首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous studies have shown that vaccination and boosting of rhesus macaques with attenuated vesicular stomatitis virus (VSV) vectors encoding Env and Gag proteins of simian immunodeficiency virus-human immunodeficiency virus (SHIV) hybrid viruses protect rhesus macaques from AIDS after challenge with the highly pathogenic SHIV 89.6P (23). In the present study, we compared the effectiveness of a single prime-boost protocol consisting of VSV vectors expressing SHIV Env, Gag, and Pol proteins to that of a protocol consisting of a VSV vector prime followed with a single boost with modified vaccinia virus Ankara (MVA) expressing the same SHIV proteins. After challenge with SHIV 89.6P, MVA-boosted animals controlled peak challenge viral loads to less than 2 x 10(6) copies/ml (a level significantly lower than that seen with VSV-boosted animals and lower than those reported for other vaccine studies employing the same challenge). MVA-boosted animals have shown excellent preservation of CD4(+) T cells, while two of four VSV-boosted animals have shown significant loss of CD4(+) T cells. The improved protection in MVA-boosted animals correlates with trends toward stronger prechallenge CD8(+)-T-cell responses to SHIV antigens and stronger postchallenge SHIV-neutralizing antibody production.  相似文献   

2.
We examined the ability of a live, attenuated deletion mutant of simian immunodeficiency virus (SIV), SIVmac239Delta3, which is missing nef and vpr genes, to protect against challenge by heterologous strains SHIV89.6p and SIVsmE660. SHIV89.6p is a pathogenic, recombinant SIV in which the envelope gene has been replaced by a human immunodeficiency virus type 1 envelope gene; other structural genes of SHIV89.6p are derived from SIVmac239. SIVsmE660 is an uncloned, pathogenic, independent isolate from the same primate lentivirus subgrouping as SIVmac but with natural sequence variation in all structural genes. The challenge with SHIV89.6p was performed by the intravenous route 37 months after the time of vaccination. By the criteria of CD4(+) cell counts and disease, strong protection against the SHIV89.6p challenge was observed in four of four vaccinated monkeys despite the complete mismatch of env sequences. However, SHIV89.6p infection was established in all four previously vaccinated monkeys and three of the four developed fluctuating viral loads between 300 and 10,000 RNA copy equivalents per ml of plasma 30 to 72 weeks postchallenge. When other vaccinated monkeys were challenged with SIVsmE660 at 28 months after the time of vaccination, SIV loads were lower than those observed in unvaccinated controls but the level of protection was less than what was observed against SHIV89.6p in these experiments and considerably less than the level of protection against SIVmac251 observed in previous experiments. These results demonstrate a variable level of vaccine protection by live, attenuated SIVmac239Delta3 against heterologous virus challenge and suggest that even live, attenuated vaccine approaches for AIDS will face significant hurdles in providing protection against the natural variation present in field strains of virus. The results further suggest that factors other than anti-Env immune responses can be principally responsible for the vaccine protection by live, attenuated SIV.  相似文献   

3.
We evaluated four priming-boosting vaccine regimens for the highly pathogenic simian human immunodeficiency virus SHIV89.6P in Macaca nemestrina. Each regimen included gene gun delivery of a DNA vaccine expressing all SHIV89.6 genes plus Env gp160 of SHIV89.6P. Additional components were two recombinant vaccinia viruses, expressing SHIV89.6 Gag-Pol or Env gp160, and inactivated SHIV89.6 virus. We compared (i) DNA priming/DNA boosting, (ii) DNA priming/inactivated virus boosting, (iii) DNA priming/vaccinia virus boosting, and (iv) vaccinia virus priming/DNA boosting versus sham vaccines in groups of 6 macaques. Prechallenge antibody responses to Env and Gag were strongest in the groups that received vaccinia virus priming or boosting. Cellular immunity to SHIV89.6 peptides was measured by enzyme-linked immunospot assay; strong responses to Gag and Env were found in 9 of 12 vaccinia virus vaccinees and 1 of 6 DNA-primed/inactivated-virus-boosted animals. Vaccinated macaques were challenged intrarectally with 50 50% animal infectious doses of SHIV89.6P 3 weeks after the last immunization. All animals became infected. Five of six DNA-vaccinated and 5 of 6 DNA-primed/particle-boosted animals, as well as all 6 controls, experienced severe CD4(+)-T-cell loss in the first 3 weeks after infection. In contrast, DNA priming/vaccinia virus boosting and vaccinia virus priming/DNA boosting vaccines both protected animals from disease: 11 of 12 macaques had no loss of CD4(+) T cells or moderate declines. Virus loads in plasma at the set point were significantly lower in vaccinia virus-primed/DNA-boosted animals versus controls (P = 0.03). We conclude that multigene vaccines delivered by a combination of vaccinia virus and gene gun-delivered DNA were effective against SHIV89.6P viral challenge in M. nemestrina.  相似文献   

4.
Newborn macaques were vaccinated against a chimeric simian human immunodeficiency (SHIV) virus, SHIV-vpu+, by DNA priming and boosting with homologous HIV-1 gp160. Following SHIV-vpu+ challenge, containment of infection was observed in 4 of 15 animals given DNA priming/protein boost vaccination and in three of four animals given gp160 boosts only. Rechallenge with homologous virus of six animals that contained the first challenge virus resulted in rapid viral clearance or low viral loads. Upon additional rechallenge with heterologous, pathogenic SHIV89.6P, four of these six animals maintained normal CD4+ T-cell counts with no or limited SHIV89.6P infection. Our data suggest that humoral and cellular immune mechanisms may have contributed to the containment of SHIV89.6P; however, viral interference with SHIV-vpu+ could also have played a role. Our results indicate that immunogenicity and efficacy of candidate AIDS vaccines are not affected when vaccination is initiated during infancy as compared with later in life.  相似文献   

5.
The Tat protein of HIV is produced early after infection and it is essential for viral replication and transmission. Tat is released by infected lymphocytes and is detected in the serum of HIV-infected patients. Extracellular Tat enters cells, where promotes HIV replication. Several studies suggest that humoral and cellular anti-Tat immunity have a protective role and may control disease progression. Of importance, Tat is conserved in its immunogenic regions among all viral subtypes except O subtype. Thus, the immunization with Tat cannot block virus entry but might block HIV replication and progression to disease. To test this hypothesis, monkeys (Macaca fascicularis) were immunized with a biologically active Tat protein. Tat was non toxic and induced specific humoral and cellular immune responses. High titers of anti-Tat antibodies capable of neutralizing Tat activity and the in vitro infection with the SHIV89.6P, Tat-specific proliferation, CTLs, TNFalpha production and skin tests were detected in the vaccinated monkeys. Most importantly, upon challenge with the highly pathogenic SHIV89.6P (10 MID50, i.v.), 5/7 of the vaccinated monkeys showed no signs of infection nor CD4+-T cell decline over a 19 months of follow-up, whereas 3/3 controls were highly infected. Thus, a Tat-vaccine is capable of controlling the acute phase of infection in nonhuman primates. These data open new avenues for the development of an AIDS vaccine.  相似文献   

6.
Several different strains of simian-human immunodeficiency virus (SHIV) that contain the envelope glycoproteins of either T-cell-line-adapted (TCLA) strains or primary isolates of human immunodeficiency virus type 1 (HIV-1) are now available. One of the advantages of these chimeric viruses is their application to studies of HIV-1-specific neutralizing antibodies in preclinical AIDS vaccine studies in nonhuman primates. In this regard, an important consideration is the spectrum of antigenic properties exhibited by the different envelope glycoproteins used for SHIV construction. The antigenic properties of six SHIV variants were characterized here in neutralization assays with recombinant soluble CD4 (rsCD4), monoclonal antibodies, and serum samples from SHIV-infected macaques and HIV-1-infected individuals. Neutralization of SHIV variants HXBc2, KU2, 89.6, and 89.6P by autologous and heterologous sera from SHIV-infected macaques was restricted to an extent that these viruses may be considered heterologous to one another in their major neutralization determinants. Little or no variation was seen in the neutralization determinants on SHIV variants 89.6P, 89.6PD, and SHIV-KB9. Neutralization of SHIV HXBc2 by sera from HXBc2-infected macaques could be blocked with autologous V3-loop peptide; this was less true in the case of SHIV 89.6 and sera from SHIV 89.6-infected macaques. The poorly immunogenic but highly conserved epitope for monoclonal antibody IgG1b12 was a target for neutralization on SHIV variants HXBc2, KU2, and 89.6 but not on 89.6P and KB9. The 2G12 epitope was a target for neutralization on all five SHIV variants. SHIV variants KU2, 89.6, 89.6P, 89.6PD, and KB9 exhibited antigenic properties characteristic of primary isolates by being relatively insensitive to neutralization in peripheral blood mononuclear cells with serum samples from HIV-1-infected individuals and 12-fold to 38-fold less sensitive to inhibition with recombinant soluble CD4 than TCLA strains of HIV-1. The utility of nonhuman primate models in AIDS vaccine development is strengthened by the availability of SHIV variants that are heterologous in their neutralization determinants and exhibit antigenic properties shared with primary isolates.  相似文献   

7.
Simian-human immunodeficiency virus (SHIV) challenge studies in rhesus macaques were conducted to evaluate the efficacy of adenovirus-based vaccines in the context of different major histocompatibility complex class I genetic backgrounds and different vaccine compositions. Mamu-A*01 allele-negative rhesus monkeys were immunized with one of the following vaccine constructs: (i) replication-defective recombinant adenovirus type 5 (Ad5) expressing human immunodeficiency virus type 1 (HIV-1) Tat (Ad5/HIVTat); (ii) Ad5 vector expressing simian immunodeficiency virus (SIV) Gag (Ad5/SIVGag); (iii) Ad5 vector expressing the truncated HIV-1(jrfl) Env, gp140 (Ad5/gp140_jrfl); (iv) Ad5 vector expressing the SHIV-89.6P gp140 (Ad5/gp140_89.6P); or (v) the combination of Ad5/SIVGag and Ad5/gp140_jrfl. Following intravenous challenge with SHIV-89.6P, only those cohorts that received vaccines expressing Gag or Env exhibited an attenuation of the acute viremia and associated CD4-cell lymphopenia. While no prechallenge neutralizing antibody titers were detectable in either Ad5/gp140-vaccinated group, an accelerated neutralizing antibody response was observed in the Ad5/gp140_89.6P-vaccinated group upon viral challenge. The set-point viral loads in the Ad5/SIVGag- and Ad5/gp140_jrfl-vaccinated groups were associated with the overall strength of the induced cellular immune responses. To examine the contribution of Mamu-A*01 allele in vaccine efficacy against SHIV-89.6P challenge, Mamu-A*01-positive monkeys were immunized with Ad5/SIVGag. Vaccine-mediated protection was significantly more pronounced in the Mamu-A*01-positive monkeys than in Mamu-A*01-negative monkeys, suggesting the strong contributions of T-cell epitopes restricted by the Mamu-A*01 molecule. The implications of these results in the development of an HIV-1 vaccine will be discussed.  相似文献   

8.
Vaccine strategies aimed at blocking virus entry have so far failed to induce protection against heterologous viruses. Thus, the control of viral infection and the block of disease onset may represent a more achievable goal of human immunodeficiency virus (HIV) vaccine strategies. Here we show that vaccination of cynomolgus monkeys with a biologically active HIV-1 Tat protein is safe, elicits a broad (humoral and cellular) specific immune response and reduces infection with the highly pathogenic simian-human immunodeficiency virus (SHIV)-89.6P to undetectable levels, preventing the CD4+ T-cell decrease. These results may provide new opportunities for the development of a vaccine against AIDS.  相似文献   

9.
The mechanism of the progressive loss of CD4+ T lymphocytes, which underlies the development of AIDS in human immunodeficiency virus (HIV-1)-infected individuals, is unknown. Animal models, such as the infection of Old World monkeys by simian-human immunodeficiency virus (SHIV) chimerae, can assist studies of HIV-1 pathogenesis. Serial in vivo passage of the nonpathogenic SHIV-89.6 generated a virus, SHIV-89.6P, that causes rapid depletion of CD4+ T lymphocytes and AIDS-like illness in monkeys. SHIV-KB9, a molecularly cloned virus derived from SHIV-89.6P, also caused CD4+ T-cell decline and AIDS in inoculated monkeys. It has been demonstrated that changes in the envelope glycoproteins of SHIV-89.6 and SHIV-KB9 determine the degree of CD4+ T-cell loss that accompanies a given level of virus replication in the host animals (G. B. Karlsson et. al., J. Exp. Med. 188:1159-1171, 1998). The envelope glycoproteins of the pathogenic SHIV mediated membrane fusion more efficiently than those of the parental, nonpathogenic virus. Here we show that the minimal envelope glycoprotein region that specifies this increase in membrane-fusing capacity is sufficient to convert SHIV-89.6 into a virus that causes profound CD4+ T-lymphocyte depletion in monkeys. We also studied two single amino acid changes that decrease the membrane-fusing ability of the SHIV-KB9 envelope glycoproteins by different mechanisms. Each of these changes attenuated the CD4+ T-cell destruction that accompanied a given level of virus replication in SHIV-infected monkeys. Thus, the ability of the HIV-1 envelope glycoproteins to fuse membranes, which has been implicated in the induction of viral cytopathic effects in vitro, contributes to the capacity of the pathogenic SHIV to deplete CD4+ T lymphocytes in vivo.  相似文献   

10.
This study compared immune responses in rhesus macaques immunized with unmodified HIV-1 IIIB Tat, SHIV89.6P Tat, and carboxymethylated IIIB and 89.6P Tat toxoids. Immunization with either IIIB or 89.6P preparation induced high titer and broadly crossreactive serum anti-Tat IgG that recognized HIV-1 subtype-E and SIVmac251 Tat. However, the response was delayed, and titers were lower in 89.6P vaccination groups. Serum anti-Tat IgG recognized peptides corresponding to the amino-terminus, basic domain, and carboxy-terminal region. Cellular proliferative responses to Tat toxoids corresponding to the immunogen were evident in vitro in both IIIB and 89.6P groups. Crossreactive proliferative responses were observed in IIIB groups in response to stimulation with 89.6P or SIVmac251 Tat toxoids, but were much less prevalent in 89.6P groups. The truncated 86 amino acid IIIB Tat appears to be more immunogenic than the 102 amino acid 89.6P Tat with respect to both humoral and cellular immune responses, and may be a better vaccine component. Despite induction of robust humoral and cellular immune responses (including both CD4+ and CD8+ T-cell responses) to Tat, all animals were infected upon intravenous challenge with 30 MID(50) of SHIV89.6P and outcome of vaccine groups was not different from controls. Sequencing both Tat exons from serum viral RNA revealed no evidence of escape mutants. These results suggest that with intravenous SHIV89.6P challenge in rhesus macaques, precipitous CD4+ T-cell decline overwhelms potentially protective immune responses. Alternatively, Tat specific CD8+ T-cell responses may not appropriately recognize infected cells in vivo in this model. In view of evidence demonstrating Tat specific CTLs in the SIV model and in humans infected with HIV-1, results in this pathogenic SHIV model may not apparently predict the efficacy of this approach in human studies. The potency and cross-reactivity of these immune responses confirm Tat toxoid as an excellent candidate vaccine component.  相似文献   

11.
The great difficulty in eliciting broadly cross-reactive neutralizing antibodies (NAbs) against human immunodeficiency virus type 1 (HIV-1) isolates has been attributed to several intrinsic properties of their viral envelope glycoprotein, including its complex quaternary structure, extensive glycosylation, and marked genetic variability. Most previously evaluated vaccine candidates have utilized envelope glycoprotein from a single virus isolate. Here we compare the breadth of NAb and protective immune response following vaccination of pigtailed macaques with envelope protein(s) derived from either single or multiple viral isolates. Animals were challenged with Simian/human immunodeficiency virus strain DH12 (SHIV(DH12)) following priming with recombinant vaccinia virus(es) expressing gp160(s) and boosting with gp120 protein(s) from (i) LAI, RF, 89.6, AD8, and Bal (Polyvalent); (ii) LAI, RF, 89.6, AD8, Bal, and DH12 (Polyvalent-DH12); (iii) 89.6 (Monovalent-89.6); and (iv) DH12 (Monovalent-DH12). Animals in the two polyvalent vaccine groups developed NAbs against more HIV-1 isolates than those in the two monovalent vaccine groups (P = 0.0054). However, the increased breadth of response was directed almost entirely against the vaccine strains. Resistance to SHIV(DH12) strongly correlated with the level of NAbs directed against the virus on the day of challenge (P = 0.0008). Accordingly, the animals in the Monovalent-DH12 and Polyvalent-DH12 vaccine groups were more resistant to the SHIV(DH12) challenge than the macaques immunized with preparations lacking a DH12 component (viz. Polyvalent and Monovalent-89.6) (P = 0.039). Despite the absence of any detectable NAb, animals in the Polyvalent vaccine group, but not those immunized with Monovalent-89.6, exhibited markedly lower levels of plasma virus than those in the control group, suggesting a superior cell-mediated immune response induced by the polyvalent vaccine.  相似文献   

12.
Expression of several major histocompatibility complex (MHC) class I alleles is associated with a protective effect against disease progression in both human immunodeficiency virus type 1 and simian immunodeficiency virus infection. To understand the mechanism underlying this effect, we investigated the expression of the MHC class I allele Mamu-A*01 in simian-human immunodeficiency virus (SHIV) infection, one of the major models for evaluation of AIDS vaccine candidates. We found that disease progression was significantly delayed in Mamu-A*01-positive rhesus monkeys infected with the highly pathogenic SHIV 89.6P. The delay corresponded not only to a noted Mamu-A*01-restricted dominant cytotoxic T-lymphocyte (CTL) response but also to a lower viral load in lymph nodes (LN) and, importantly, to minimal destruction of LN structure during early infection. In contrast, Mamu-A*01-negative monkeys exhibited massive destruction of LN structure with accompanying rapid disease progression. These data indicate that MHC class I allele-restricted CTL responses may play an important role in preservation of lymphoid tissue structure, thereby resulting in attenuation of disease progression in immunodeficiency virus infection.  相似文献   

13.
Heterologous prime/boost regimens are AIDS vaccine candidates because of their potential for inducing cellular immune responses. Here, we have developed a prime/boost regimen leading to rapid control of highly pathogenic immunodeficiency virus infection in macaques. The strategy, priming by an env and nef deletion-containing simian-human immunodeficiency virus (SHIV) proviral DNA followed by a single booster with a Gag-expressing Sendai virus (SeV-Gag), efficiently induced virus-specific T cells, which were maintained for more than 3 months until challenge. While all naive control macaques showed acute CD4(+) T-cell depletion at week 2 after an intravenous SHIV89.6PD challenge, all the macaques vaccinated with the prime/boost regimen were protected from depletion and showed greatly reduced peak viral loads compared with controls. Vaccination with the DNA alone or SeV-Gag alone was not enough to confer the consistent protection from the depletion, although it led to efficient secondary CD8(+) T-cell responses at week 2 after challenge. At week 1, a difference in the secondary responses between the protected and the unprotected macaques was clear; rapid augmentation of virus-specific CD8(+) T cells was detected in the former but not in the latter. Thus, our results indicate the importance of rapid secondary responses for reduction in the peak viral loads and protection from acute CD4(+) T-cell depletion.  相似文献   

14.
The utility of the simian immunodeficiency virus of macaques (SIVmac) model of AIDS has been limited by the genetic divergence of the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and the SIVs. To develop a better AIDS animal model, we have been exploring the infection of rhesus monkeys with chimeric simian/human immunodeficiency viruses (SHIVs) composed of SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rev. SHIV-89.6, constructed with the HIV-1 env of a cytopathic, macrophage-tropic clone of a patient isolate of HIV-1 (89.6), was previously shown to replicate to a high degree in monkeys during primary infection. However, pathogenic consequences of chronic infection were not evident. We now show that after two serial in vivo passages by intravenous blood inoculation of naive rhesus monkeys, this SHIV (SHIV-89.6P) induced CD4 lymphopenia and an AIDS-like disease with wasting and opportunistic infections. Genetic and serologic evaluation indicated that the reisolated SHIV-89.6P expressed envelope glycoproteins that resembled those of HIV-1. When inoculated into naive rhesus monkeys, SHIV-89.6P caused persistent infection and CD4 lymphopenia. This chimeric virus expressing patient isolate HIV-1 envelope glycoproteins will be valuable as a challenge virus for evaluating HIV-1 envelope-based vaccines and for exploring the genetic determinants of HIV-1 pathogenicity.  相似文献   

15.
A successful HIV vaccine may need to stimulate antiviral immunity in mucosal and systemic immune compartments, because HIV transmission occurs predominantly at mucosal sites. We report here the results of a combined DNA-modified vaccinia virus Ankara (MVA) vaccine approach that stimulated simian/human immunodeficiency virus (SHIV)-specific immune responses by vaccination at the nasal mucosa. Fifteen male rhesus macaques, divided into three groups, received three nasal vaccinations on day 1, wk 9, and wk 25 with a SHIV DNA plasmid producing noninfectious viral particles (group 1), or SHIV DNA plus IL-2/Ig DNA (group 2), or SHIV DNA plus IL-12 DNA (group 3). On wk 33, all macaques were boosted with rMVA expressing SIV Gag-Pol and HIV Env 89.6P, administered nasally. Humoral responses were evaluated by measuring SHIV-specific IgG and neutralizing Abs in plasma, and SHIV-specific IgA in rectal secretions. Cellular responses were monitored by evaluating blood-derived virus-specific IFN-gamma-secreting cells and TNF-alpha-expressing CD8+ T cells, and blood- and rectally derived p11C tetramer-positive T cells. Many of the vaccinated animals developed both mucosal and systemic humoral and cell-mediated anti-SHIV immune responses, although the responses were not homogenous among animals in the different groups. After rectal challenge of vaccinated and naive animals with SHIV89.6P, all animals became infected. However a subset, including all group 2 animals, were protected from CD4+ T cell loss and AIDS development. Taken together, these data indicate that nasal vaccination with SHIV-DNA plus IL-2/Ig DNA and rMVA can provide significant protection from disease progression.  相似文献   

16.
Nonhuman primate models are increasingly used in the screening of candidate AIDS vaccine and immunization strategies for advancement to large-scale human trials. The predictive value of such macaque studies is largely dependent upon the fidelity of the model system in mimicking human immunodeficiency virus (HIV) type 1 infection in terms of viral transmission, replication, and pathogenesis. Herein, we describe the efficient mucosal transmission of a CCR5-specific chimeric simian/human immunodeficiency virus, SHIV(SF162P3). Female rhesus macaques were infected with SHIV(SF162P3) after a single atraumatic application to the cervicovaginal mucosa. The disease course of SHIV(SF162P3)-infected monkeys is similar and as varied as natural HIV infection in terms of viral replication, gradual loss of CD4(+) peripheral blood mononuclear cells, and the development of simian AIDS-defining opportunistic infections. The SHIV(SF162P3)/macaque model should facilitate direct preclinical assessment of HIV vaccine strategies in addition to antiviral compounds directed towards envelope target cell interactions. Furthermore, this controlled model provides the setting to investigate immunologic responses and putative host-specific susceptibility factors that alter viral transmission and subsequent disease progression.  相似文献   

17.
We previously demonstrated the excellent protective efficacy of DNA priming followed by Gag-expressing Sendai virus (SeV) boosting (DNA prime/SeV-Gag boost vaccine) against a pathogenic simian-human immunodeficiency virus (SHIV89.6PD) infection in macaques. Here we show that we established a practical, safer AIDS vaccine protocol, a single DNA priming followed by a single booster with a recently developed replication-defective F deletion SeV-expressing Gag, and show its protective efficacy against SHIV89.6PD infections.  相似文献   

18.
We constructed vaccine vectors based on live recombinant vesicular stomatitis virus (VSV) and a Semliki Forest virus (SFV) replicon (SFVG) that propagates through expression of the VSV glycoprotein (G). These vectors expressing simian immunodeficiency virus (SIV) Gag and Env proteins were used to vaccinate rhesus macaques with a new heterologous prime-boost regimen designed to optimize induction of antibody. Six vaccinated animals and six controls were then given a high-dose mucosal challenge with the diverse SIVsmE660 quasispecies. All control animals became infected and had peak viral RNA loads of 10(6) to 10(8) copies/ml. In contrast, four of the vaccinees showed significant (P = 0.03) apparent sterilizing immunity and no detectable viral loads. Subsequent CD8(+) T cell depletion confirmed the absence of SIV infection in these animals. The two other vaccinees had peak viral loads of 7 × 10(5) and 8 × 10(3) copies/ml, levels below those of all of the controls, and showed undetectable virus loads by day 42 postchallenge. The vaccine regimen induced high-titer prechallenge serum neutralizing antibodies (nAbs) to some cloned SIVsmE660 Env proteins, but antibodies able to neutralize the challenge virus swarm were not detected. The cellular immune responses induced by the vaccine were generally weak and did not correlate with protection. Although the immune correlates of protection are not yet clear, the heterologous VSV/SFVG prime-boost is clearly a potent vaccine regimen for inducing virus nAbs and protection against a heterogeneous viral swarm.  相似文献   

19.
The regulatory proteins Nef, Rev, and Tat of human immunodeficiency virus type 1 (HIV-1) are attractive targets for vaccine development, since induction of effective immune responses targeting these early proteins may best control virus replication. Here we investigated whether vaccination with biologically active Tat or inactive Tat toxoid derived from HIV-1(IIIB) and simian-human immunodeficiency virus (SHIV) strain 89.6p would induce protective immunity in rhesus macaques. Vaccination induced high titers of anti-Tat immunoglobulin G in all immunized animals by week 7, but titers were somewhat lower in the 89.6p Tat group. Dominant B-cell epitopes mapped to the amino terminus, the basic domain, and the carboxy-terminal region. Tat-specific T-helper responses were detected in 50% of immunized animals. T-cell epitopes appeared to map within amino acids (aa) 1 to 24 and aa 37 to 66. In addition, Tat-specific gamma interferon responses were detected in CD4+ and/or CD8+ T lymphocytes in 11 of 16 immunized animals on the day of challenge. However, all animals became infected upon intravenous challenge with 30 50% minimal infective doses of SHIV 89.6p, and there were no significant differences in viral loads or CD4+ T-cell counts between immunized and control animals. Thus, vaccination with HIV-1(IIIB) or SHIV 89.6p Tat or with Tat toxoid preparations failed to confer protection against SHIV 89.6p infection despite robust Tat-specific humoral and cellular immune responses in some animals. Given its apparent immunogenicity, Tat may be more effective as a component of a cocktail vaccine in combination with other regulatory and/or structural proteins of HIV-1.  相似文献   

20.
Recombinant protein subunit AIDS vaccines have been based predominantly on the virus envelope protein. Such vaccines elicit neutralizing antibody responses that can provide type-specific sterilizing immunity, but in most cases do not confer protection against divergent viruses. In this report we demonstrate that a multiantigen subunit protein vaccine was able to prevent the development of disease induced in rhesus monkeys by a partially heterologous AIDS virus. The vaccine was composed of recombinant human immunodeficiency virus type 1 (HIV-1) gp120, NefTat fusion protein, and simian immunodeficiency virus (SIV) Nef formulated in the clinically tested adjuvant AS02A. Upon challenge of genetically unselected rhesus monkeys with the highly pathogenic and partially heterologous SIV/HIV strain SHIV(89.6p) the vaccine was able to reduce virus load and protect the animals from a decline in CD4-positive cells. Furthermore, vaccination prevented the development of AIDS for more than 2.5 years. The combination of the regulatory proteins Nef and Tat together with the structural protein gp120 was required for vaccine efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号