首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solubilization and characterization of CCK receptors from mouse pancreas   总被引:3,自引:0,他引:3  
To study the characteristics of the CCK receptor, plasma membranes were prepared from mouse pancreatic acini, and CCK receptors solubilized with 1% digitonin. To measure hormone binding, the solubilized receptors were incubated with 125I-CCK at 4 degrees C and the hormone-receptor complex was precipitated with 10% polyethylene glycol. Specific 125I-CCK binding by the solubilized CCK receptor was compared to that by the plasma membrane-bound CCK receptor. Both the solubilized and the membrane-bound receptor displayed optimal binding at an acidic pH (between 6.0 and 7.0) and showed a similar sensitivity to monovalent and divalent cations. The solubilized receptors preserved their relative specificity for CCK molecules: CCK-8 greater than CCK-33 greater than desulfated CCK-8 greater than CCK-4. However, the soluble CCK receptor had a lower binding affinity than plasma membrane-bound receptor. Solubilized receptors preserved their relative specificity for inhibitors of CCK binding and action: dibutyryl cyclic GMP greater than N-CBZ-tryptophan greater than proglumide. Solubilized receptors had affinities for these antagonists that were similar to receptors on intact plasma membranes. These data indicate, therefore, that the specific binding properties of the CCK receptor are inherent to the solubilized glycoprotein molecules.  相似文献   

2.
TRH receptors have been solubilized from GH4C1 cells using the plant glycoside digitonin. Solubilized receptors retain the principal binding characteristics exhibited by the TRH receptor in intact pituitary cells and their membranes. The binding of the methylhistidyl derivative of TRH [( 3H]MeTRH) attained equilibrium within 2-3 h at 4 C, and it was reversible, dissociating with a t1/2 of 7 h. Analysis of [3H]MeTRH binding to soluble receptors at 4 C yielded a dissociation constant (Kd) of 3.8 nM and a total binding capacity (Bmax) of 3.9 pmol/mg protein. Peptides known to interact with non-TRH receptors on GH cells failed to interfere with the binding of [3H]MeTRH, indicating that the TRH binding was specific. Chlordiazepoxide, a competitive antagonist for TRH action in GH cells, inhibited TRH binding to soluble receptors with an IC50 of 11 microM. When [3H]MeTRH was bound to membranes and the membrane proteins were then solubilized, we found enhanced dissociation of the prebound [3H]MeTRH from its solubilized receptor by guanyl nucleotides. Maximal enhancement of [3H]MeTRH dissociation by 10 microM GTP gamma S occurred within about 45 min at 22 C. GTP gamma S, GTP, GDP beta S, and GDP were all effectors of [3H]MeTRH dissociation, exhibiting EC50s in the range of 14-450 nM. The rank order of potency of the tested nucleotides was GTP gamma S greater than GTP congruent to GDP beta S greater than GDP much greater than ATP gamma S greater than GMP. We conclude that TRH receptors have been solubilized from GH cells with digitonin and retain the binding characteristics of TRH receptors in intact pituitary cells. Furthermore, prebinding [3H]MeTRH to GH4C1 cell membranes results in the solubilization of a complex in which the TRH receptor is linked functionally to a GTP binding protein.  相似文献   

3.
Vasopressin (V2) receptors were solubilized from porcine kidney membranes with the detergent egg lysolecithin. Binding of [3H]vasopressin to the solubilized fraction was rapid, specific, and saturable. The agonist dissociation constants observed in membranes and solubilized fractions were 1.7 +/- 0.3 and 2.3 +/- 0.2 nM, respectively. In competition binding experiments, the solubilized fraction exhibited the same pharmacological profile as the membranes. Chemical crosslinking of [125I]vasopressin to the solubilized fraction followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated a 62-kDa band which was specifically labeled with [125I]vasopressin. Vasopressin binding sites from the solubilized fractions were resolved by gel filtration and ultracentrifugation on a sucrose gradient. In addition, agonist high affinity binding to V2 receptors and its sensitivity to guanine nucleotides were preserved even after solubilization in the absence of prebound agonist prior to solubilization. Addition of guanine nucleotides such as GTP gamma S decreased the specific binding of [3H]arginine vasopressin to these solubilized fractions in a dose-dependent manner, suggesting the solubilization of a V2 receptor-G protein complex. [32P]ADP ribosylation of the solubilized fraction by cholera and pertussis toxins revealed specifically labeled proteins with molecular weights of 42,000-43,000 and 39,000-41,000, respectively, on sodium dodecyl sulfate polyacrylamide gels. Furthermore [35S]GTP gamma S binding to these solubilized fractions was enhanced by vasopressin, confirming that a significant proportion of the vasopressin receptors must be closely coupled to G proteins even when these receptors are solubilized in the absence of agonist. These results are in contrast with those reported for beta, alpha 2 adrenergic and D2 dopaminergic receptor systems, but in agreement with D1 dopaminergic and A1 adenosine receptors. The molecular mechanism responsible for this difference remains to be determined.  相似文献   

4.
The binding of cholecystokinin (CCK) to its receptors on guinea pig gastric chief cell membranes were characterized by the use of 125I-CCK-octapeptide (CCK8). At 30 degrees C optimal binding was obtained at acidic pH in the presence of Mg2+, while Na+ reduced the binding. In contrast to reports on pancreatic and brain CCK receptors, scatchard analysis of CCK binding to chief cell membranes revealed two classes of binding sites. Whereas, in the presence of a non-hydrolyzable GTP analog, GTP gamma S, only a low affinity site of CCK binding was observed. Chief cell receptors recognized CCK analogs, with an order of potency of: CCK8 greater than gastrin-I greater than CCK4. Although all CCK receptor antagonists tested (dibutyryl cyclic GMP, L-364718 and CR1409) inhibited labeled CCK binding to chief cell membranes, the relative potencies of these antagonists in terms of inhibiting labeled CCK binding were different from those observed in either pancreatic membranes or brain membranes. The results indicate, therefore, that on gastric chief cell membranes there exist specific CCK receptors, which are coupled to G protein. Furthermore, chief cell CCK receptors may be distinct from pancreatic or brain type CCK receptors.  相似文献   

5.
Somatostatin receptors of plasma membranes from beta cells of hamster insulinoma were covalently labelled with 125I-[Leu8,D-Trp22,Tyr25]somatostatin-28 (125I-somatostatin-28) and solubilized with the non-denaturing detergent Triton X-100. Analysis by SDS/PAGE and autoradiography revealed three specific 125I-somatostatin-28 receptor complexes with similar molecular masses (228 kDa, 128 kDa and 45 kDa) to those previously identified [Cotroneo, P., Marie, J.-C. & Rosselin, G. (1988) Eur. J. Biochem. 174, 219-224]. The major labelled complex (128 kDa) was adsorbed to a wheat-germ-agglutinin agarose column and eluted by N-acetylglucosamine. Also, the binding of 125I-somatostatin-28 to plasma membranes was specifically inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate) (GTP[S]) in a dose-dependent manner. Furthermore, when somatostatin-28 receptors were solubilized by Triton X-100 as a reversible complex with 125I-somatostatin-28, GTP[S] specifically dissociated the bound ligand to a larger extent from the soluble receptors than from the plasma-membrane-embedded receptors, the radioactivity remaining bound after 15 min at 37 degrees C being 30% and 83% respectively. After pertussis-toxin-induced [32P]ADP-ribosylation of pancreatic membranes, a 41-kDa [32P]ADP-ribose-labelled inhibitory guanine nucleotide binding protein coeluted with the 128-kDa and 45-kDa receptor complexes. The labelling of both receptor proteins was sensitive to GTP[S]. The labelling of the 228-kDa band was inconsistent. These results support the conclusion that beta cell somatostatin receptors can be solubilized as proteins of 128 kDa and 45 kDa. The major labeled species corresponds to the 128-kDa band and is a glycoprotein. The pancreatic membrane contains a 41-kDa GTP-binding protein that can complex with somatostatin receptors.  相似文献   

6.
Characterization of [3H]Guanine Nucleotide Binding Sites in Brain Membranes   总被引:2,自引:0,他引:2  
[3H]GTP [guanosine triphosphate] and [3H]GMP-PNP [guanosine 5'-(beta, 8-imino)triphosphate, a nonmetabolized analog of GTP] have been utilized as ligands to characterize binding sites of guanine nucleotides to rat brain membranes. Binding of both [3H]GTP and [3H]GMP-PNP is saturable, with respective KD values of 0.76 and 0.42 microM. The number of binding sites for GMP-PNP (4 nmol/g) is three times greater than for GTP (1.5 nmol/g). This discrepancy is caused by rapid degradation of GTP to guanosine by brain membranes, which can be partially prevented by addition of 100 microM-ATP. The binding of [3H]guanine nucleotides is selective, with approximately equipotent inhibition by GTP, GDP, and GMP-PNP (at 0.2--1.0 microM), but no inhibition by other nucleotides at 100 microM concentrations. The bindings sites for guanine nucleotides in brain membranes appear not to be associated with microtubules, since treatments that reduce [3H]colchicine binding by 65% have no effect on [3H]GTP binding. [3H]Guanine nucleotide binding is widely distributed in various organs, with highest levels in liver and brain and lowest levels in skeletal muscle. The characteristics of these binding sites in brain show specificity properties of sites that regulate neurotransmitter receptors and adenylate cyclase.  相似文献   

7.
The cholecystokinin (CCK) receptor in purified plasma membranes prepared from mouse pancreatic acini had a binding affinity of 1.8 nM, an acid pH optimum between 6.0 and 6.5, and an analog specificity of CCK8 greater than CCK33 greater than desulphated CCK8 greater than CCK4. Binding of CCK to its receptor was abolished by pretreatment of plasma membranes with trypsin. When [125I]CCK was cross-linked to its receptors with disuccinimidyl suberate, and the preparation solubilized and subjected to gel electrophoresis and autoradiography, the hormone was associated with Mr 80 000 protein in both the presence and absence of the reducing agent dithiothreitol.  相似文献   

8.
ATP dose-dependently inhibited rat 125I-ANP-(99-126) binding to membranes from the human neuroblastoma cell line NB-OK-1 by increasing the KD value for the hormone without altering the Bmax value. After a 20 min preincubation with 37.5 pM 125I-ANP-(99-126) and 0.5 mM ATP, followed by the addition of 0.3 microM unlabelled ANP-(99-126), the proportion of rapidly dissociating receptors was 4-times higher than in the absence of ATP. The other nucleotides ADP, AMP, AMP-PNP, ATP gamma S, GTP, GDP, GMP, GMP-PNP and GTP gamma S were also inhibitory but with a lower potency and/or efficacy. Binding equilibrium data were satisfactorily simulated by a computer program based on partially competitive binding of ANP-(99-126) and the nucleotides, and this, together with the data on dissociation kinetics, strongly suggests that several nucleotides, when added at concentrations up to 1 mM, form a ternary ANP-receptor-nucleotide complex.  相似文献   

9.
We have recently reported (Ransn?s, L.A., and Insel, P.A. (1988) J. Biol. Chem. 263, 9482-9485) development of antipeptide antibodies to the alpha s protein of the stimulatory guanine nucleotide binding regulatory protein, Gs, and use of one of these antibodies, GS-1, to quantitate Gs levels in S49 lymphoma cell membranes. Another of these antibodies, termed GS-2, appears to detect only dissociated alpha s, but not the heterotrimer alpha s beta gamma. Using a competitive enzyme-linked immunosorbent assay, we have found that the guanine nucleotides GTP and guanosine 5'-O-(thiotriphosphate) (GTP gamma S) (but not GDP) and the beta-adrenergic receptor agonist isoproterenol activate Gs in native S49 cell membrane by subunit dissociation. Evidence for this includes detection of dissociated alpha s in membrane extracts and release of alpha s from S49 cell membranes treated with GTP gamma S or isoproterenol. Moreover, the estimates of apparent stoichiometry for this dissociation indicate that each beta-adrenergic receptor is able to activate greater than or equal to 100 molecules of Gs in native membranes. Thus, receptor-mediated dissociation of Gs is likely to be the major site of amplification of signal transduction by agonists active at hormone receptors that link to Gs.  相似文献   

10.
Vasopressin V1 receptors were solubilized from rat liver plasma membranes with the detergent lysophosphatidylcholine. [[3H]Arginine]vasopressin (AVP) binding to the solubilized preparations was specific and saturable, with a dissociation constant of 0.6 nM. Cross-linking of [125I]vasopressin to the solubilized fraction, studied by SDS/polyacrylamide-gel-electrophoretic analysis, demonstrated the presence of a 65 kDa band which was specifically labelled with [125I]vasopressin. Specific binding of [3H]AVP to these solubilized receptors was decreased by guanine nucleotides, but not by adenosine 5'-[beta gamma-imido]triphosphate. Addition of vasopressin increased specific binding of 35S-labelled guanosine 5'-[gamma-thio]triphosphate (GTP[35S]) to the solubilized fractions, indicating co-solubilization of GTP-binding protein(s) [G-protein(s)] and vasopressin receptors. The solubilized fraction was insensitive to both cholera- and pertussistoxin treatment. Immunoblotting of the solubilized fraction with antibodies specific for a phosphoinositide-specific phospholipase C (PI-PLC I) demonstrated the presence of a 60 kDa protein. Anti-PI-PLC I antiserum immunoprecipitated solubilized vasopressin-binding sites from rat liver (V1), but not solubilized vasopressin-binding sites from hog kidney (V2). Similar results were obtained with an anti-PI-PLC I IgG affinity column. The solubilized (V1) receptors were enriched by ion-exchange and high-performance gel-filtration liquid chromatography. Vasopressin-binding activity was co-eluted with PI-PLC I and GTP[S]-binding activity on a DEAE-Sepharose column. The major vasopressin- and GTP[35S]-binding activities were co-eluted with PI-PLC I activity at approx. 240 kDa suggesting that vasopressin receptors from rat liver membranes can be solubilized as a complex of receptor-coupler-effector by using the detergent lysophosphatidycholine.  相似文献   

11.
The binding of substance P (SP) to receptors in peripheral tissues as well as in the CNS is subject to regulation by guanine nucleotides. In this report, we provide direct evidence that this effect is mediated by a guanine nucleotide-binding regulatory protein (G-protein) that is required for high-affinity binding of SP to its receptor. Rat submaxillary gland membranes bind a conjugate of SP and 125I-labeled Bolton-Hunter reagent (125I-BHSP) with high affinity (KD = 1.2 +/- 0.4 X 10(-9) M) and sensitivity to guanine nucleotide inhibition. Treatment of the membranes with alkaline buffer (pH 11.5) causes a loss of the high-affinity, GTP-sensitive binding of 125I-BHSP and a parallel loss of [35S]guanosine 5'-(3-O-thio)triphosphate ([35S]GTP gamma S) binding activity. Addition of purified G-proteins from bovine brain to the alkaline-treated membranes restores high-affinity 125I-BHSP binding. Reconstitution is maximal when the G-proteins are incorporated into the alkaline-treated membranes at a 30-fold stoichiometric excess of GTP gamma S binding sites over SP binding sites. Both Go (a pertussis toxin-sensitive G-protein having a 39,000-dalton alpha-subunit) and Gi (the G-protein that mediates inhibition of adenylate cyclase) appear to be equally effective, whereas the isolated alpha-subunit of Go is without effect. The effects of added G-proteins are specifically reversed by guanine nucleotides over the same range of nucleotide concentrations that decreases high-affinity binding of 125I-BHSP to native membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
GTP-binding activity to Dictyostelium discoideum membranes was investigated using various guanine nucleotides. Rank order of binding activities was: GTP gamma S greater than GTP greater than 8-N3-GTP; the binding of GTP gamma S and GTP, but not of 8-N3-GTP, was stimulated by receptor agonists. [3H]GTP binding to D. discoideum membranes has been described previously by a single binding type (Kd = 2.6 microM, Bmax = 85 nM). More detailed studies with [35S]GTP gamma S showed heterogeneous binding composed of two forms of binding sites with respectively high (Kd = 0.2 microM) and low (Kd = 6.3 microM) affinity. cAMP derivatives enhanced GTP gamma S binding by increasing the affinity and the number of the high-affinity sites, while the low-affinity sites were not affected by cAMP. The specificity of cAMP derivatives for stimulation of GTP gamma S binding showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Pretreatment of D. discoideum cells with pertussis toxin did not affect basal GTP and GTP gamma S binding, but eliminated the cAMP stimulation of GTP and GTP gamma S binding. These results indicate that D. discoideum cells have a pertussis toxin-sensitive GTP-binding protein that interacts with the surface cAMP receptor, suggesting the functional interaction of surface receptor with a G-protein in D. discoideum.  相似文献   

13.
To determine the size and subunit structure of the pancreatic cholecystokinin (CCK) receptor, 125I-CCK33 was covalently cross-linked to its receptor on mouse pancreatic acinar plasma membranes utilizing the bifunctional cross-linker disuccinimidyl suberate. When CCK was cross-linked at pH 7.4 to either purified plasma membranes or to isolated pancreatic acini and then followed by preparation of plasma membranes, the major labeled protein band revealed by polyacrylamide gel electrophoresis was Mr = 120,000 in the absence of reducing agent and Mr = 80,000 in the presence of reducing agent. A similar banding pattern was also observed when different cross-linkers, ethylene glycol bis(succinimidyl succinate) or dithiobis (succinimidyl propionate), were employed. At pH 6.0, where CCK binding to its receptors is optimal, the labeling pattern was similar to that seen at 7.4, although the two bands were more heavily labeled. Both the binding of CCK to its receptors on plasma membranes and the appearance of the two cross-linked proteins on gels were inhibited in a parallel manner by increasing concentrations of unlabeled CCK8; similar results were observed with dibutyryl cyclic GMP, a competitive inhibitor of CCK binding and action. The data indicate, therefore, that the CCK receptor possesses subunit structure whereby an Mr = 76,000 binding subunit is linked to an Mr = 40,000 nonbinding subunit by a disulfide bond.  相似文献   

14.
Using the non-denaturing detergent 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propane sulfonate (Chaps), cholecystokinin (CCK) receptors were solubilized from rat pancreatic membranes as a reversible complex with the CCK 31-39 nonapeptide 125I-labelled by the Bolton and Hunter reagent. Bound ligand dissociation from this soluble complex was similar to that from the membranous receptors of origin and the marked increase in the rate of dissociation induced by GTP was preserved in the soluble state, indicating that the solubilized CCK receptors remained functionally coupled with the guanine nucleotide regulatory site modulating the affinity for CCK. In fact, two guanine nucleotide regulatory proteins, Ns and Ni, coexisted in the soluble complex as established by identifying the 42-kDa subunit of Ns and the 40-kDa subunit of Ni, after ADP-ribosylation by cholera toxin and Bordetella pertussis toxin, respectively.  相似文献   

15.
Guanine nucleotides were observed to modify the binding of 125I-angiotensin II to rat hepatic plasma membrane receptors. GTP and its nonhydrolyzable analogues greatly increased the dissociation rate of bound 125I-angiotensin II and altered hormone binding to the receptor under equilibrium conditions. In the absence of GTP, 125I-angiotensin II labeled both high affinity sites (Kd1 = 0.46 nM, N1 = 650 fmol/mg) and low affinity sites (Kd2 = 4.1 nM, N2 = 1740 fmol/mg). In the presence of guanine nucleotides, the affinities of the two sites were unchanged, but the number of high affinity sites decreased markedly to 52 fmol/mg. In analogous experiments using the angiotensin II antagonist, 125I-sarcosine1,Ala8-angiotensin II (125I-saralasin), guanine nucleotides minimally affected the interaction of 125I-saralasin with its receptor, increasing the dissociation rate 1.9-fold and the Kd 1.4-fold. The guanine nucleotide inhibition of agonist binding required a cation such as Na+ or Mg2+, with a maximal effect occurring at about 1 mM Mg2+. In liver plasma membranes prepared in EDTA, angiotensin II inhibited basal and glucagon-stimulated adenylate cyclase activities by 30% and 10%, respectively. Angiotensin II also caused a 40% inhibition of glucagon-stimulated cyclic AMP accumulation in intact hepatocytes, with a half-maximal effect occurring at 1 nM. The inhibition by angiotensin II of adenylate cyclase in membranes and of cAMP levels in intact cells could be reversed by the antagonist sarcosine1,Ile8-angiotensin II. Vasopressin caused a smaller 26% inhibition of glucagon-stimulated cyclic AMP accumulation. The ability of angiotensin II to inhibit cyclic AMP synthesis may provide an explanation for the observed effects of guanine nucleotides on 125I-angiotensin II binding to plasma membranes.  相似文献   

16.
The receptor for somatostatin present in rat pancreatic plasma membranes was characterized by affinity labeling with [125I-Tyr11]somatostatin utilizing three different heterobifunctional cross-linking agents: N-5-azido-2-nitrobenzoyloxy-succinimide, N-succinimidyl 6-(4-azido 2'-nitrophenylamine)hexanoate, and N-hydroxysuccinimidyl 4-azido-benzoate. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed a broad band of Mr = 92,000 when any of the three cross-linkers was used; N-succinimidyl 6-(4-azido 2'-nitrophenylamine), however, was most efficient. Labeling of the Mr = 92,000 protein band was not affected by reducing agents but was sensitive to somatostatin and guanine nucleotides, particularly GTP gamma S, at concentrations which reduced binding to the receptor. The affinity-labeled protein could be solubilized completely with Zwittergent 3-12, partially with Triton X-100 and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid, and poorly with Zwittergent 3-08 and digitonin. When exposed to agarose-coupled lectins, the detergent solubilized, labeled Mr = 92,000 protein was completely adsorbed to wheat germ agglutinin, partially to ricin communis II, and not at all to concanavalin A or lotus or lentil lectin. The Mr = 92,000 protein bound to wheat germ agglutinin-agarose was not eluted by N-acetylglucosamine but was by triacetylchitotriose, providing a considerable purification of the somatostatin receptor. These data allow us to conclude that the somatostatin receptor is a monomeric glycoprotein with an Mr = 90,000 binding subunit which probably contains a polymeric arrangement of N-acetylglucosamine residues.  相似文献   

17.
The involvement of G-proteins in the insulin signal transduction system has been studied in detail using the murine BC3H-1 myocyte system. Pertussis toxin (PT) treatment, previously shown to attenuate some of the metabolic effects of insulin in this cell line (Luttrell, L.M., Hewlett, E.L., Romero, G., and Rogol, A.D. (1988) J. Biol. Chem. 263, 6134-6141), abolished insulin-induced generation of diacylglycerol and inositolglycan mediators with no effects on either the autophosphorylation of the insulin receptor or the phosphorylation of the major endogenous substrates for insulin-stimulated tyrosine kinase activity (pp185 and pp42-45). In vitro ADP-ribosylation and immunoblotting studies suggest that the major PT substrate is a 40-kDa protein of the G alpha family. This protein band did not exhibit detectable tyrosine phosphorylation upon stimulation of either intact cells or cell membranes with insulin. In the presence of low concentrations of GTP, insulin treatment of isolated myocyte plasma membranes resulted in a small (30-40%) but significant stimulation of GTP hydrolysis. This effect was best observed in the presence of small concentrations of sodium dodecyl sulfate. The rate of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding to BC3H-1 membranes was also significantly increased in the presence of insulin. The effects of insulin on GTP hydrolysis and GTP gamma S binding were found to be dependent on the concentration of insulin. These effects were not detected in plasma membranes prepared from PT-pretreated BC3H-1 myocytes. In contrast, pretreatment with the B (inactive) subunit of PT did not alter the response of myocyte membranes to insulin. High affinity binding of [125I]iodoinsulin to myocyte plasma membranes was reduced by 60-70% in the presence of guanine nucleotides. Similar effects on insulin binding were produced by PT pretreatment of the cells. In contrast, adenine nucleotides had no effect on insulin binding. Scatchard analysis of the binding data showed that the observed effects of guanine nucleotides and PT on insulin binding resulted either from a reduction in the number of high affinity insulin binding sites or from a significant reduction of the affinity of insulin for its receptor. Low affinity binding sites did not appear to be affected by either guanine nucleotides nor PT pretreatment. These results provide substantial evidence suggestive of a noncovalent interaction between the insulin receptor and a regulatory G-protein system during the process of insulin signaling.  相似文献   

18.
The guanine nucleotide-binding regulatory component of adenylate cyclase (G/F) has been purified from human erythrocyte membranes. It is composed of two major polypeptides with molecular weights of 35,000 and 45,000. When cyc- S49 lymphoma cell plasma membranes are reconstituted with purified human erythrocyte G/F, stimulation of adenylate cyclase by beta-adrenergic agonists, guanine nucleotides, and fluoride is restored. Binding of GTP gamma S to human erythrocyte G/F and GTP gamma S-mediated activation of the protein are closely correlated. The agreement between the apparent dissociation constants for these two reactions suggests that the measured binding site is identical to the site responsible for activation. A 41,000-dalton protein has been identified as a contaminant of preparations of G/F that have been purified by four successive chromatographic steps. This protein serves as a specific substrate for ADP-ribosylation and labeling by islet activating protein (IAP) and [32P]NAD, and it appears to contribute an additional high-affinity guanine nucleotide binding site to such preparations.  相似文献   

19.
Calcium-sensitive inositide release in a purified rat liver plasma membrane preparation is increased by calcium-mobilizing hormones in the presence of guanine nucleotides. Vasopressin-stimulated inositide release is evident in the presence of GTP or its nonhydrolyzable analogs guanyl-5'-yl imidodiphosphate and guanosine 5'-(3-O-thio)triphosphate (GTP gamma S). The stimulation of inositide release by (-)-epinephrine (alpha 1), angiotensin II, or vasopressin in the presence of either 1 microM or 10 microM GTP gamma S correlates with the number of receptors present for each hormone. The guanine nucleotide and hormonal stimulation is evident on both inositol trisphosphate production and phosphatidylinositol bisphosphate degradation. Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (1 mM) completely abolishes stimulation by guanine nucleotides and hormone. Prior treatment of plasma membranes with cholera toxin or islet activating protein or prior injection of animals with islet activating protein does not affect stimulation of inositide release by GTP gamma S or GTP gamma S plus vasopressin. Stimulation by GTP gamma S is dependent upon magnesium and is inhibitable by guanosine 5'-(2-O-thio) diphosphate. Inositide release from the plasma membrane exhibits half-maximal stimulation by calcium at approximately 100 nM free calcium in the presence of 1.5 mM MgCl2 and at approximately 10 microM free calcium in the presence of 10 mM MgCl2. Addition of guanine nucleotides decreases the requirement for calcium and also increases the activity at saturating calcium. The results presented suggest that calcium-mobilizing hormones stimulate polyphosphoinositide breakdown in rat liver plasma membranes through a novel guanine nucleotide binding protein.  相似文献   

20.
Activation of epidermal growth factor (EGF) receptors stimulates inositol phosphate production in rat hepatocytes via a pertussis toxin-sensitive mechanism, suggesting the involvement of a G protein in the process. Since the first event after receptor-G protein interaction is exchange of GTP for GDP on the G protein, the effect of EGF was measured on the initial rates of guanosine 5'-O-(3-[35S]thiotriphosphate) [( 35S]GTP gamma S) association and [alpha-32P]GDP dissociation in rat hepatocyte membranes. The initial rate of [35S]GTP gamma S binding was stimulated by EGF, with a maximal effect observed at 8 nM EGF. EGF also increased the initial rate of [alpha-32P]GDP dissociation. The effect of EGF on [35S]GTP gamma S association was blocked by boiling the peptide for 5 min in 5 mM dithiothreitol or by incubation of the membranes with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). EGF-stimulated [35S]GTP gamma S binding was completely abolished in hepatocyte membranes prepared from pertussis toxin-treated rats and was inhibited in hepatocyte membranes that were treated directly with the resolved A-subunit of pertussis toxin. The amount of guanine nucleotide binding affected by occupation of the EGF receptor was approximately 6 pmol/mg of membrane protein. Occupation of angiotensin II receptors, which are known to couple to G proteins in hepatic membranes, also stimulated [35S]GTP gamma S association with and [alpha-32P]GDP dissociation from the membranes. The effect of angiotensin II on [alpha-32P]GDP dissociation was blocked by the angiotensin II receptor antagonist [Sar1,Ile8]angiotensin II, demonstrating that the guanine nucleotide binding was receptor-mediated. In A431 human epidermoid carcinoma cells, EGF stimulates inositol lipid breakdown, but the effect is not blocked by treatment of the cells with pertussis toxin. In these cells, EGF had no effect on [35S]GTP gamma S binding. Occupation of the beta-adrenergic receptor in A431 cell membranes with isoproterenol did stimulate [35S] GTP gamma S binding, and the effect could be completely blocked by l-propranolol. These results support the concept that in hepatocyte membranes, EGF receptors interact with a pertussis toxin-sensitive G protein via a mechanism similar to other hormone receptor-G protein interactions, but that in A431 human epidermoid carcinoma cells, EGF may activate phospholipase C via different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号