoplasmic male sterile (CMS) lines, thereby minimizing the potential cyto-nuclear conflict in the hybrids. Restoration of fertility of the wild abortive CMS is governed by two major genes namely, Rf3 and Rf4. Therefore, assessing the allelic status of these restorer genes in the iso-cytoplasmic restorers using molecular markers will not only help in estimating the efficiency of these genes either alone or in combination, in fertility restoration in the hybrids in different environments, but will also be useful in determining the efficacy of these markers. In the present study, the efficiency of molecular markers in identifying genotypes carrying restorer allele of the gene(s) Rf3 and Rf4, restoring male fertility of WA cytoplasm in rice was assessed in a set of 100 iso-cytoplasmic rice restorers using gene linked as well as candidate gene based markers. In order to validate the efficacy of markers in identifying the restorers, a sub-set of selected 25 iso-cytoplasmic rice restorers were crossed with four different cytoplasmic male sterile lines namely, IR 79156A, IR 58025A, Pusa 6A and RTN 12A, and the pollen and spikelet fertility of the F1s were evaluated at three different locations. Marker analysis showed that Rf4 was the predominant fertility restorer gene in the iso-cytoplasmic restorers and Rf3 had a synergistic effect on fertility restoration. The efficiency of gene based markers, DRCG-RF4-14 and DRRM-RF3-10 for Rf4 (87%) and Rf3 (84%) genes was higher than respective gene-linked SSR markers RM6100 (80%) and RM3873 (82%). It is concluded that the gene based markers can be effectively used in identifying fertility restorer lines obviating the need for making crosses and evaluating the F1s. Though gene based markers are more efficient, there is a need to identify functional polymorphisms which can provide 100% efficiency. Three iso-cytoplasmic restorers namely, PRR 300, PRR 363 and PRR 396 possessing both Rf4 and Rf3 genes and good fertility restoration have been identified which could be used further in hybrid rice breeding.  相似文献   

7.
Hybrid seed production in sugar beet relies on cytoplasmic male sterility (CMS). As time-consuming and laborious test crosses with a CMS tester are necessary to identify maintainer lines, development of a marker-assisted selection method for the rf gene (the nonrestoring allele of restorer-of-fertility locus) is highly desirable for sugar-beet breeding. To develop such a method, we investigated genetic variation at the Rf1 locus, one of two Rf loci known in sugar beet. After HindIII-digestion, genomic DNAs from beet plants known to have a restoring Rf1 allele yielded a range of hybridization patterns on agarose gels, indicating that Rf1 is a multi-allelic locus. However, the hybridization patterns of 22 of 23 maintainer lines were indistinguishable. The nucleotide sequences of the rf1 coding regions of these 22 maintainer lines were found to be identical, confirming that the lines had the same rf1 allele. Two PCR markers were developed that targeted a downstream intergenic sequence and an intron of Rf1. The electrophoretic patterns of both markers indicated multiple Rf1 alleles, one of which, named the dd(L) type, was associated with the maintainer genotype. To test the validity of marker-assisted selection, 147 sugar beet plants were genotyped using these markers. Additionally, the 147 sugar beet plants were crossed with CMS plants to determine whether they possessed the maintainer genotype. Analysis of 5038 F1 offspring showed that 53 % of the dd(L) plants, but none of the plants with other alleles, had the maintainer genotype. Thus, selection for the dd(L) type considerably enriched the proportion of plants with the maintainer genotype.  相似文献   

8.
9.
The Honglian cytoplasmic male sterility (cms-HL) system, a novel type of gametophytic CMS in indica rice, is being used for the large-scale commercial production of hybrid rice in China. However, the genetic basis of fertility restoration (Rf) in cms-HL remains unknown. Previous studies have shown that fertility restoration is controlled by a single locus located on chromosome 10, close to the loci Rf1 and Rf4, which respond to cms-BT and cms-WA, respectively. To determine if the Rf locus for cms-HL is different from these Rf loci and to establish fine-scale genetic and physical maps for map-based cloning of the Rf gene, high-resolution mapping of the Rf gene was carried out using RAPD and microsatellite markers in three BCF1 populations. The results of the genetic linkage analysis indicated that two Rf loci respond to cms-HL, and that these are located in different regions of chromosome 10. One of these loci, Rf5 , co-segregates with the SSR marker RM3150, and is flanked by RM1108 and RM5373, which are 0.9 cM and 1.3 cM away, respectively. Another Rf locus, designated as Rf6(t), co-segregates with RM5373, and is flanked by RM6737 and SBD07 at genetic distances of 0.4 cM. The results also demonstrated these loci are distinct from Rf1 and Rf4. A 105-kb BAC clone covering the Rf6(t) locus was obtained from a rice BAC library. The sequence of a 66-kb segment spanning the Rf6(t) locus was determined by a BLASTX search in the genomic sequence database established for the cultivar 93-11.Communicated by R. Hagemann  相似文献   

10.
The genetics of fertility restoration of cms-C group cytoplasm of maize was studied using crosses involving stable maintainer lines and lines that restored full pollen fertility. Pollen fertility in the sources of cms-C sterile cytoplasms studied was restored by a single dominant restorer (Rf4) gene. The fertility restoration was sporophytic. Allelism tests among five restorer lines showed that they all apparently carried the same alleles (Rf4 Rf4). Similar tests also demonstrated that seven nonrestoring maintainer lines had apparently the same genotype (rf4 rf4), although a partial "late break" of fertility was observed at low levels in some maintainer crosses. Comparative studies among different cms-C sources (C, Bb, ES, PR and RB) indicated that similar inheritance of fertility restoration was involved. The data indicated that a single, dominant Rf gene is involved in the restoration of several C-group cytoplasms, at least in the lines studied here. This is the first single-gene, sporophytic restorer system described in maize to date.  相似文献   

11.
A study on mode of inheritance and mapping of fertility restorer (Rf) gene(s) using simple sequence repeat (SSR) markers was conducted in a cross of male sterile line 2041A having Triticum timopheevi cytoplasm and a restorer line PWR4099 of common wheat (Triticum aestivum L.). The F1 hybrid was completely fertile indicating that fertility restoration is a dominant trait. Based on the pollen fertility and seed set of bagged spikes in F2 generation, the individual plants were classified into fertile and sterile groups. Out of 120 F2 plants, 97 were fertile and 23 sterile (based on pollen fertility) while 98 plants set ≥5 seeds/spike and 22 produced ≤4 or no seed. The observed frequency fits well into Mendelian ratio of 3 fertile: 1 sterile with χ2 value of 2.84 for pollen fertility and 2.17 for seed setting indicating that the fertility restoration is governed by a single dominant gene in PWR4099. The three linked SSR markers, Xwmc503, Xgwm296 and Xwmc112 located on the chromosome 2DS were placed at a distance of 3.3, 5.8 and 6.7 cM, respectively, from the Rf gene. Since, no known Rf gene is located on the chromosome arm 2DS, the Rf gene in PWR4099 is a new gene and proposed as Rf8. The closest SSR marker, Xwmc503, linked to the Rf8 was validated in a set of Rf, maintainer and cytoplasmic male sterile lines. The closely linked SSR marker Xwmc503 may be used in marker-assisted backcross breeding facilitating the transfer of fertility restoration gene Rf8 into elite backgrounds with ease.  相似文献   

12.
Three-line japonica hybrids have been developed mainly on Chinsurah Boro II (BT)-type cytoplasmic male sterile (CMS) lines of Oryza sativa L., but the unstable sterility of some BT-type CMS lines, and the threat of genetic vulnerability when using a single cytoplasm source, have inhibited their use in rice cultivation. Previously, the sterility of Honglian (HL)-type japonica CMS lines derived from common red-awned wild rice (Oryza rufipogon) has been proven to be more stable than that of BT-type japonica CMS lines. Here, we genetically characterized HL-type japonica CMS lines and the restorer-of-fertility (Rf) gene for breeding HL-type japonica hybrids. HL-type japonica CMS lines displayed stained abortive pollen grains, unlike HL-type indica CMS lines. The BT-type japonica restorer lines, which contain Rf, had different capabilities to restore HL-LiuqianxinA (HL-LqxA), an HL-type japonica CMS line, and the restorers for the HL-type japonica CMS lines could be selected from the preexisting BT-type japonica restorers in rice production. A genetic analysis showed that the restoration of normal fertility to HL-LqxA was controlled by a major gene and was affected by minor effector genes and/or modifiers. The major Rf in SiR2982, a BT-type japonica restorer, was mapped to a ~100-kb physical region on chromosome 10, and was demonstrated to be Rf5 (Rf1a) by sequencing. Furthermore, Rf5 partially restored fertility and had a dosage effect on HL-type japonica CMS lines. These results will be helpful for the development of HL-type japonica hybrids.  相似文献   

13.
Retrograde regulation of nuclear gene expression in CW-CMS of rice   总被引:1,自引:0,他引:1  
The CW-cytoplasmic male sterility (CMS) line has the cytoplasm of Oryza rufipogon Griff, and mature pollen is morphologically normal under an optical microscope but lacks the ability to germinate; restorer gene Rf17 has been identified as restoring this ability. The difference between nuclear gene expression in mature anthers was compared for the CW-CMS line, [cms-CW] rf17rf17, and a maintainer line with normal cytoplasm of Oryza sativa L., [normal] rf17rf17. Using a 22-k rice oligoarray we detected 58 genes that were up-regulated more than threefold in the CW-CMS line. Expression in other organs was further investigated for 20 genes using RT-PCR. Five genes, including genes for alternative oxidase, were found to be preferentially expressed in [cms-CW] rf17rf17 but not in [normal] rf17rf17 or [cms-CW] Rf17Rf17. Such [cms-CW] rf17rf17-specific gene expression was only observed in mature anthers but not in leaves, stems, or roots, indicating the presence of anther-specific mitochondrial retrograde regulation of nuclear gene expression, and that Rf17 has a role in restoring the ectopic gene expression. We also used a proteomic approach to discover the retrograde regulated proteins and identified six proteins that were accumulated differently. These results reveal organ-specific induced mitochondrial retrograde pathways affecting nuclear gene expression possibly related to CMS. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

14.
野败型水稻细胞质雄性不育恢复基因Rf-4的分子标记定位   总被引:23,自引:0,他引:23  
张群宇  刘耀光  张桂权  梅曼彤 《遗传学报》2002,29(11):1001-1004
为了用分子标记准确定位野败型水稻细胞质雄性不育恢复基因Rf-4,将日本水稻基因组项目(Rice Genome Program,RGP)构建的水稻遗传连锁图谱第10染色体分子遗传图上的分子标记R1877和G2155之间对应区域YAC物理图上的6个YAC克隆进行了亚克隆,获得119个片段,对这些探针进行多态性探查,获得了2个多态分子标记,用珍汕97A和恢复基因近等基因系的杂种F2分离群体中的117完全不育株进行连锁分析表明,从YAC4892获得的亚克隆Y3-8与Rf-4座位的连锁距离为0.9cM,从YAC4630获得的亚克隆Y1-10与Rf-4座位的连锁距离为3.2cM,根据以上结果把Rf-4座位定位于第10染色体的特定位置,为该基因的分子标记辅助选择和定位克隆打下了基础。  相似文献   

15.
More than 400 pentatricopeptide repeat (PPR) genes have been found in higher plants, but most of them have not been functionally analyzed and their origins are still obscure. In this study, we performed phylogenetic genomewide comparisons of the PPR gene family in indica and japonica rice to explore the expansion mechanisms of these genes in higher plants. The functions of PPR genes in plant CMS/Rf systems are also discussed. The results indicate that (1) unequal crossing over participated in the expansion of the newly evolved PPR genes in indica and japonica rice genomes, (2) CMS/Rf systems are different in monocots and dicots, (3) the BT-type CMS/Rf system exists in both indica and japonica rice, and (4) both the PPR gene family and the BT-type CMS/Rf system may have existed before the divergence of indica and japonica rice.  相似文献   

16.
Cytoplasmic male sterility (CMS) is an important agricultural trait characterized by lack of functional pollen, and caused by ectopic and defective mitochondrial gene expression. The pollen function in CMS plants is restored by the presence of nuclear‐encoded restorer of fertility (Rf) genes. Previously, we cloned Rf2, which restores the fertility of Lead Rice (LD)‐type CMS rice. However, neither the function of Rf2 nor the identity of the mitochondrial gene causing CMS has been determined in LD–CMS rice. Here, we show that the mitochondrial gene orf79 acts as a CMS‐associated gene in LD–CMS rice, similar to its role in BT–CMS rice originating from Chinsurah Boro II, and Rf2 weakly restores fertility in BT–CMS rice. We also show that RF2 promotes degradation of atp6–orf79 RNA in a different manner from that of RF1, which is the Rf gene product in BT–CMS rice. The amount of ORF79 protein in LD–CMS rice was one‐twentieth of the amount in BT–CMS rice. The difference in ORF79 protein levels probably accounts for the mild and severe pollen defects in LD–CMS and BT–CMS rice, respectively. In the presence of Rf2, accumulation of ORF79 was reduced to almost zero and 25% in LD–CMS and BT–CMS rice, respectively, which probably accounts for the complete and weak fertility restoration abilities of Rf2 in LD–CMS and BT–CMS rice, respectively. These observations indicate that the amount of ORF79 influences the pollen fertility in two strains of rice in which CMS is induced by orf79.  相似文献   

17.
Cytoplasmic male sterility (CMS) is associated with a mitochondrial mutation that causes an inability to produce fertile pollen. The fertility of CMS plants is restored in the presence of a nuclear-encoded fertility restorer (Rf) gene. In Lead Rice-type CMS, discovered in the indica variety 'Lead Rice', fertility of the CMS plant is restored by the single nuclear-encoded gene Rf2 in a gametophytic manner. We performed map-based cloning of Rf2, and proved that it encodes a protein consisting of 152 amino acids with a glycine-rich domain. Expression of Rf2 mRNA was detected in developing and mature anthers. An RF2-GFP fusion was shown to be targeted to mitochondria. Replacement of isoleucine by threonine at amino acid 78 of the RF2 protein was considered to be the cause of functional loss in the rf2 allele. As Rf2 does not encode a pentatricopeptide repeat protein, unlike a majority of previously identified Rf genes, the data from this study provide new insights into the mechanism for restoring fertility in CMS.  相似文献   

18.
The combination of a single cytoplasmic male-sterile (CMS) PET-1 and the corresponding fertility restoration (Rf) gene Rf1 is used for commercial hybrid sunflower (Helianthus annuus L., 2n = 34) seed production worldwide. A new CMS line 514A was recently developed with H. tuberosus cytoplasm. However, 33 maintainers and restorers for CMS PET-1 and 20 additional tester lines failed to restore the fertility of CMS 514A. Here, we report the discovery, characterization, and molecular mapping of a novel Rf gene for CMS 514A derived from an amphiploid (Amp H. angustifolius/P 21, 2n = 68). Progeny analysis of the male-fertile (MF) plants (2n = 35) suggested that this gene, designated Rf6, was located on a single alien chromosome. Genomic in situ hybridization (GISH) indicated that Rf6 was on a chromosome with a small segment translocation on the long arm in the MF progenies (2n = 34). Rf6 was mapped to linkage group (LG) 3 of the sunflower SSR map. Eight markers were identified to be linked to this gene, covering a distance of 10.8 cM. Two markers, ORS13 and ORS1114, were only 1.6 cM away from the gene. Severe segregation distortions were observed for both the fertility trait and the linked marker loci, suggesting the possibility of a low frequency of recombination or gamete selection in this region. This study discovered a new CMS/Rf gene system derived from wild species and provided significant insight into the genetic basis of this system. This will diversify the germplasm for sunflower breeding and facilitate understanding of the interaction between the cytoplasm and nuclear genes.  相似文献   

19.
20.
 Cytoplasmic male sterility (CMS) is the maternally inherited inability to produce functional pollen. The Rf3 allele of the nuclear gene rf3 gametophytically restores male fertility to maize plants with the S-type of CMS. The rf3 locus is on the long arm of maize chromosome two (2L). Using 2L RFLPs and three-point mapping analysis we showed that the rf3 locus is located an estimated 4.3 cM distal to the whp locus and 6.4 cM proximal to the bnl17.14 locus. This information was used in combination with RFLPs on two additional maize chromosomes to show that Rf3/rf3 CMS-S plants may aberrantly transmit the nonrestoring allele, rf3, through the male gametophyte. Received: 30 September 1996/Accepted: 21 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号