首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 798 毫秒
1.
Effect of post-irradiation ageing on onion seeds   总被引:1,自引:0,他引:1  
Seeds of onion (Allium cepa) cv. Ailsa Craig were exposed to various doses of gamma radiation (0, 10, 20, 40, 80 and 100 krad) and subjected to accelerated ageing (RH 100%, 42°C) for 12 h. Radiation doses significantly affected the percentage of normal seedlings, abnormality types (%) and seedling growth. Seed viability, conductivities of seed leachates, final germination (%), germination speed and time to reach 50% germination (T 50) were not affected by the seed irradiation. Accelerated ageing after irradiation had significant influence on seed viability, conductivities of seed leachates, final germination (%) and percentage of normal seedlings. Germination speed, T 50 and seedling growth were not affected by the accelerated ageing. However, all the parameters studied were significantly influenced by the interaction of radiation doses and accelerated ageing. Accelerated ageing generally enhanced the damaging effects of irradiation on seeds. Therefore, it was concluded that onion seeds should not be exposed to adverse environmental conditions after irradiation.  相似文献   

2.
Proanthocyanidins (PAs) are the end products of the flavonoid biosynthetic pathway in many seeds, but their biological function is rarely unknown during seed germination. In the present study, we observed that PAs pretreatment accelerated cucumber seeds germination with maximum efficiency at 0.15% by measuring germination percentage and radical length. Using inhibitors of abscisic acid (ABA), gibberellins (GA) and alternative oxidase (AOX) and H2O2 scavenger pretreatment and gene expression analysis, we found that the accelerated effect of 0.15% PAs on seed germination was due to the decreased ABA biogenesis and enhanced GA production. ROS are induced by PAs pretreatment. Then, the enhanced ROS contributed to GA and ethylene accumulation and ABA decrease in seeds. Moreover, the improvement of GA was involved in the further induction of antioxidant enzymes activities. Therefore, our findings uncover a novel role of PAs in seed germination and clarify the relationships between ROS, ABA, GA and ethylene during seed germination.  相似文献   

3.
Accelerated ageing is an accurate test indicator of seed vigor and storability that helps to understand the mechanisms of cellular and biochemical deterioration that occur during seed ageing. This study was carried out to elucidate the mechanisms of ageing in macaw palm embryos. Seeds were artificially aged during 4, 8 and 12 days at 45 °C and 100% relative humidity. After ageing, seeds were tested for viability (tetrazolium), electrical conductivity, lipid peroxidation (MDA) and hydrogen peroxide (H2O2) content. Part of the aged seeds was imbibed for 8 days and then determined the hydrogen peroxide content and the activity of antioxidant system enzymes (superoxide dismutase, catalase and glutathione reductase). Ageing reduced the embryo viability from 8 days of treatment and increased malondialdehyde content (MDA) and solute leakage. Hence, membrane permeability correlated with both loss of viability and lipid peroxidation. Imbibition after ageing significantly increased H2O2 content along with superoxide dismutase activity. Catalase activity was significantly higher than control in embryos aged from 8 days and imbibed, and glutathione reductase activity did not change. Our results suggest that macaw palm seed deterioration during accelerated ageing is closely related to lipid peroxidation, and that enzymatic antioxidant system is not completely efficient in reducing reactive oxygen species after imbibition, a critical phase to germination. Moreover, accelerated ageing test can be used as a reliable model to understand the mechanisms involved in palm seeds deterioration.  相似文献   

4.
以未老化和人工老化后的沙葱(Allium mongolicum Regel.)种子为材料,采用氯化铈(Ce3+)和氯化镧(La3+)浸种,测定种子萌发和生理指标,探讨Ce3+和La3+浸种对种子萌发、老化种子活力和生理特性的影响。结果显示:(1)在老化0~5 h时,Ce3+和La3+处理可显著促进沙葱种子萌发,提高种子活力;在老化5 h后,Ce3+和La3+处理对种子萌发无明显促进作用。(2)在老化0~15 h时,Ce3+和La3+处理的沙葱种子中抗氧化酶活性和抗坏血酸(AsA)含量提高,其超氧阴离子自由基(O2-·)产生速率、过氧化氢(H2O2)含量和丙二醛(MDA)含量显著降低;在老化15 h后,Ce3+和La3+处理的种子抗氧化酶活性提高、AsA含量降低,O2-·产生速率和MDA含量提高。(3)在老化5 h时,沙葱种子呼吸速率发生跃变达到最大,Ce3+和La3+处理显著降低了种子呼吸速率。(4)Ce3+和La3+处理在老化0~5 h时提高了沙葱种子超弱发光(UWL)强度,但在老化5 h后沙葱种子的UWL强度降低。研究认为,在沙葱种子人工老化初期,Ce3+和La3+浸种处理可以诱导增强种子抗氧化酶活性和提高AsA含量,有效清除因老化产生积累的过量活性氧(ROS),减轻过氧化伤害,提高种子活力;种子老化中后期,其内部ROS产生与清除系统发生紊乱,加剧了ROS对种子结构的损伤,Ce3+和La3+浸种处理的缓解效应丧失。  相似文献   

5.
The seeds of pedunculate oak (Quercus robur L.) were subjected to slow (S) and rapid (R) desiccation at desiccation rates of 0.16 and 0.39% H2O per hour, respectively. Till ca. 40% water content (WC) the germination capacity of seeds in the S and R variants was high (ca. 100%). Between 40 and 28% WC, germination capacity declined to 20 and 50% in S and R variants, respectively. The decrease in seed viability was accompanied by a significant increase of electrolyte leakage from embryonic axes (28% for S and 15% for R variants). In the embryonic axes of seeds subjected to slow desiccation, malondialdehyde (MDA) and free fatty acid (FFA) contents were significantly higher than those in R variants, indicating greater membrane damage due to lipid peroxidation. The production of ROS (H2O2 and O2·−) was significantly higher in S than in R variants. The low molecular weight antioxidants α-tocopherol, ascorbic acid (ASA), and phenolic compounds indicated different reactions in response to desiccation stress. ASA levels decreased during desiccation to a similar degree in both the S and R variants. A significant decrease of total phenols was observed in R variant, which coincided with a significant increase of guaiacol peroxidase (POX) activity. α-Tocopherol content was significantly higher in the embryonic axes of seeds subjected to rapid drying. The activities of the enzymatic scavengers APX and GR had similar runs and were slightly higher in R variant. The activities of POX and SOD were significantly higher in the embryonic axes of seeds subjected to rapid drying. These results show that rapid dehydration of Q. robur seeds leads to the greater mobilization of antioxidant system in embryonic axes, particularly increased levels of α-tocopherol and POX and SOD activities, in the first stages of water loss. This mobilization has a greater impact on maintenance of higher viability of seeds after drying to lower level of WC.  相似文献   

6.
Seeds of Raphanus sativus L. subjected to accelerated ageing were investigated for reactive oxygen species (ROS) release and for content of vitamin E (tocopherol, TOC, and tocotrienol, TOC-3), fatty acids and phytosterols in seed coats, cotyledons and embryonic axes during germination. In unaged seeds, ROS release occurred mainly in seed coats of non-imbibed seeds and in seedlings (48?h of imbibition). TOC and TOC-3 were mainly represented by the ??-isoform, abundant in embryonic axes. Fatty acids were mainly found in cotyledons. In seed coat and embryonic axis, phytosterols consisted mainly of sitosterols. The effects of ageing were mainly visible in embryonic axes at 48?h of imbibition. Deterioration was associated with a decrease in fresh weight increase percentage, germination percentage, ??-TOC and total fatty acid content. An increase in ROS release from seed coats and in ??-TOC, ??-TOC, ??-TOC-3 content in embryonic axis was also observed. The use of ??-TOC and total fatty acids in embryonic axis as parameters of seed quality evaluation during storage was suggested.  相似文献   

7.
Seeds germination is strictly controlled by environment factor such as high temperature (HT) through altering the balance between gibberellin acid (GA) and abscisic acid (ABA). Gama-aminobutyric acid (GABA) is a small molecule with four-carbon amino acid, which plays a crucial role during plant physiological process associated with pollination, wounding or abiotic stress, but its role in seeds germination under HT remains elusive. In this study we found that HT induced the overaccumulation of ROS, mainly H2O2 and O2- , to suppress seeds germination, meanwhile, HT also activated the enzyme activity of GAD for the rapid accumulation of GABA, hinting the regulatory function of GABA in controlling seeds germination against HT stress. Applying GABA directly attenuated HT-induced ROS accumulation, upregulated GA biosynthesis and downregulated ABA biosynthesis, ultimately enhanced seeds germination. Consistently, genetic analysis using the gad1/2 mutant defective in GABA biosynthesis, or pop2-5 mutant with high endogenous GABA content supported the potential function of GABA in improving seeds germination tolerance to HT through scavenging ROS overaccumulation. Based on these data, we propose that GABA acts as a novel signal to enhance thermotolerance of seeds germination through alleviating the ROS damage to seeds viability.  相似文献   

8.
Symbiotic associations between grasses and vertically transmitted endophytic fungi are widespread in nature. Within grass populations, changes in the frequency of infected plants are driven by influence of the endophyte on the fitness of their hosts and by the efficiency of endophyte transmission from parent plants to their offspring. During the seed stage, the endophyte might influence the fitness of its host by affecting the rate of seed viability loss, whereas the efficiency of endophyte transmission is affected by losses of viability of the fungus within viable seeds. We assessed the viability losses of Lolium multiflorum seeds with high and low level of infection of the endophyte Neotyphodium occultans, as well as the loss of viability of the fungus itself, under accelerated seed ageing and under field conditions. Starting with high endophyte-infected accessions of L. multiflorum, we produced their low endophyte-infected counterparts by treating seeds with a fungicide, and subsequently multiplying seeds in adjacent plots allowing pollen exchange. In our accelerated ageing experiments, which included three accessions, high endophyte-infected seeds lost viability significantly faster than their low endophyte-infected counterpart, for only one accession. High endophyte-infected seeds of this particular accession absorbed more water than low endophyte-infected seeds. In contrast, the endophyte lost viability within live seeds of all three accessions, as the proportions of viable seeds producing infected seedlings decreased over time. In our field experiment, which included only one accession, high endophyte-infected seed lost viability significantly but only slightly faster than low endophyte-infected seed. In contrast, the loss of viability of the endophyte was substantial as the proportions of viable seeds producing infected seedlings decreased greatly over time. Moving the seeds from the air to the soil surface (simulating seed dispersion off the spikes) decreased substantially the rate of seed viability loss, but increased the rate of endophyte viability loss. Our experiments suggest that, in ageing seed pools, endophyte viability loss and differential seed mortality determine decreases in the proportions of endophyte-infected seeds in L. multiflorum. Endophyte viability loss within live seeds contributes substantially more to infection frequency changes than differential viability losses of infected and non-infected seeds.  相似文献   

9.
10.
Previous studies have shown that controlled deterioration treatment (CDT) induces programmed cell death in elm (Ulmus pumila L.) seeds, which undergo certain fundamental processes that are comparable to apoptosis in animals. In this study, the essential characteristics of mitochondrial physiology in elm seeds during CDT were identified by cellular ultrastructural analysis, whole‐body optical imaging, Western blotting and semi‐quantitative RT–PCR. The alteration in mitochondrial morphology was an early event during CDT, as indicated by progressive dynamic mitochondrial changes and rupture of the mitochondrial outer membrane; loss of mitochondrial transmembrane potential (Δψm) ensued, and mitochondrial ATP levels decreased. The mitochondrial permeability transition pore inhibitor cyclosporine A effectively suppressed these changes during ageing. The in situ localization of production of reactive oxygen species (ROS), and evaluation of the expression of voltage‐dependent anion‐selective channel and cyclophilin D indicated that the levels of mitochondrial permeability transition pore components were positively correlated with ROS production, leading to an imbalance of the cellular redox potential and ultimately to programmed cell death. Pre‐incubation with ascorbic acid slowed loss of mitochondrial Δψm, and decreased the effect of CDT on seed viability. However, there were no significant changes in multiple antioxidant elements or chaperones in the mitochondria during early stages of ageing. Our results indicate that CDT induces dynamic changes in mitochondrial physiology via increased ROS production, ultimately resulting in an irreversible loss of seed viability.  相似文献   

11.
Chen Q  Yang L  Ahmad P  Wan X  Hu X 《Planta》2011,233(3):583-592
Tea seed is believed to be recalcitrant based on its sensitivity to chilling or drying stress. Reactive oxygen species (ROS) and alterations in cytosolic redox status have been implicated in intolerance to desiccation by recalcitrant seed, but there is little information available regarding how ROS are regulated in seeds susceptible to drying stress. We investigated changes in protein expression and activity in tea embryo in response to desiccation using physiological and proteomic methods. Results showed that desiccation treatment dramatically induced the accumulation of H2O2 in tea embryos, accompanied by increased activities of antioxidant enzymes like ascorbate peroxidase (APX) and superoxide dismutase (SOD). Proteomic analyses also demonstrated that 23 proteins associated with defense response, metabolism and redox status were up-regulated following desiccation. Increase in antioxidants, ascorbic acid (AsA) and catalase (CAT) (H2O2 scavengers) partially assuaged desiccation damage to tea seed, resulting in improved germination rates. Higher accumulation of H2O2 aggravated desiccation damage to seeds leading to lower germination activity. We propose that desiccation causes an over-accumulation of ROS that are not efficiently scavenged by increased levels of antioxidant enzymes. High levels of ROS alter the redox status and are detrimental to seed viability. Reducing ROS to appropriate concentrations is an efficient way to reduce desiccation damage and improve germination rates of recalcitrant seeds.  相似文献   

12.
Germination and vigour of accelerated aged (AA) and naturally stored onion seeds were examined. Accelerated ageing was conducted at 40 °C and 100 % relative humidity (RH). Non aged seeds were stored for 34 months at 3 or 15 °C and 40, 60 or 90 % RH. To restore seed viability, stored and aged seeds were matriconditioned with Micro-Cel E. A distinct loss of germination was observed after 5 days of accelerated ageing. Naturally stored seeds maintained high viability for 34 months, when stored at 3 °C and 40, 60 and 90 % RH or at 15 °C and 40 %. An increase of RH to 60 and 90 % at 15 °C caused loss of germination and vigour. Matriconditioning improved germination and increased endogenic ethylene release and in vivo ACC oxidase activity of both aged and stored seeds.  相似文献   

13.
Sarath G  Hou G  Baird LM  Mitchell RB 《Planta》2007,226(3):697-708
Hydrogen peroxide (H2O2) as a source of reactive oxygen species (ROS) significantly stimulated germination of switchgrass (Panicum virgatum L.) seeds with an optimal concentration of 20 mM at both 25 and 35°C. For non-dormant switchgrass seeds exhibiting different levels of germination, treatment with H2O2 resulted in rapid germination (<3 days) of all germinable seeds as compared to seeds placed on water. Exposure to 20 mM H2O2 elicited simultaneous growth of the root and shoot system, resulting in more uniform seedling development. Seeds of big bluestem (Andropogon gerardii Vitman) and indiangrass [Sorghastrum nutans (L.) Nash] also responded positively to H2O2 treatment, indicating the universality of the effect of H2O2 on seed germination in warm-season prairie grasses. For switchgrass seeds, abscisic acid (ABA) and the NADPH-oxidase inhibitor, diphenyleneiodonium (DPI) at 20 μM retarded germination (radicle emergence), stunted root growth and partially inhibited NADPH-oxidase activity in seeds. H2O2 reversed the inhibitory effects of DPI and ABA on germination and coleoptile elongation, but did not overcome DPI inhibition of root elongation. Treatment with H2O2 appeared to enhance endogenous production of nitric oxide, and a scavenger of nitric oxide abolished the peroxide-responsive stimulation of switchgrass seed germination. The activities and levels of several proteins changed earlier in seeds imbibed on H2O2 as compared to seeds maintained on water or on ABA. These data demonstrate that seed germination of warm-season grasses is significantly responsive to oxidative conditions and highlights the complex interplay between seed redox status, ABA, ROS and NO in this system.  相似文献   

14.
The germination of viable seeds is the basis for new plant growth and development. Seeds lose viability during storage, but the biochemical mechanisms of seed death are not fully understood. This study aimed to investigate degradation patterns of nucleic acids during seed ageing and subsequent water uptake. Seeds of Pisum sativum L. were artificially aged at 50°C and 12% seed water content (WC). Nucleic acids degradation was studied during ageing and during imbibition of four seed lots with differential viability from highly viable to dead. As seeds lost viability during ageing, DNA was gradually degraded into internucleosomal fragments, resulting in ‘DNA laddering’, in conjunction with disintegration of 18S and 28S rRNA bands. During imbibition, non-aged controls had high levels of DNA and RNA integrity through to radicle protrusion. In an aged seed lot with 85% total germination (TG) DNA fragmentation decreased upon imbibition probably due to nucleosome degradation, while rRNA integrity did not improve. In an aged seed lot with 44% TG, neither DNA nor rRNA integrity improved upon imbibition. Dead seeds showed DNA degradation as laddering throughout imbibition along with extensive degradation of rRNA. We present a model in which interlinked programmed and non-programmed events contribute to seed ageing, and suggest that protection of nucleic acids during ageing is key to seed longevity.  相似文献   

15.
This study compared the responses of Avicennia marina and Trichilia dregeana seeds, both of which are recalcitrant, to partial dehydration and storage. Seeds of A. marina exhibited a faster rate of water and viability loss (± 50% viability loss in 4 days) during partial dehydration, compared with T. dregeana (± 50% viability loss in 14 days). In A. marina embryonic axes, reactive oxygen species (ROS) production peaked on 4 days of dehydration and was accompanied by an increase in the GSH:GSSG ratio; it appears that the glutathione system alone could not overcome dehydration-induced oxidative stress in this species. In A. marina, ROS and axis water content levels increased during hydrated storage and were accompanied by a decline in the GSH:GSSG ratio and rapid viability loss. In T. dregeana embryonic axes, ROS production (particularly hydrogen peroxide) initially increased and thereafter decreased during both partial dehydration and hydrated storage. Unlike in A. marina embryonic axes, this reduced ROS production was accompanied by a decline in the GSH:GSSG ratio. While T. dregeana seeds may have incurred some oxidative stress during storage, a delay in and/or suppression of the ROS-based trigger for germination may account for their significantly longer storage longevity compared with A. marina. Mechanisms of desiccation-induced seed viability loss may differ across recalcitrant-seeded species based on the rate and extent to which they lose water during partial drying and storage. While recalcitrant seed desiccation sensitivity and, by implication, storage longevity are modulated by redox metabolism, the specific ROS and antioxidants that contribute to this control may differ across species.  相似文献   

16.
Catalase is a key enzyme in seed recovery from ageing during priming   总被引:3,自引:0,他引:3  
Ageing induces seed deterioration expressed as the loss of seed vigour and/or viability. Priming treatment, which consists in soaking of seeds in a solution of low water potential, has been shown to reinvigorate aged seeds. We investigate the importance of catalase in oxidation protection during accelerated ageing and repair during subsequent priming treatment of sunflower (Helianthus annuus L.) seeds. Seeds equilibrated to 0.29 g H2O g−1 dry matter (DM) were aged at 35 °C for different durations and then primed by incubation for 7 days at 15 °C in a solution of polyethylene glycol 8000 at −2 MPa. Accelerated ageing affected seed germination and priming treatment reversed partially the ageing effect. The inhibition of catalase by the addition of aminotriazol during priming treatment reduced seed repair indicating that catalase plays a key role in protection and repair systems during ageing. Ageing was associated with H2O2 accumulation as showed by biochemical quantification and CeCl3 staining. Catalase was reduced at the level of gene expression, protein content and affinity. Interestingly, priming induced catalase synthesis by activating expression and translation of the enzyme. Immunocytolocalization of catalase showed that the enzyme co-localized with H2O2 in the cytosol. These results clearly indicate that priming induce the synthesis of catalase which is involved in seed recovery during priming.  相似文献   

17.
  • The dormancy of seeds of upland cotton can be broken during dry after‐ripening, but the mechanism of its dormancy release remains unclear.
  • Freshly harvested cotton seeds were subjected to after‐ripening for 180 days. Cotton seeds from different days of after‐ripening (DAR) were sampled for dynamic physiological determination and germination tests. The intact seeds and isolated embryos were germinated to assess effects of the seed coat on embryo germination. Content of H2O2 and phytohormones and activities of antioxidant enzymes and glucose‐6‐phosphate dehydrogenase were measured during after‐ripening and germination.
  • Germination of intact seeds increased from 7% upon harvest to 96% at 30 DAR, while embryo germination improved from an initial rate of 82% to 100% after 14 DAR. Based on T50 (time when 50% of seeds germinate) and germination index, the intact seed and isolated embryo needed 30 and 21 DAR, respectively, to acquire relatively stable germination. The content of H2O2 increased during after‐ripening and continued to increase within the first few hours of imbibition, along with a decrease in abscisic acid (ABA) content. A noticeable increase was observed in gibberellic acid content during germination when ABA content decreased to a lower level. Coat removal treatment accelerated embryo absorption of water, which further improved the accumulation of H2O2 and changed peroxidase content during germination.
  • For cotton seed, the alleviation of coat‐imposed dormancy required 30 days of after‐ripening, accompanied by rapid dormancy release (within 21 DAR) in naked embryos. H2O2 acted as a core link between the response to environmental changes and induction of other physiological changes for breaking seed dormancy.
  相似文献   

18.
Carrot and leek seed was osmotically primed in polyethylene glycol solution (273 g/kg water and 342 g/kg water respectively) for 10, 14 or 17 days before accelerated ageing for 0, 24, 48, 72 or 96 h. Priming reduced the germination time compared with non-primed seed. Accelerated ageing increased germination and emergence times and decreased percentage germination and emergence to a greater extent for the primed seeds than for non-primed seeds in both species. Primed and dried but non-aged seed from both species was stored at 10°C for 12 months. There was no loss of viability and improvements in germination time due to priming were maintained throughout the storage period for all the priming treatments in leek, and for the 10 and 14 day priming treatments in carrot. Carrot seed primed for 17 days lost some viability after 12 months storage compared with non-stored seed.  相似文献   

19.
Reactive oxygen (ROS) and nitrogen (RNS) species play a signaling role in seed dormancy alleviation and germination. Their action may be described by the oxidative/nitrosative “window/door”. ROS accumulation in embryos could lead to oxidative modification of protein through carbonylation. Mature apple (Malus domestica Borkh.) seeds are dormant and do not germinate. Their dormancy may be overcome by 70–90 days long cold stratification. The aim of this work was to analyze the relationship between germinability of embryos isolated from cold (5 °C) or warm (25 °C) stratified apple seeds and ROS or nitric oxide (NO) production and accumulation of protein carbonyl groups. A biphasic pattern of variation in H2O2 concentration in the embryos during cold stratification was detected. H2O2 content increased markedly after 7 days of seeds imbibition at 5 °C. After an additional two months of cold stratification, the H2O2 concentration in embryos reached the maximum. NO production by the embryos was low during entire period of stratification, but increased significantly in germination sensu stricto (i.e. phase II of the germination process). The highest content of protein carbonyl groups was detected after 6 weeks of cold stratification treatment. Fluctuation of H2O2 and protein carbonylation seems to play a pivotal role in seed dormancy alleviation by cold stratification, while NO appears to be necessary for seed germination.  相似文献   

20.
Success of ex situ storage of germplasm for trade and conservation essentially depends upon the precision of the protocol employed for the assessment of germination potential. Active oxygen species and antioxidative enzymes during natural ageing (NA) and controlled deterioration (CD) was monitored during the loss of seed vigour and germination potential in neem seeds showing intermediate seed storage behaviour. Higher levels of SOD, CAT and APX were strongly and positively associated with germination and vigour. The loss of CAT and APX activity estimated quantitatively and number of isoenzymes were closely accompanied with the simultaneous increase in the amounts of H2O2 and OH-radical. The decline in germination and vigour was negatively related with the levels of H2O2 and OH-radical and enhanced electrolyte leakage. The amounts of OH-radical were positively correlated with the decline in DNA content and DNA damage. The levels of SOD isoenzymes initially increased as the germination index of seeds declined from 5250 to 762 and 882 under NA and CD conditions, respectively. Increasing activity of SOD in the ageing seeds were associated with the accumulation of H2O2. The role of antioxidative enzymes in maintaining signalling and damaging amounts of AOS as well as revelations of different pathways of ageing during NA and CD in the ageing neem seeds were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号