首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1. Due to climate change, contemporary climate scenarios forecast an increase in extreme weather, which may have considerable impacts on the world's riverine ecosystems. Because the flow regime is a primary determinant of the structure and function of lotic ecosystems, changes in the weather could fundamentally alter these ecosystems through changes in hydrologic disturbance regimes. 2. In this paper, we use the abundance/biomass comparison (ABC) method, based on r/K selection theory, and event probability distribution to characterise the responses of macroinvertebrates in Taiwan mountain streams to extreme floods. 3. Severe impacts on macroinvertebrates, resulting in a large shift in community structure toward r‐selected taxa, usually were observed the year after extreme floods. 4. Macroinvertebrate communities dominated by K‐selected taxa had more individuals with traits conferring resistance to flooding disturbance, while those dominated byr‐selected taxa had more individuals with traits conferring resilience. 5. This relationship between the changes in flow regime and the ecological response of r‐ and K‐selected taxa may be exploited to understand the potential effects of flood extremes in the future, and to keep decision makers informed about the ecological consequences of climate‐mediated changes to hydrological regimes.  相似文献   

3.
The colonization of ball-clay ponds by macroinvertebrates and macrophytes   总被引:4,自引:0,他引:4  
SUMMARY. 1. The rate and nature of colonization of ball-clay ponds by aquatic macrophytes and macroinvertebrates were studied by comparing communities present in a scries of ten ponds of similar dimensions, but of different ages, ranging from 6 months to 15 years.
2. Multivariate analyses of the biotic data distinguished between'neutral'and'acid'ponds; further analyses concentrated on the former type.
3. Initial colonization of neutral ponds was rapid with a predictable sequence of species arrival, probably reflecting short dispersal distances. Variations in macroinvertebrate invasion times were related to dispersal strategy and ability. As the pond aged, successional changes, linked with macrophyte colonization, produced a shift in dominance from algivores and predators towards epiphyton grazers and detritivores. Some evidence of succession of species within invertebrate orders was found.
4. Low pH affected colonization principally by preventing the establishment of acid-intolerant immigrant species, but also by retarding succession.
5. It is concluded that non-interactive models of insular colonization, with constant immigration and extinction rates, are of limited applicability to pond colonization in temperate areas.  相似文献   

4.
5.
Conservation through the protection of particular habitats is predicated on the assumption that the conservation value of those habitats is stable. We test this assumption for ponds by investigating temporal variation in macroinvertebrate and macrophyte communities over a 10-year period in northwest England. We surveyed 51 ponds in northern England in 1995/6 and again in 2006, identifying all macrophytes (167 species) and all macroinvertebrates (221 species, excluding Diptera) to species. The alpha-diversity, beta-diversity and conservation value of these ponds were compared between surveys. We find that invertebrate species richness increased from an average of 29.5 species to 39.8 species between surveys. Invertebrate gamma-diversity also increased between the two surveys from 181 species to 201 species. However, this increase in diversity was accompanied by a decrease in beta-diversity. Plant alpha-, beta- and gamma-diversity remained approximately constant between the two periods. However, increased proportions of grass species and a complete loss of charophytes suggests that the communities are undergoing succession. Conservation value was not correlated between sampling periods in either plants or invertebrates. This was confirmed by comparing ponds that had been disturbed with those that had no history of disturbance to demonstrate that levels of correlation between surveys were approximately equal in each group of ponds. This study has three important conservation implications: (i) a pond with high diversity or high conservation value may not remain that way and so it is unwise to base pond conservation measures upon protecting currently-speciose habitats; (ii) maximising pond gamma-diversity requires a combination of late and early succession ponds, especially for invertebrates; and (iii) invertebrate and plant communities in ponds may require different management strategies if succession occurs at varying rates in the two groups.  相似文献   

6.
With rare exceptions, anuran larvae have traditionally been considered to occupy lower trophic levels in aquatic communities where they function as microphagous suspension feeders. This view is being challenged by studies showing that tadpoles with generalized morphology often function as macrophagous predators. Here, we review the literature concerning macrophagy by tadpoles and provide two additional examples involving generalized tadpoles. In the first, we demonstrate with laboratory and field experiments that wood frog (Rana sylvatica) tadpoles are major predators of macroinvertebrates in ponds. In the second, we show that green frog (R. clamitans) tadpoles can cause catastrophic reproductive failure of the wood frog via egg predation. These results and data from other studies challenge the assumption that generalized tadpoles function as filter-feeding omnivores, and question the general applicability of community organization models which assume that predation risk increases with pond permanence. We suggest that predation risk is greater in temporary ponds than in more permanent ponds for many organisms that are vulnerable to predation by tadpoles. This being so, a conditional model based upon interactions that are species-specific, life-stage-specific, and context-dependent may better explain community organization along hydrological gradients than models which assume that temporary ponds have few or no predators. Received: 30 November 1998 / Accepted: 2 May 1999  相似文献   

7.
1. The scale of investigations influences the interpretation of results. Here, we investigate the influence of fish and nutrients on biotic communities in shallow lakes, using studies at two different scales: (i) within‐lake experimental manipulation and (ii) comparative, among‐lake relationships. 2. At both scales, fish predation had an overriding influence on macroinvertebrates; fish reduced macroinvertebrate biomass and altered community composition. Prey selection appeared to be size based. Fish influenced zooplankton abundance and light penetration through the water column also, but there was no indication that fish caused increased resuspension of sediment. 3. There were effects of nutrients at both scales, but these effects differed with the scale of the investigation. Nutrients increased phytoplankton and periphyton at the within‐lake scale, and were associated with increased periphyton at the among‐lake scale. No significant effect of nutrients on macroinvertebrates was observed at the within‐lake scale. However, at the among‐lake scale, nutrients positively influenced the biomass and density of macroinvertebrates, and ameliorated the effect of fish on macroinvertebrates. 4. Increased prey availability at higher nutrient concentrations would be expected to cause changes in the fish community. However, at the among‐lake scale, differences were not apparent in fish biomass among lakes with different nutrient conditions, suggesting that stochastic events influence the fish community in these small and relatively isolated shallow lakes. 5. The intensity of predation by fish significantly influences macroinvertebrate community structure of shallow lakes, but nutrients also play a role. The scale of investigation influences the ability to detect the influence of nutrients on the different components of shallow lake communities, particularly for longer lived organisms such as macroinvertebrates, where the response takes longer to manifest.  相似文献   

8.
The spatial distribution of microbial communities has recently been reliably documented in the form of a distance–similarity decay relationship. In contrast, temporal scaling, the pattern defined by the microbial similarity–time relationships (STRs), has received far less attention. As a result, it is unclear whether the spatial and temporal variations of microbial communities share a similar power law. In this study, we applied the 454 pyrosequencing technique to investigate temporal scaling in patterns of bacterioplankton community dynamics during the process of shrimp culture. Our results showed that the similarities decreased significantly (P?=?0.002) with time during the period over which the bacterioplankton community was monitored, with a scaling exponent of w?=?0.400. However, the diversities did not change dramatically. The community dynamics followed a gradual process of succession relative to the parent communities, with greater similarities between samples from consecutive sampling points. In particular, the variations of the bacterial communities from different ponds shared similar successional trajectories, suggesting that bacterial temporal dynamics are predictable to a certain extent. Changes in bacterial community structure were significantly correlated with the combination of Chl a, TN, PO4 3-, and the C/N ratio. In this study, we identified predictable patterns in the temporal dynamics of bacterioplankton community structure, demonstrating that the STR of the bacterial community mirrors the spatial distance–similarity decay model.  相似文献   

9.
Mediterranean coastal areas are characterised by heavily transformed landscapes and an ever-increasing number of ponds are subjected to strong alterations. Although benthic diatoms and macroinvertebrates are widely used as indicators in freshwater ecosystems, little is still known about the diatom communities of lowland freshwater ponds in the Mediterranean region, and, furthermore, there are few macroinvertebrate-based methods to assess their ecological quality, especially in Italy. This article undertakes an analysis of benthic diatom and macroinvertebrate communities of permanent freshwater ponds, selected along a gradient of anthropogenic pressures, to identify community indicators (taxa and/or metrics) useful to evaluate the effect of human impacts. A series of 21 ponds were sampled along Tyrrhenian coast in central Italy. Five of these ponds, in a good conservations status and surrounded by woodland were selected as ‘reference sites’ for macroinvertebrates and epipelic diatoms. The remaining sixteen ponds were located in an agricultural landscape subject to different levels of human impact. The total number of macroinvertebrate taxa found in each pond was significantly higher in reference sites than in both the intermediate and heavily degraded ones, whereas the diatom species richness did not result in a good community variable to evaluate the pond ecological quality. The analysis revealed a substantial difference among the compositions of diatom communities between reference ponds and degraded ponds. The former were characterised by the presence of several species belonging to genera, such as Pinnularia sp., Eunotia sp., Stauroneis sp., Neidium sp., all of which were mostly absent from degraded ponds. Furthermore, the taxonomic richnesses of some macroinvetebrate groups (Odonata, Ephemeroptera, Trichoptera, Coleoptera), and taxa composition attributes of macroinvertebrate communities (total abundance, percentages of top three dominant taxa, percentages of Pleidae, Ancylidae, Hirudinea, Hydracarina) significantly correlated with variables linked with anthropogenic pressures. The results of the investigation suggested that diatoms tended more to reflect water chemistry through changes in community structure, whereas invertebrates responded to physical habitat changes primarily through changes in taxonomic richness. The methodologies developed for the analysis of freshwater benthic diatom and macroinvertebrate communities may have a considerable potential as a tool for assessing the ecological status of this type of water body, complying with the European Union Water Framework Directive 2000/60/EC. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

10.
The succession of fouling organisms that settled on asbestos plates immersed at Garden Island. Western Australia, was partially caused by the settlement patterns of the species involved. Both temporal variations in the abundance and continuity of settlement of each species and the age of the communities in which each species settled abundantly contributed to producing the succession. Additionally, temporal variations in the settlement of each species probably resulted in variability in the pattern of succession.Balanus and Spirorbis, the two earliest species in the succession, settled continuously and abundantly so that they immediately occupied a substantial area. The species which predominated later in the succession, Anomia, Ostrea, encrusting bryozoans, and Mytilus, settled discontinuously so that they were unlikely to settle immediately on a newly immersed surface. Additionally, Anomia, Ostrea, and the encrusting bryozoans did not settle abundantly and did not occupy a substantial area while small. Thus, there was also a delay between the time when these species settled and the time when they had grown sufficiently large to occupy a substantial area.Mytilus was the only species that settled abundantly in established communities and thus could persist indefinitely in a community. Settlement of the other species which occurred earlier in the succession was largely restricted to newly immersed plates and consequently these species were limited in their duration in the succession by the life-spans of the individual organisms.  相似文献   

11.
Dominant growth strategies of soil microbial communities of mown and unmown meadows were assessed with respect to the constants of saturation and maximal specific growth rate of microorganisms. The microbial community of mown-meadow soil was characterized by a greater biomass and activity due to prevalence of microorganisms with the r strategy, compared to the microbial community of unmown-meadow soil. In contrast to nonrhizosphere soil, rhizosphere soil was dominated by rapidly growing microorganisms with the r strategy. The dependence of the dominant ecological strategy of the rhizosphere microbial community on the vegetation stage of plants has been traced. Study of the effect of plant species on the growth strategies of rhizosphere microorganisms showed that the features of the K strategy are more pronounced in the following rhizosphere microbial communities of grasses at the same growth stage: r strategy–Bromopsis inermis L.–Poa pratensis L., P. compressa L.–Dactylis glomerata L.–Festuca pratensisL.–K strategy. In the absence of limitation by climatic factors, the growth strategies of rhizosphere microorganisms are determined by the competition between microorganisms and plants for nutrients.  相似文献   

12.
  1. Understanding changes in macroinvertebrate communities is important because they play a large role in stream ecosystem functioning, and they are an important food resource for fish. Beaver-induced changes to stream morphology could alter macroinvertebrate communities, which in turn could affect food webs and ecosystem function. However, studies investigating the effects of North American beaver activities on macroinvertebrates are rare in the inter-mountain west, an area with high potential for beaver-assisted restoration.
  2. The aim of this study was to quantify differences in the macroinvertebrate community between unaltered segments of streams and within beaver ponds in north-eastern Utah, U.S.A. We assessed macroinvertebrate species richness, biomass, density, functional feeding group composition, mobility group composition, and macroinvertebrate habitat characteristics to test the hypothesis that macroinvertebrate communities will differ among habitat types (undammed stream segments and beaver ponds) in beaver-occupied streams.
  3. Beaver pond communities significantly differed from lotic reach communities in many ways. Beaver ponds were less diverse with 25% fewer species. Although there was variability among streams, in general, beaver ponds had 75% fewer individuals and 90% lower total macroinvertebrate biomass compared to lotic reaches.
  4. Regarding functional feeding groups, beaver ponds contained more engulfers, while lotic reaches contained more scrapers, filterers, and gatherers. For mobility groups, beaver ponds had more sprawlers, while lotic reaches had more clingers. Swimmers were also more prevalent in lotic reaches, although this is probably due to the abundance of Baetis within lotic reaches. More beaver pond taxa were classified as lentic-dwelling insects, while more lotic reach taxa were categorised as preferring lotic habitats.
  5. The creation of ponds by beavers fundamentally altered the macroinvertebrate community in north-eastern Utah streams. Such changes to stream macroinvertebrate communities suggest that recolonisation of beavers across North America may be altering stream functioning and food webs. Our study highlights the need to further investigate the effects of beaver recolonisation on stream communities.
  相似文献   

13.
14.
The structural characteristics of the macroinvertebrate community can effectively reflect the health status of lake ecosystems and the quality of the lake ecological environment. It is therefore important to identify the limiting factors of macroinvertebrate community structure for the maintenance of lake ecosystem health. In this study, the community composition of macroinvertebrate assemblages and their relationships with environmental variables were investigated in 13 small lakes within Lianhuan Lake in northern China. A self‐organizing map and K‐means clustering analysis grouped the macroinvertebrate communities into five groups, and the indicator species reflected the environmental characteristics of each group. Principal component analysis indicated that the classification of the macroinvertebrate communities was affected by environmental variables. The Kruskal–Wallis test results showed that environmental variables (pH, total phosphorus, nitrate, water temperature, dissolved oxygen, conductivity, permanganate index, and ammonium) had a significant effect on the classification of the macroinvertebrate communities. Redundancy analysis showed that mollusks were significantly negatively correlated with pH and chlorophyll a, while annelids and aquatic insects were significantly positively correlated with chlorophyll a and dissolved oxygen. Spearman correlation analysis showed that the species richness and Shannon''s diversity of macroinvertebrates were significantly negatively correlated with total phosphorus, while the biomass of macroinvertebrates was significantly negatively correlated with pH. High alkalinity and lake eutrophication have a serious impact on the macroinvertebrate community. Human disturbances, such as industrial and agricultural runoff, negatively impact the ecological environment and affect macroinvertebrate community structure. Thus, macroinvertebrate community structure should be improved by enhancing the ecological environment and controlling environmental pollution at a watershed scale.  相似文献   

15.
Trophic interactions are important factors structuring animal communities. We assessed the trophic relations of four fish species that live in sympatry in the River Ladra (NW Spain), and cluster analysis differentiated two feeding strategies: (1) species with omnivorous feeding habits, feeding mainly on detritus and plant material but with aquatic macroinvertebrates as an important complement (Achondrostoma arcasii and Pseudochondrostoma duriense) and (2) species feeding mainly (Salmo trutta) or exclusively (Gasterosteus gymnurus) on aquatic macroinvertebrates. Concerning ingested macroinvertebrates, the trophic overlap was quantified using Schoener’s index and the results obtained revealed a high diet overlap among the species (from 81.3 up to 99.2%). In order to get a deeper insight into mechanisms of fish species coexistence, we used ten biological and ecological traits of macroinvertebrate prey to discriminate feeding preferences. As a result, despite the high similarity among the diets, our analyses suggest that differences in diel activity patterns and drift behaviour of preys, as well as differences in the prey size, are important adaptive features that may reduce the inter-specific competition in the fish community and permit the partitioning of food that allows coexistence.  相似文献   

16.
Sediments accommodate the dominating share of groundwater microbiomes, however the processes that govern the assembly and succession of sediment-attached microbial communities in groundwater aquifers are not well understood. To elucidate these processes, we followed the microbial colonization of sterile sediments in in situ microcosms that were exposed to groundwater for almost 1 year at two distant but hydrologically connected sites of a pristine, shallow, porous aquifer. Our results revealed intriguing similarities between the community succession on the newly-colonized sediments and succession patterns previously observed for biofilms in other more dynamic aquatic environments, indicating that the assembly of microbial communities on surfaces may be governed by similar underlying mechanisms across a wide range of different habitats. Null model simulations on spatiotemporally resolved 16S rRNA amplicon sequencing data further indicated selection of specific OTUs rather than random colonization as the main driver of community assembly. A small fraction of persistent OTUs that had established on the sediments during the first 115 days dominated the final communities (68%–85%), suggesting a key role of these early-colonizing organisms, in particular specific genera within the Comamonadaceae and Oxalobacteraceae, for community assembly and succession during the colonization of the sediments. Overall, our study suggests that differences between planktonic and sediment-attached communities often reported for groundwater environments are not the result of purely stochastic events, but that sediment surfaces select for specific groups of microorganisms that assemble over time in a reproducible, non-random way.  相似文献   

17.
Hourly drift samples were collected once each month over a 24 hour period for 10 months at the mouth of a channel returning heated coolant water from a steam electric generating station to a 330 ha reservoir. Most benthic macroinvertebrates existed at lower densities on the bottom of the channel than in the reservoir. No organisms were found in the channel during summer months when water temperatures reached 42.2°C. The most abundant organisms drifting from the channel were Chaoborus larvae which probably were drawn from the reservoir, through the condensors of the power plant, and down the effluent channel. The maixmum drift rate for Chaoborus larvae occured in August (8.91 × 104 mg/day) while the minimum rate occurred in December (3.92 × 102 mg/day). Chaoborus larvae exhibited a diurnal periodicity in drift corresponding to their nightly emergence from bottom sediments in the reservoir.  相似文献   

18.
Phytoplankton communities dominating Musgos and Papúa ponds with differing trophic states were sampled over 3 days enabling the detection of the physiological and population responses of microalgae to short-scale changes in biotic and abiotic factors, rather than frequently analyzed changes in community composition responses to long-scale environmental changes. We hypothesized that both environments undergoing diel changes would be dominated by phytoplankton with generalist strategies, while community structure would be mostly dictated by the trophic state of each water body. The phytoplankton biovolumes of both ponds were strongly dominated by euplanktonic nanoflagellated Chlorophyta, while phycocyanin-rich picocyanobacteria dominated the picophytoplankton. Parallel diel cycles of air and water temperatures were more pronounced on a sunny, warm day which prompted algal photosynthesis, revealed by strong increases in dissolved oxygen and pH. Nutrient and phytoplanktonic chlorophyll a confirmed the hypertrophic condition of Papúa pond. This accounted for the distinct community composition encountered in each pond, which remained stable throughout the study, as revealed by the SIMI index. The inverse relationship between the chl a/abundance ratio and the abundances of dominant species together with varying net growth rates (k′) showed algal reproduction, yet densities remained rather stable in both cases. In Musgos pond, fluctuations in k′ for small and median ciliates shadowed those of pico- and nanophytoplankton, respectively, strongly suggesting that they can control algal growth in these 2-level trophic chains.  相似文献   

19.
20.
Eutrophication still continues to be an issue of major concern for the protection of water quality, and accordingly, the European Union Water Framework Directive has set a minimum target for all waters where “good status” is defined as a slight departure from the biological community which would be expected in conditions of minimal anthropogenic impact. The use of constructed ponds for wastewater treatment aimed at achieving this target has shown to be an effective alternative to conventional systems in the farm landscape. Their applicability in these areas is of great interest since these ponds have the added potential to combine their wastewater treatment properties with that of biodiversity enhancement. This article focuses on exploring the community structure of both natural and constructed ponds used for wastewater treatment and the driving environmental factors. A total of 15 constructed and 5 natural ponds were sampled for aquatic macroinvertebrates and hydrochemistry in spring and summer 2006. Results showed that the most important factors responsible for the differences in the community structure between these two types of ponds were pH, vegetation structure and pollution levels. These gradients helped to structure a large proportion of the communities with some taxa being associated with the constructed ponds. These results highlight the potential contribution of constructed ponds used for wastewater treatment to the landscape biodiversity. The present findings also open the possibility for a more integrated management of water quality and biodiversity enhancement in farmland areas. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号