首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Mitochondrial inhibitors such as malonate are potent neurotoxins in vivo. Intrastriatal injections of malonate result in neuronal damage reminiscent of "excitotoxic" lesions produced by compounds that activate NMDA receptors. Although the mechanism of cell death produced by malonate is uncertain, overactivation of NMDA receptors may be involved; pretreatment of animals with NMDA antagonists provides neuroprotection against malonate lesions. NMDA receptor activation stimulates the enzyme nitric oxide (NO) synthase (NOS). Elevated tissue levels of NO may generate highly reactive intermediates that impair mitochondrial function. We hypothesized that NO may be a mediator of malonate toxicity. We investigated whether in vivo inhibition of NO production by the NOS inhibitor N ω-nitro- l -arginine (NLA) would attenuate lesions produced by intrastriatal injections of malonate. We found that systemic injections of 3 mg/kg of NLA significantly reduced the extent of histologic damage elicited by intrastriatal injections of 1.5 µmol of malonate in adult rats.  相似文献   

2.
Abstract: Previously, we have reported that intranigral infusions of malonate, an inhibitor of mitochondrial function, lead to the degeneration of the dopaminergic neurons of the nigrostriatal pathway that is mediated, at least in part, through NMDA receptor activation and nitric oxide formation. In the present study, unilateral focal infusions of malonate into the nucleus basalis magnocellularis (nbM) of male Sprague-Dawley rats (weighing 250–300 g) resulted in a dose-related depletion in ipsilateral cortical and amygdaloid choline acetyltransferase (ChAT) activity. Infusion of a 3 µmol dose of malonate into the nbM of vehicle-treated animals resulted in a 41 and 54% decrease in cortical and amygdaloid ChAT activity, respectively. Systemic pretreatment with lamotrigine (16 mg/kg, i.p.) and MK-801 (5 mg/kg, i.p.) attenuated the depletions in cortical and amygdaloid ChAT activity that resulted from an infusion of this dose of malonate into the nbM. Acetylcholinesterase (AChE) histochemistry of the nbM following focal infusion of malonate (3 µmol) showed a marked decrease in the number of AChE-positive neurons that was partially prevented by MK-801 pretreatment. Before examining the role of nitric oxide formation in malonate-induced toxicity, the ability of systemic administration of Nω-nitro-l -arginine (l -NA) to inhibit nitric oxide synthase (NOS) activity in the nbM and cerebellum was investigated. l -NA (2, 10, and 20 mg/kg, i.p.) produced a dose-related inhibition of nbM and cerebellar NOS activity that was maximal following a dose of 10 mg/kg l -NA. This level of NOS inhibition persisted for at least 13 h following l -NA (10 mg/kg) administration. Subsequently, the effect of l -NA pretreatment on malonate toxicity was evaluated. Following pretreatment with l -NA (2 and 10 mg/kg, i.p.), the toxic action of malonate on cortical and amygdaloid ChAT activity was not altered. In addition, infusion of a lower dose of malonate (2 µmol) into the nbM resulted in decreases in cortical and amygdaloid ChAT activity that were not altered by pretreatment with l -NA (2 and 10 mg/kg, i.p.). In 7-nitroindazole (7-NI; 25 and 50 mg/kg, i.p.)-pretreated animals, malonate (3 µmol) produced decreases in cortical and amygdaloid ChAT activity that were attenuated by both doses of 7-NI. Thus, malonate-induced destruction of the basal forebrain cholinergic neurons was attenuated by systemic pretreatment with lamotrigine, MK-801, and 7-NI but not by l -NA.  相似文献   

3.
Abstract: The effects of α-guanidinoglutaric acid (GGA), the levels of which were increased in the cobalt-induced epileptic focus tissue in the cerebral cortex of cats, on brain nitric oxide synthase (NOS) activity were observed. GGA inhibited NOS activity in a linear mixed manner ( K i = 2.69 µ M ) and was as effective as N G-monomethyl- l -arginine (MeArg; K i = 3.51 µ M ), a well-known NOS inhibitor. Although MeArg was synthesized by substituting the guanidino nitrogen of l -arginine (Arg), GGA was a non-guanidino nitrogen-substituted guanidino compound. On the other hand, Arg, which is an endogenous NOS substrate, elevates the threshold of seizures induced by GGA. There is evidence that GGA is an endogenous, potent, and non-guanidino nitrogen-substituted NOS inhibitor and that suppression of nitric oxide biosynthesis may be involved in GGA-induced convulsions. Therefore, GGA may be a useful tool in elucidating the chemical nature of NOS and the physiological function of nitric oxide.  相似文献   

4.
Polyamines in Human Brain: Regional Distribution and Influence of Aging   总被引:2,自引:0,他引:2  
Abstract: Depolarization of adult rat forebrain slices with veratrine induced the release of excitatory amino acids (glutamate and aspartate), the synthesis of nitric oxide (NO), and increases in cyclic GMP (cGMP). The NO synthase inhibitors N ω-monomethyl- l -arginine and N ω-nitro- l -arginine methyl ester decreased the release of NO and the levels of cGMP without affecting the release of excitatory amino acids. In contrast, the antiepileptic drug lamotrigine inhibited the release of excitatory amino acids and of NO, and decreased the levels of cGMP without causing a significant direct inhibition of the NO synthase. Furthermore, the synthesis of NO and the increases in cGMP induced by veratrine were partially blocked by the N -methyl- d -aspartate (NMDA) receptor antagonist MK-801 but not by 6-nitro-7-sulphamobenzo( f )quinoxaline-2,3-dione, a non-NMDA receptor antagonist. Neither of these compounds inhibited directly the NO synthase or the release of excitatory amino acids. Thus, these three types of compound act as an inhibitor of voltage-sensitive sodium channels (lamotrigine), as a receptor antagonist (MK-801), or as direct inhibitors of the NO synthase, to block the pathway leading to increased cGMP after veratrine depolarization. It is likely that some of the pharmacological and therapeutic actions shared by these three types of compound are, at least in part, a consequence of inhibition of the synthesis of NO.  相似文献   

5.
Hydrogen Peroxide Production by Rat Brain In Vivo   总被引:13,自引:6,他引:7  
Abstract: H2 O2 production by rat brain in vivo was observed with a method based on the measurement of brain catalase. The administration to the rat of 3-amino-1, 2, 4-triazole, an H2 O2- dependent inhibitor of catalase, caused progressive inhibition of brain catalase activity in both the supernatant and pellet fractions of homogenates of the striatum and prefrontal cortex. The prevention of catalase inhibition by prior administration of ethanol confirmed that catalase inhibition in vivo was dependent upon H2 O2. A significant portion of the catalase (30-33%) appeared in the supernatant fraction from a slow-speed homogenization procedure and was not significantly contaminated by either erythrocytes or capillaries. In the whole homogenate, less than 6% of the catalase activity was attributed to erythrocytes. Modification of intracellular monoamine oxidase activity by either pargyline or reserpine did not change the rate of inhibition of catalase by aminotriazole. A probable interpretation of these data is that H2 O2 generated by mitochondrial monoamine oxidase does not reach the catalase compartment; the catalase is contained in particles described by other investigators as the microperoxisomes of brain. In studies in vitro , the production of H2 O2 by rat brain mitochondria with either dopamine or serotonin as substrate was confirmed.  相似文献   

6.
Abstract: The kinetics and pharmacology of N G-nitro- l -[2,3,4,5-3H]arginine ( l -[3H]NOARG) binding to rat cerebellum were investigated using in vitro radioligand binding. Specific l -[3H]NOARG binding in cerebellum was of nanomolar affinity, reversible, saturable, and best fit to a single-site model. Specific binding was Ca2+ dependent and sensitive to pH (with an optimum of 5.5–7.0). Added calmodulin (1.5–40 µg/ml) had no influence on specific l -[3H]NOARG binding. However, the calmodulin antagonists W-5, W-13, and calmidazolium inhibited l -[3H]NOARG binding with IC50 values in the micromolar range, and calmodulin (10 µg/ml) competitively reversed this inhibition. Nitric oxide synthase (NOS) inhibitors ( N G-nitro- l -arginine methyl ester and N G-monomethyl- l -arginine acetate) and l -arginine displaced l -[3H]NOARG binding with IC50 values in the nanomolar range, whereas d -arginine and basic amino acids ( l -lysine and l -histidine) displaced l -[3H]NOARG binding with IC50 values in the millimolar range. A comparison of the NOS functional assay with l -[3H]NOARG binding in rat cerebellum showed similar profiles of Ca2+ dependency and inhibitory kinetics. Quantitative autoradiographic distribution of l -[3H]NOARG binding sites was significantly higher in the molecular layer than in the granular layer of cerebellum. These studies confirm the potential use of l -[3H]NOARG binding to study the regional distribution and functional properties of NOS.  相似文献   

7.
Abstract: In vivo electrochemical detection with a Nafion-coated carbon fiber working electrode, which provides information on the spatial and temporal dynamics of dopamine overflow, was used to investigate the involvement of nitric oxide (NO) in the dopaminergic transmission in the striatum of urethane-anesthetized Sprague-Dawley rats. A mixture of N -methyl- d -aspartate (NMDA) and nomifensine, a dopamine uptake blocker, was locally pressure-ejected to elicit a transient dopamine overflow from the dopamine-containing nerve terminals in the striatum. Local application of N ω-nitro- l -arginine methyl ester ( l -NAME), which blocks endogenous NO formation, increased the magnitude of dopamine release evoked by a subsequent NMDA and nomifensine application but resulted in no significant alteration in the time course. Furthermore, microejection of l -arginine, an NO precursor, or sodium nitroprusside (SNP), an NO generator, did not cause detectable changes in dopamine level in the striatal extracellular space. However, NMDA-induced dopamine release was profoundly inhibited with l -arginine or SNP pretreatment. In addition, NO affects dopamine uptake in rat striatum. Exogenous dopamine applied through a micropipette, reversibly and reproducibly, elicited an electrochemical signal. The time course of these signals was significantly prolonged by l -NAME treatment. These data suggest that NO is diversely involved in regulating dopaminergic transmission in rat striatum.  相似文献   

8.
Abstract: In this work, we have studied the effects of pure nitric oxide (NO) on the regulation of catecholamine (CA) secretion by chromaffin cells, as well as the possible presence of its synthesizing enzyme l -arginine:NO synthase (NOS) in these cells. Our results show that NO produces a large stimulation of basal CA secretion. This effect was calcium- and concentration-dependent (EC50 = 64 ± 8 µ M ) and was not due to nonspecific damage of the tissue by NO. NO also modulates the CA secretion evoked by nicotine in a dose-dependent manner. Although it has a stimulatory effect on the CA secretion evoked by low doses of nicotine (<3 µ M ; EC50 = 16 ± 3 µ M ), it produces a dose-dependent inhibition of the CA secretion induced by high doses of nicotine (≥30 µ M ; IC50 = 52 ± 6 µ M ). The mechanism by which NO modulates CA secretion seems to be through the increase in the cyclic GMP levels, because there was a close correlation between the CA secretion and the cyclic GMP levels. The presence of a specific activity of NOS in chromaffin cells has been demonstrated by two independent methods: release of [14C]citruiline from [14C]arginine and formation of an NO-hemoglobin complex. NOS activity was about 0.5 pmol/min/mg of protein. It was calcium- and mainly calmodulin-dependent and could be specifically blocked by the NOS inhibitor N -methyl- l -arginine. These results suggest that NO could be an important intracellular messenger in the regulation of neurosecretion in chromaffin cells.  相似文献   

9.
Abstract: Nitric oxide (NO) is reported to cause neuronal damage through various mechanisms. The present study tests the hypothesis that NO synthase inhibition by N ω-nitro- l -arginine (NNLA) will result in decreased oxygen-derived free radical production leading to the preservation of cell membrane structure and function during cerebral hypoxia. Ten newborn piglets were pretreated with NNLA (40 mg/kg); five were subjected to hypoxia, whereas the other five were maintained with normoxia. An additional 10 piglets without NNLA treatment underwent the same conditions. Hypoxia was induced with a lowered FiO2 and documented biochemically by decreased cerebral ATP and phosphocreatine levels. Free radicals were detected by using electron spin resonance spectroscopy with a spin trapping technique. Results demonstrated that free radicals, corresponding to alkoxyl radicals, were induced by hypoxia but were inhibited by pretreatment with NNLA before inducing hypoxia. NNLA also inhibited hypoxia-induced generation of conjugated dienes, products of lipid peroxidation. Na+,K+-ATPase activity, an index of cellular membrane function, decreased following hypoxia but was preserved by pretreatment with NNLA. These data demonstrate that during hypoxia NO generates free radicals via peroxynitrite production, presumably causing lipid peroxidation and membrane dysfunction. These results suggest that NO is a potentially limiting factor in the peroxynitrite-mediated lipid peroxidation resulting in membrane injury.  相似文献   

10.
Abstract: Elevated activities of nitric oxide synthase (NOS) have been reported previously in the brains of portacaval-shunted (PCS) rats, a model of chronic hepatic encephalopathy (HE). As l -arginine availability for nitric oxide synthesis depends on a specific uptake mechanism in neurons, we studied the kinetics of l -[3H]-arginine uptake into synaptosomes prepared from the brains of PCS rats. Results demonstrate that l -arginine uptake is significantly increased in cerebellum (60%; p < 0.01), cerebral cortex (42%; p < 0.01), hippocampus (56%; p < 0.01), and striatum (51%; p < 0.01) of PCS rats compared with sham-operated controls. Hyperammonemia in the absence of portacaval shunting also stimulated the transport of l -[3H]arginine; kinetic analysis revealed that the elevated uptake was due to increased uptake capacity ( V max) without any change in affinity ( K m). Incubation of cerebellar synaptosomes with ammonium acetate for 10 min caused a dose-dependent stimulation of l -[3H]arginine uptake. Neither portacaval shunting nor hyperammonemia had any significant effect on the synaptosomal uptake of N G-nitro- l -[3H]arginine. These studies demonstrate that increased NOS activity observed in experimental HE may result from increased availability of l -arginine resulting from a direct stimulatory effect of ammonia on l -arginine transport.  相似文献   

11.
Abstract: We examined the modulation of nitric oxide production in vivo by measuring levels of nitrite (NO2) and nitrate (NO3) in the dialysate of the cerebellum in conscious rats, by using an in vivo brain microdialysis technique. The levels of both NO2 and NO3 were decreased by the intraperitoneal injection of N G-nitro- l -arginine methyl ester, an inhibitor of nitric oxide synthase, whereas N G-nitro- d -arginine methyl ester had no effect. l -Arginine by itself increased NO2 and NO3 levels and diminished the reduction of their levels caused by N G-nitro- l -arginine methyl ester. Direct infusion of l -glutamate, N -methyl- d -aspartate, or KCl into the cerebellum through a dialysis probe resulted in an increase in NO2 and/or NO3 levels. The effects of N -methyl- d -aspartate and KCl were dependent on extracellular calcium. Furthermore, the stimulatory effects of l -glutamate and N -methyl- d -aspartate were inhibited by N G-nitro- l -arginine methyl ester and (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), an N -methyl- d -aspartate receptor antagonist. These results suggest that NO2 and NO3 levels may be related to nitric oxide production in vivo.  相似文献   

12.
Abstract: Awake adult male rats were infused intravenously with [3H]arachidonic acid for 5 min, with or without prior administration of an M1 cholinergic agonist, arecoline (15 mg/kg i.p.). Methylatropine was also administered (4 mg/kg s.c.) to control and arecoline-treated animals. At 15 min postinfusion, the animals were killed, brains were removed and frozen, and subcellular fractions were obtained from homogenates of whole brain. Total radioactivity and radioactivity in various lipid classes were determined for each fraction following normalization for exposure by use of a unidirectional incorporation coefficient, k brain. In control animals, incorporation was greatest in synaptosomal and microsomal fractions, accounting for 50 and 30% of total label incorporated into membrane lipids, respectively. Arecoline increased incorporation in these two fractions by up to 400% but did not increase incorporation into the myelin, mitochondrial, or cytosolic fractions. Of the incorporated radioactivity, 50–80% was in phospholipid in microsomal and synaptosomal fractions, indicating that phospholipid is the major lipid affected by cholinergic stimulation. These results demonstrate that plasma [3H]arachidonic acid is preferentially incorporated into phospholipids of synaptosomal and microsomal fractions of rat brain. Cholinergic stimulation increases incorporation into these fractions, likely by activation of phospholipase A2 and/or C in association with acyltransferase activity. Thus, intravenously infused radiolabeled arachidonic acid can be used to examine synapse-mediated changes in brain phospholipid metabolism in vivo.  相似文献   

13.
Abstract: The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated. Incubation of rat cerebellar slices with the specific metabotropic glutamate receptor agonist, (±)-1-aminocyclopentane- trans -1,3-dicarboxylate ( trans -ACPD) increased cyclic GMP concentration two-fold. The increase was dose-dependently blocked by the protein kinase inhibitors staurosporine and calphostin C. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, increased cyclic GMP concentration without glutamate receptor activation. The cyclic GMP increases induced by PMA and trans -ACPD were independent of extracellular calcium blocked by N ω-nitro- l -arginine, a specific NOS inhibitor, and were not additive. Measurement of citrulline formation in cerebellar slices confirmed that NOS was activated by trans -ACPD and the activation was blocked by calphostin C. These results suggest that metabotropic glutamate receptor activates NOS through PKC. The calcium dependency of NOS activation was assessed in slices incubated with PMA and okadaic acid. NOS in both PMA-treated and untreated slices had similar activities at 100 n M free calcium, whereas at 25–70 n M free calcium, NOS in PMA-treated slices was more active than that in untreated slices. These results suggest that PKC regulates NO release in resting neurons by modulating the sensitivity of NOS at low calcium concentrations.  相似文献   

14.
Induction of Nitric Oxide Synthase in Rat C6 Glioma Cells   总被引:9,自引:1,他引:8  
Abstract: We have examined the induction of nitric oxide syhthase (NOS) activity in the rat astrocyte-derived C6 glioma cell line. In contrast to the previous results with primary astrocyte cultures, incubation of C6 cells with bacterial endotoxin lipopolysaccharide (LPS; 1 μg/ml for 24 h) did not stimulate NO2 production. However, addition of either tumor necrosis factor-a (TNF-α) or interferon-γ (IFN-γ), cytokines that by themselves had no effect on NOS activity, imparted LPS responsiveness onto these cells in a dose-dependent manner (EC50 values of 39 ng/ml of TNF-α and 9.4 U/ml of IFN-γ), and the effect of TNF-α could be further potentiated (twofold) by the presence of interleukin-1β. The simultaneous presence of TNF-α and IFN-γ yielded a greater response than either cytokine alone; however, the respective EC50 values were not affected. A cytoplasmic extract from induced C6 cells catalyzed the Ca2+-independent conversion of l -arginine to l - citrulline, with an apparent K m of 51.2 n M , and this activity could be blocked by l -arginine analogues in the potency order amino > methyl > nitroarginine. Immunoblot analysis revealed an apparent molecular mass of 125 kDa for the NOS protein induced in C6 cells. These results indicate that the combination of LPS plus cytokines can induce NOS activity in C6 glioma cells with properties similar to those of the enzyme expressed in primary astrocyte cultures.  相似文献   

15.
Abstract: The presynaptic terminals of skate ( Raja montagui ) electric organ were tested for their sensitivity to calcium channel antagonists. Acetylcholine (ACh) release and the elevation of intraterminal Ca2+ concentrations triggered by K+ depolarisation were studied. ACh release was measured as 3H efflux from slices of organ prelabelled with [3H]choline. Depolarisation caused a marked, Ca2+-dependent increase in 3H efflux that was completely blocked by 100 µ M Cd2+ and by 300 n M ω-conotoxin-MVIIC (MVIIC). Inhibition by MVIIC was concentration dependent (IC50 of ∼20 n M ) and reversible. No inhibition was seen with nifedipine (5 µ M ) or the two other peptide antagonists studied: ω-conotoxin-GVIA (GVIA) at 5 µ M and ω-agatoxin-IVA (Aga-IVA) at 1 µ M . In a "nerve plate" preparation (a presynaptic plexus of nerve fibres, Schwann cells, and nerve terminals) changes in intraterminal Ca2+ concentrations were measured by microfluorimetry using fluo-3. An increase in fluorescence, indicating a rise in the free [Ca2+], rapidly followed K+ depolarisation, and this change was restricted to the nerve terminals. This response was insensitive to nifedipine (5 µ M ), GVIA (5 µ M ), and Aga-IVA (300 n M ) but almost completely abolished by MVIIC (1 µ M ). MVIIC inhibition was concentration dependent and partially reversible. These results show that the nerve terminals in skate electric organ have calcium channels with a pharmacological sensitivity that is markedly different from the established L, N, and P types in other systems but shares some, but not all, of the features of the recently described Q type.  相似文献   

16.
17.
18.
Abstract: Characteristics of the transport of the nitric oxide synthase substrate l -arginine and its inhibitor, N G-nitro- l -arginine ( l -NOARG), into rat cerebellar synaptosomes were studied. Uptake of both l -arginine and l -NOARG was linear with increasing amount of protein (up to 40 µg) and time of incubation (up to 5 min) at 37°C. Uptake of both compounds reached a steady state by 20 min. Maximal uptake of l -NOARG (650 pmol/mg of protein) was three to four times higher than that of l -arginine (170 pmol/mg of protein). l -NOARG uptake showed biphasic kinetics ( K m 1 = 0.72 m M , V max 1 = 0.98 nmol/min/mg of protein; K m 2 = 2.57 m M , V max 2 = 16.25 nmol/min/mg of protein). l -Arginine uptake was monophasic with a K m of 106 µ M and a V max of 0.33 nmol/min/mg of protein. l -NOARG uptake was selectively inhibited by l -NOARG, N G-nitro- l -arginine methyl ester, and branched-chain and aromatic amino acids. l -Alanine and l -serine also inhibited l -NOARG uptake but with less potency. Uptake of l -arginine was selectively inhibited by N G-monomethyl- l -arginine acetate and basic amino acids. These studies suggest that in rat cerebellar synaptosomes, l -NOARG is transported by the neutral amino acid carrier systems T and L with high affinity, whereas l -arginine is transported by the basic amino acid carrier system y+ with high affinity. These data indicate that the concentration of competing amino acids is an important factor in determining the rates of uptake of l -NOARG and l -arginine into synaptosomes and, in this way, may control the activity of nitric oxide synthase.  相似文献   

19.
Effects of Lead In Vivo and In Vitro on GABAergic Neurochemistry   总被引:2,自引:1,他引:1  
Abstract: Alterations in aspects of neurotransmission utilizing -γ-aminobutyric acid (GABA) are associated with in vivo exposure of rats to lead at doses that do not produce convulsions, but sensitize animals to convulsant agents. These effects are observed regionally and include: decreased GABA levels in cerebellum; increased activity of glutamate decarboxylase (GAD) in caudate; and decreased GABA release (both resting and K+-stimulated) in cortex, caudate, cerebellum and substantia nigra. Sodium-dependent uptake of GABA by synaptosomes of cerebellum, substantia nigra and caudate was also affected: in these regions, affinity (Km) was increased and maximal velocity (Vmax) was reduced. Sodium-independent binding of GABA to synaptic membranes was increased in cerebellum, but was observed only when tissue was Tritonized and prepared without freezing and washing. No effects on GAD or on GABA uptake, release, or binding were observed when lead was added to brain tissue in vitro in concentrations as high as 100 μM. The results suggest that lead may produce chronic inhibition of presynaptic GABAergic function, notably in the cerebellum, which is associated with supersensitivity of postsynaptic GABA receptors. Failure of lead to affect GABAergic function in vitro may indicate that these effects are secondary to another neurotoxic action of lead in the CNS or are consequent to a nonneuronal metabolic action of lead.  相似文献   

20.
Abstract: β- N -Oxalylamino- l -alanine ( l -BOAA), a non-protein neuroexcitatory amino acid present in the seeds of Lathyrus sativus (chickling or grass pea), is known to produce its neurotoxic effects by overstimulation of non- N -methyl- d -aspartate receptors, especially α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors, at micromolar concentrations. It has recently been reported that l -BOAA selectively inhibits mitochondrial enzyme NADH-dehydrogenase (NADH-DH) in brain slices at subpicomolar concentrations. The present study finds that up to 4 m M concentrations of pure l -BOAA fail to inhibit NADH-DH activity in mouse brain homogenate and isolated brain mitochondria. Two known inhibitors (rotenone and 1-methyl-4-phenylpyridinium ion, MPP+) of this mitochondrial enzyme produced significant inhibition under identical conditions. NADH-DH inhibition was also not observed in the homogenate or mitochondria from the brains of animals systemically treated with convulsive doses of l -BOAA. Some inhibition (20–37%) of NADH-DH activity was observed in mouse brain slices incubated with 100–1,000 µ M concentrations of l -BOAA for 1 h at 37°C in an atmosphere of 95% O2 and 5% CO2, but the inhibition was nonselective, because the activity of another mitochondrial enzyme, succinic dehydrogenase, was similarly inhibited by l -BOAA. These results are in contrast with the report that l -BOAA inhibits mitochondrial NADH-DH selectively at subpicomolar concentrations. We suggest the observed nonselective NADH-DH inhibition in mouse brain slices treated with l -BOAA is caused by neuronal damage through an excitotoxic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号