首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[14C]Glucosamine is incorporated in vivo in mouse brain into the major protein species present in purified tubulin preparations when analyzed both by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by isoelectric focusing. The radioactivity incorporated into tubulin can be recovered as a mixture of glucosamine and galactosamine.  相似文献   

2.
In vitro incorporation of [14C]tyrosine into the C-terminal position of the α subunit of tubulin was not affected by 4 mm cycloheximide. This inhibitor of protein synthesis was used for in vivo experiments. The in vivo incorporation of [14C]tyrosine into soluble brain protein of cycloheximide-treated rats was 10% of that of untreated rats. Treatment with vinblastine sulfate of the soluble brain protein showed that the incorporation of [14C]tyrosine into tubulin was higher in cycloheximide-treated than in untreated rats with respect to the incorporation into the total soluble protein. In the case of cycloheximide-treated rats, about 60% of the radioactivity incorporated into protein was released by the action of carboxypeptidase A, whereas 10% was liberated from the protein of untreated rats. The radioactive compound released by the action of carboxypeptidase A was identified as [14C]tyrosine. The α and β subunits of tubulin from animals that received [14C]tyrosine were separated by polyacrylamide gel electrophoresis. The radiosactivity ratio of αβ subunits of tubulin from cycloheximide-treated rats was threefold higher than that of untreated rats. When a mixture of [14C]amino acids was injected, the radioactivity ratio of αβ subunits of tubulin was similar for cycloheximide-treated and untreated rats. The results reported are consistent with the assumption that the α subunit of tubulin can be tyrosinated in vivo.  相似文献   

3.
The relative amount of free and microtubule-associated tubulin in tissue culture cells was determined by colchicine binding. Both microtubules and tubulin were stabilized in a dilute homogenate containing 50% glycerol and 5% dimethylsulfoxide. Microtubules were separated by sedimentation at 100,000g for 10 min in a benchtop ultracentrifuge and then depolymerized to tubulin. Colchicine binding to free tubulin could be performed only after dilution of the organic solvents present to prevent a 70% reduction in apparent affinity of tubulin for colchicine. Tubulins purified from rat brain, human skin fibroblasts, and rat GH3 cells were each homogeneous and similar in molecular weight, affinity for DEAE-cellulose, and apparent affinity for colchicine. Microtubules contained 34–41% of tissue culture cell tubulin. Colchicine (10?6 to 10?5m) and incubation at 4°C reduced microtubule-derived tubulin to less than 6% of expected.  相似文献   

4.
Tubulin was purified from bovine renal medulla by in vitro assembly of microtubules in the presence of dimethyl sulfoxide and glycerol. Light scattering measurements of the polymerization process demonstrate that dimethyl sulfoxide and glycerol decrease the critical concentration of tubulin required for polymerization. The minimum concentration of tubulin from bovine renal medulla is about 1% of the total soluble protein. Assembly occurs in the absence of detectable amounts of high-molecular weight proteins or τ-protein. Microtubules polymerized in the absence and presence of 10% dimethyl sulfoxide and 4 m glycerol are similar morphologically as detected by electron microscopy. Molecular weights of α- and β-tubulin from bovine renal medulla are 54,000 ± 700 and 52,000 ± 800, respectively, as determined by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. Colchicine-binding activity of renal medullary tubulin decays in an apparent first-order process which is temperature dependent. The half-time of decay in buffer is 5.1 h and addition of 5 μm vinblastine sulfate increases the half-time of decay to 10.9 h at 37 °C. Calculations based on measurements of the rate of decay of colchicine-binding activity at different temperatures indicates that vinblastine sulfate stabilizes the binding activity by decreasing the entropy of activation of the decay process. Colchicine decreases the rate of decay about 3.5-fold both in the absence and presence of vinblastine sulfate at 37 °C. Values of the apparent colchicine-binding constant, KA, of bovine renal medullary tubulin are 5.9 × 106 and 7.8 × 106m?1 at 37 °C in the absence and presence of vinblastine sulfate. Vinblastine sulfate decreases the rate of decay and increases the apparent binding constant of colchicine binding. Lumicolchicine does not affect the binding of colchicine. Podophyllotoxin apparently competitively inhibits the binding of colchicine; the apparent Ki for podophyllotoxin is 4.0 × 10?7m at 37 °C. Thus, tubulin from bovine renal medulla has ligand-binding characteristics which exhibit differences and similarities to the corresponding characteristics of the brain tubulin. These biochemical properties of the colchicine-binding activity of bovine renal medullary tubulin support previous physiologic studies which demonstrate that microtubules are required for the function of vasopressin in mammalian kidneys.  相似文献   

5.
The preferential interaction of calf brain tubulin with glycerol in an aqueous buffer (0.01 m-NaPi, 0.02 m-NaCl, 10?4m-GTP, pH 7.0) has been investigated by densimetry. The apparent specific volumes of tubulin at constant chemical potential of the diffusible components were determined at 0, 10, 20 and 30% (vv) glycerol. Application of multicomponent solution thermodynamics shows that tubulin is preferentially hydrated in aqueous glycerol solvent and that such interaction results in thermodynamic destabilization of the system by raising the chemical potentials of both glycerol and tubulin. Interpreted in terms of the Wyman linkage function, the unfavorable free energy change brought about by the preferential protein-glycerol interaction can account for the glycerol enhancement of tubulin self-assembly in vitro into microtubules as well as offer a rationale for glycerol stabilization of the native tubulin conformation.  相似文献   

6.
The turnover rate of tubulin in rat brain was determined from the decay in specific radioactivity of the protein after pulse-labeling. When precursors were administered by a parenteral route, the shortest half-life, 9.8 days, was obtained with [14C]NaHCO3; the longer half-lives obtained with [U-14C]glucose or [4,5-3H]leucine suggest significant reutilization of label. Furthermore, with leucine as precursor maximal specific radioactivity of tubulin was not obtained until eight days after administration of label. Labeling and decay kinetics obtained with [4,5-3H]leucine were markedly different when the isotope was administered directly into the lateral ventricle. The difference between the turnover rates of the -α and β subunits of tubulin purified by means of high resolution polyacrylamide gel electrophoresis was not statistically significant. A half-life for tubulin of 6.2 days was measured by continuous intravenous infusion of [U-14C]tyrosine.  相似文献   

7.
The ability of mebendazole and fenbendazole to bind to tubulin in cytosolic fractions from 8-day Ascaris suum embryos was determined by inhibition studies with [3H]colchicine. Colchicine binding in the presence of 1·10?6 M mebendazole was completely inhibited during a 6 h incubation period at 37°C. Inhibition of colchicine binding to A. suum embryonic tubulin by mebendazole and fenbendazole appeared to be noncompetative. The inhibition constants of mebendazole and fenbendazole for A. suum embryonic tubulin were 1.9·10?8 M and 6.5·10?8 M, respectively. Mebendazole and fenbendazole appeared to be competitive inhibitors of colchicine binding to bovine brain tubulin. The inhibition constants of mebendazole and fenbendazole for bovine brain tubulin were 7.3·10?6 M and 1.7·10?5 M, respectively. These values are 250–400 times greater than the inhibition constants of fenbendazole and mebendazole for A. suum embryonic tubulin. Differential binding affinities between nematode tubulin and mammalian tubulin for benzimidazoles may explain the selective toxicity. The importance of tubulin as a receptor for anthelmintic benzimidazoles in animal parasitic nematodes is discussed.  相似文献   

8.
Convulsive seizures were elicited in the rat by the injection of several different drugs (pyridoxal phosphate, bicuculline, penicillin and ouabain). Glycerolipid metabolism was studied after the intraventricular injection of [2-3H]glycerol, which was incorporated into rat brain glycerides. The percentage of total lipid label found in each lipid class (phosphatidylethanolamine, PE; phosphatidylcholine, PC; phosphatidylserine, PS; phosphatidic acid, PA; phosphatidylinositol, PI; diacylglycerol (+ monoacylglycerol), DG and triacylglycerol, TG) depended on the time elapsed from the injection of the labeled precursor. The percent of total lipid radioactivity as PE and PC increased with time (3–60 min), whereas the opposite was true for the radioactivity of DG and PA. The radioactivity of other lipid classes did not appreciabily vary between 3 and 60 min from the injection of the labeled glycerol. The intraventricular administration of pyridoxal phosphate together with labeled glycerol decreased the percent of lipid radioactivity as PE and increased that as DG. This lipid effect was detected also after the administration of other convulsants, such as ouabain and penicillin. The intraperitoneal administration of bicuculline affected lipid metabolism in cerebellum.  相似文献   

9.
The maximal stoichiometry for [3H]GTP binding to depolymerized tubulin with saturating amounts of added [3H]GTP is 0.4 mol/110,000 g protein. In contrast, 1 mol of radioactive nucleotide is incorporated into microtubules as a result of polymerization with [3H]GTP. The different stoichiometries result from a difference in the nucleotide binding properties of ring protein under polymerizing and nonpolymerizing conditions: ring protein at 0 °C is devoid of binding activity but binds added radioactive guanine nucleotide during microtubule assembly. The radioactive nucleotide which is incorporated into rings during microtubule assembly is not displaced by excess GDP, although it is at a site which is distinct from the N site.  相似文献   

10.
By incubation of germinating soybeans with mevalonate-[2-14C] (MVA), radioactivity was incorporated into four sapogenols which were identified by TLC. Unequivocal evidence for the identity of three of the four sapogenols was provided by co-crystallization to constant specific radioactivity. The partition of incorporated radioactivity into lipid- and water-soluble fractions and the pattern of radioactivity of individual sapogenols varied with the mode of administering labeled substrates to soybean seedlings, such as incubation of germinating soybeans with MVA-[2-14C], immersion of roots into MVA-[2-14C] or foliar application of squalene-[14C]. When alfalfa seedlings were incubated with MVA-[2-14C], about two-thirds of the radioactivity incorporated into the sapogenols was associated with medicagenic acid.  相似文献   

11.
Chloroquine is a potent lysomotropic therapeutic agent used in the treatment of malaria. The mechanism of the chloroquine-mediated modulation of new cardiolipin biosynthesis in isolated rat liver hepatocytes and H9c2 cardiac myoblast cells was addressed in this study. Hepatocytes or H9c2 cells were incubated with [1,3-3H]glycerol in the absence or presence of chloroquine and cardiolipin biosynthesis was examined. The presence of chloroquine in the incubation medium of hepatocytes resulted in a rapid accumulation of radioactivity in cardiolipin indicating an elevated de novo biosynthesis. In contrast, chloroquine caused a reduction in radioactivity incorporated into cardiolipin in H9c2 cells. The presence of brefeldin A, colchicine or 3-methyladenine did not effect radioactivity incorporated into cardiolipin nor the chloroquine-mediated stimulation of cardiolipin biosynthesis in hepatocytes indicating that vesicular transport, cytoskeletal elements or increased autophagy were not involved in de novo cardiolipin biosynthesis induced by chloroquine. The addition of chloroquine to isolated rat liver membrane fractions did not affect the activity of the enzymes of de novo cardiolipin biosynthesis but resulted in an inhibition of mitochondrial cytidine-5-diphosphate-1,2-diacyl-sn-glycerol hydrolase activity. The mechanism for the reduction in cardiolipin biosynthesis in H9c2 cells was a chloroquine-mediated inhibition of glycerol uptake and this did not involve impairment of lysosomal function. The kinetics of the chloroquine-mediated inhibition of glycerol uptake indicated the presence of a glycerol transporter in H9c2 cells. The results of this study clearly indicate that chloroquine has markedly different effects on glycerol uptake and cardiolipin biosynthesis in hepatocytes and H9c2 cardiac cells  相似文献   

12.
Microtubule protein of >95% purity has been isolated by self-assembly from concentrated cell extracts of myxamoebae of Physarum polycephalum. Ninety-eight percent of the amoebal microtubule protein was tubulin. Both a and β subunits of amoebal tubulin were different from neurotubulin α and β subunits, but very similar to those of Tetrahymena ciliary tubulin. The non-tubulin components, which co-purified with tubulin through three assembly cycles, were essential to microtubule formation and contained several polypeptides including some of apparent molecular weights 49000, 57000 and 59000. Purified amoebal microtubule protein formed microtubules on warming in the absence of glycerol which were cold- and Ca2+-labile. In vitro, microtubule assembly was inhibited by vinblastine, benzimidazole derivatives and griseofulvin, but not by 10?4 M colchicine. Amoebal tubulin had a much lower affinity than neurotubulin for colchicine.  相似文献   

13.
The lipids of Caldariella acidophila, an extreme thermophile member of the new archaebacteria group, are macrocyclic tetraethers. They are made up of two glycerol molecules (or one glycerol and one nonitol) bridged through ether linkages by two C4016,16′-biphytanyl chains. To elucidate the biosynthesis of the glycerol moiety of these tetraethers and the mechanism of glycerol ether assembly, labelled [U-14C, 1(3)-3H]glycerol and [U-14C, 2-3H]glycerol, were fed to C. acidophila. Both precursors were selectively incorporated with high efficiency, and without any change in the 3H/14C ratio, in the glycerol moiety of tetraethers. These results suggest that the ether forming step in the biosynthesis of tetraether lipids of C. acidophila, occurs without any loss of hydrogen from any of the glycerol carbons which in turn could be directly alkylated by geranylgeranyl pyrophosphate. The incorporation of radioactivity in the isoprenoid chains and into nonitol is also analysed.  相似文献   

14.
Digestion and absorption of phosphatidylcholine by Aeshna cyanea larvae were studied in vivo and in vitro with the isolated digestive juice and isolated midgut. The experiments were performed with stable ether analogues (1-alkyl-2-acyl-,1,2-dialkyl phosphatidylcholine, and 1-monoalkyl-lysophosphati-dylcholine), with radioactive 1,2-diacylphosphatidylcholine alternatively labelled in the acyl- and choline moieties, and with several phosphatidylcholine derivatives (1-[1-14C]acyl- and 1-[3H] alkyl-lysophosphatidylcholine, [1-14C]oleic acid, [2-14C]glycerol, phosphoryl[methyl-14C]choline, and [methyl-14C]choline). Chromatographic analyses of the digestion products revealed that phosphatidylcholine was degraded via two interconnected hydrolytic pathways involving phospholipase C, phospholipase A2, lipase, and alkaline phosphatase. Complete hydrolysis by these pathways yielded the same four end products: free fatty acid, glycerol, choline, and Pi, which were absorbed by the midgut enterocytes. Of the intermediate hydrolysates, lysophosphatidylcholine, monoacylglycerol, and possibly phosphorylcholine were also absorbed. Radiolabelled oleic acid, glycerol, lysophosphatidylcholine and monoacylglycerol (as judged from monoalkylglycerol absorption) were incorporated into phospholipids and acylglycerols of the midgut enterocytes and were released into the haemolymph primarily in the form of diacylglycerols. In the case of glycerol ingestion, a small fraction of haemolymph radioactivity was associated with free glycerol and glycerolphosphate. After absorption by the enterocytes, radiolabelled choline was partly oxidized to betaine, partly phosphorylated, and partly incorporated into lyso- and phosphatidylcholine. It was recovered from the haemolymph predominantly as free choline, phosphorylcholine, and betaine. Arch. Insect Biochem. Physiol. 36:273–293, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
The fate of 3H-thymidine incorporated into newly synthesized DNA of CHO cells was analyzed by either the estimation of the incorporated radioactivity per cell or sedimentation in alkaline sucrose gradient. Under conditions in which DNA synthesis proceeded continuously, of incorporated radioactivity was periodically lost and regained during a 90 min chase, corresponding to a cyclic change in the sedimentation profiles. When DNA synthesis was inhibited by hydroxyurea no cyclic change of the incorporated radioactivity was observed. The cyclic changes were regarded as the result of an actual metabolic change in3H-labelled DNA probaly joining to one of the newly formed sister strands of DNA and the loss of radioactivity seems to require active continued DNA synthesis.  相似文献   

16.
1. Spermatozoa collected directly from the testis of the conscious ram contain 25% more phospholipid than ejaculated spermatozoa. The concentration of lecithin, phosphatidylethanolamine and ethanolamine plasmalogen was greater in testicular spermatozoa; little difference was observed in choline plasmalogen. Both types of spermatozoa had significant amounts of cardiolipin and alkyl ether phospholipid. 2. The fatty acids in the phospholipid extracted from testicular spermatozoa have a very high content of palmitic acid. The phospholipids of ejaculated spermatozoa contained less palmitic acid, but more myristic acid. 3. Ejaculated spermatozoa contained less acyl ester and cholesterol. It is suggested that lipids are a source of substrate for spermatozoa during their passage through the epididymis. 4. Testicular spermatozoa when incubated with [U-14C]glucose incorporated more radioactivity into the glycerol part of the phospholipid and neutral lipid fractions than did ejaculated cells. The distribution of radioactivity in the individual phospholipids and neutral lipids was similar for both cell types. No radioactivity was detected in choline plasmalogen, which accounted for approx. 40% of the total phospholipid. 5. Testicular spermatozoa incorporated more radioactivity from glucose into formate than into acetate, whereas a higher proportion of radioactivity was found in acetate in ejaculated cells. 6. The implications of these lipid changes in the process of spermatozoal maturation are discussed.  相似文献   

17.
Incorporation of [14C]glucosamine into synaptosomes in vitro   总被引:1,自引:0,他引:1  
Abstract— Synaptosomes isolated from rat cerebral cortex by zonal centrifugation in-corporated radioactive glucosamine into macromolecules in vitro as glucosamine, galactosamine, N-acetylneuraminic acid, and glucuronic acid. The largest percentage of incorporated radioactivity was recovered in the particulate fraction in which radioactive carbohydrates were bound in covalent linkage requiring acid hydrolysis or enzymatic digestion for release. Less than 20 per cent of the particulate radioactivity represented incorporation into gangliosides. Some 20 per cent of the radioactivity was incorporated into proteins as glucosamine, identified in hydrolysates by paper chromatography and by the amino acid analyser. After incubation, radioactivity was demonstrable in the proteins as sialic acid by paper chromatography and specific enzymic digestion; and as glucuronic acid by chromatography, electrophoresis, and digestion with hyaluronidase. Incorporation of carbohydrate was stimulated by sodium and potassium at concentrations demonstrated to enhance incorporation of amino acids, and involved the macro-molecules of all subsynaptosomal fractions. Significant incorporation of radioactivity was found in the synaptic plasma membrane. The synthesis of glycoproteins was suggested by simultaneous incorporation of [14C]glucosamine and [3H]leucine into glycopeptides subsequently hydrolysed and subjected to polyacrylamide gel electrophoresis and two-dimensional paper chromatography and electrophoresis. Such studies demonstrated that amino acids and carbohydrates may be incorporated into glycoproteins of the synaptic membrane and suggest the possibility of local synthesis as well as modification of material brought to the nerve ending by axoplasmic flow.  相似文献   

18.
Colchicine blocks axoplasmic flow and produces neurofibrillary degeneration. Brain slices from mice injected intracerebrally with colchicine incorporated more [14C]leucine into protein and had a decreased uptake of [14C]leucine into the perchloric acid-soluble pool than did their controls. Brain RNA content was decreased and free leucine increased by colchicine-induced encephalopathy. The specific activities of proteins from subcellular fractions of colchicine-injected brain were increased in the nuclear fraction, the 100,000-g supernatant, and its vinblastine-precipitable tubulin. The ratio of the specific activity of the crude mitochondrial fraction to that of the total homogenate was decreased, as would consistent with impaired movement of newly labeled protein into synaptosomes. Colchicine-injected brain extracts contained one or more cytosol fractions that stimulated ribosomal incorporation of [14C]leucine into protein in a cell-free system. Colchicine-binding-activity measurements indicated loss of soluble and particulate tubulin in colchicine-injected brains; the decrease of soluble tubulin was verified by its selective precipitation with vinblastine. Colchicine encephalopathy did not affect the rate of spontaneous breakdown of in vitro colchicine binding activity. Similarities of colchicine encephalopathy to the neuron's response to axonal damage suggest that colchicine-induced increase in protein synthesis may, in part, reflect a neuronal response to blockage of neuroplasmic transport.  相似文献   

19.
Abstract— The possibility that axonally transported lipids and/or proteins might undergo transaxonal migration and become incorporated into surrounding myelin lamellae was studied by isolating myelin from optic tracts of myelinating rabbits at various times following intraocular injection of [3-14C]-serine and [2-3H]glycerol. Myelin isolated by a procedure employing ethylene glycol-bis(β-aminoethyl ether)-.N,N'-tetraacetic acid had relatively constant specific radioactivity with respect to both isotopes over a 21 day period. Myelin lipids showed a gradual increase in 14C specific radioactivity, attributed to reutilization of [14C]serine from the axon by a compartment of the oligodendrocyte. Free serine is postulated to arise in the axon from catabolism of axonally transported proteins (and possibly lipids) and to migrate transaxonally into the neighboring oligodendroglia. This reutilization mechanism resulted in synthesis of myelin cerebrosides, sphingomyelin, ethanolamine phosphoglycerides and possibly sulfatides, but not gangliosides or serine phosphoglycerides. The data for choline- and inositol-phosphoglycerides are inconclusive. [3H]Glycerol-labeled myelin lipids decreased slowly in 3H specific radioactivity with time, indicating either that [2-3H]glycerol does not participate in the reutilization pathway or that the label is lost in the process. Evidence is presented that 3H- and 14C-labeled lipids are true myelin constituents. Lipids from the myelin, axolemma- and axon-enriched fractions tended to converge in specific radioactivity over the 21 days, especially the former two fractions. These results together with isotope ratio changes point to an equilibration process whereby lipids are able to transfer. (or exchange) between the 3 compartments. Protein radioactivity in isolated myelin was suggested to arise from residual axon/axolemma contamination, and no evidence was found for transaxonal migration of protein into myelin. The 2 mechanisms elucidated here are believed to account for a quantitatively small portion of myelin lipid and are considered to represent a form of axon-glia interaction.  相似文献   

20.
Summary

Isolated oocytes of Perinereis cultrifera have been incubated in culture media with added [3H]glycerol, [14C]butyric acid or [14C]oleic acid. The principal neutral lipid synthesized was triacylglycerol, although incorporation of radioactivity into other lipid categories (sterol, fatty acid, wax ester) was also observed. A more significant percentage of triacylglycerol was labelled after incubation with [3H]glycerol and [14C]oleic acid than with [14C]butyric acid. With this precursor, monoacylglycerol appears to be the class of lipid compartment which initially show the most radioactivity. Electron microscopic autoradiography has revealed that labelling after incorporation of glycerol was mainly localized on the lipid droplets but not on the yolk granules. A second metabolic pathway is represented by phospholipid membrane synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号