首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actinomycetes have been identified as an origin of many secondary metabolites, antibiotics and active components that impact microbial growth. Mediated mutations using UV in practice for the breeding of organisms. The objective of this study is to analyses the impact of UV radiation on the (O-7) Actinomycete isolate. This was a prospective analytical study of a several of actinomycetes. The isolates were screened for antimicrobial efficacy against multiple Gram-positive, Gram-negative bacteria, yeast, and fungi. Various factors such as UV, temperature, pH, light, agitation, fermentation durations and aeration have also been boosted for optimal antimicrobial production. The isolate (O-7) Actinomycete has been recognized as a highly bioactive producing organism. The isolate was exposed to various wavelengths, times under numerous growth conditions. It was found that 4% concentration of glucose as a carbon source is significantly optimal for the production of antibiotic for (O-7) UV exposed strain, however, concentration of 1% of lactose is significantly optimal for the production of antibiotic for (O-7) UV exposed strain. Yeast extract at a concentration of 1% was found to be the best source of nitrogen for (O-7) UV exposed, while pH 7.0 was found to be the most suitable for the same isolate. From the temperature optimization study, it was observed that (O-7) exposed strain showed good growth and maximum antibiotic production at 28 °C. The soil-isolated biological compounds (O-7) were effective against certain types of bacteria and fungi, and the research also demonstrated that exposure to UV radiation enhanced the production of these compounds.  相似文献   

2.
【目的】从土壤中分离并鉴定羽毛降解菌,测定其生长最适温度及起始pH,并观察酶活动态。【方法】采用系列稀释法和选择培养基法筛选目的菌株,基于16S rRNA基因序列及Biolog方法鉴定其分类地位,利用全自动生长曲线分析仪监测菌株的最适生长条件,并通过测定蛋白水解活性观察其酶活动态。【结果】从混合羽毛的土壤样品中筛选到一株羽毛降解菌,命名为菌株GIMN1.015,初步判定该菌株属于芽孢八叠球菌属(Sporosarcina)。最适生长pH为9.0,温度为30°C。蛋白水解活性最高值出现在培养后96 h。【结论】菌株GIMN1.015在利用羽毛角蛋白资源中具有潜在的应用价值。这是芽孢八叠球菌在羽毛降解方面的首次报道。  相似文献   

3.
Two different psychrophilic types of the heterotrophic nanoflagellate Paraphysomonas imperforata were isolated from Newfoundland coastal waters and the Arctic Ocean. When fed bacteria without food limitation, both isolates were able to grow at temperatures from -1.8 to 20°C, with maximum growth rates of 3.28 day-1 at 15°C and 2.28 day-1 at 12.3°C for the Newfoundland and the Arctic isolates, respectively. Ingestion rates increased with temperature from 14 to 62 bacteria flagellate-1 h-1 for the Newfoundland isolate and from 30 to 99 bacteria flagellate-1 h-1 for the Arctic isolate. While temperature did not affect cell yields (number of protozoa produced divided by number of bacteria consumed), it affected flagellate sizes. This differential effect of temperature on cell yield and cell size resulted in a changing gross growth efficiency (GGE) in terms of biovolume; colder temperatures favored higher GGEs. The comparison of Q10 values for growth rates and ingestion rates between the isolates shows that the Arctic isolate is better adapted to extremely cold temperature than the Newfoundland isolate. At seawater-freezing temperature (-1.8°C), the estimated maximum growth rates and maximum ingestion rates are 0.81 day-1 and 30 bacteria flagellate-1 h-1 for the Arctic isolate and 0.54 day-1 and 12 bacteria flagellate-1 h-1 for the Newfoundland isolate. Our findings about psychrophilic nanoflagellates fit the general characteristics of cold-water-dwelling organisms: reduced physiological rates and higher GGEs at lower temperatures. Because of the large and persistent differences between the isolates, we conclude that they are ecotypes adapted to specific environmental conditions.  相似文献   

4.
一株水稻纹枯菌拮抗细菌的分离与鉴定   总被引:1,自引:0,他引:1  
【目的】从土壤中分离并鉴定水稻纹枯菌拮抗细菌,测定其体外抑菌和温室防治效果。【方法】采用系列稀释法和平板对峙法筛选拮抗细菌,基于形态、生理特征及16S rDNA序列鉴定其分类地位,采用种子细菌化温室试验测定其防效。【结果】从蔬菜根际土壤中筛选出一株纹枯菌拮抗细菌,命名为kwkjT4。菌株具有明显的体外抑菌活性,对水稻纹枯病的温室防效与井冈霉素相当,初步鉴定为假紫色色杆菌(Chromobacterium pseudoviolaceum)。最适生长条件为pH 7.0,温度32°C,培养时间为36 h;抑菌活性物质产生的最适培养条件为pH 6.0,温度28°C,培养时间为48 h;表明两者并不一致。【结论】kwkjT4菌株在水稻纹枯病的生物防治中具有潜在的应用价值。这是C.pseudoviolaceum拮抗纹枯菌的首次报道。  相似文献   

5.
Extremely thermophilic bacteria were isolated from sediments collected at the Guaymas Basin hydrothermal vent located in the Gulf of California. One isolate, (FC89) is a hydrogenotrophic methanogen with an optimal growth temperature of 85°C; this isolate appears to be closely related to the previously describedMethanococcus jannaschii. Thermophilic isolates TY and TYS are heterotrophic, sulfur-reducing archaea that differ from other thermophilic heterotrophic strains in physiological and molecular properties. Both heterotrophic isolates fermented carbohydrates and proteinaceous substrates; acetate was the primary product of carbohydrate fermentation, whereas acetate and a mix of organic acids were primary products of proteinaceous substrate fermentation. A detailed microbiological characterization of the isolates and a profile of fermentable substrates and fermentation products are described.  相似文献   

6.
We demonstrated the ability of strictly fermentative, as well as facultatively fermentative, bacteria to assimilate sulfonate sulfur for growth. Taurine (2-aminoethanesulfonate) can be utilized by Clostridium pasteurianum C1 but does not support fermentative growth of two Klebsiella spp. and two different Clostridium spp. However, the latter are able to assimilate the sulfur of a variety of other sulfonates (e.g., cysteate, 3-sulfopyruvate, and 3-sulfolactate) anaerobically. A novel taurine-pyruvate aminotransferase activity was detected in cell extracts of C. pasteurianum C1 grown with taurine as the sole sulfur source. This activity was not detected in extracts of other bacteria examined, in C. pasteurianum C1 grown with sulfate or sulfite as the sulfur source, or in a Klebsiella isolate assimilating taurine-sulfur by aerobic respiration. More common aminotransferase activities (e.g., with aspartate or glutamate as the amino donor and pyruvate, oxalacetate, or (alpha)-ketoglutarate as the amino acceptor) were present, no matter what sulfur source was used for growth. Partial characterization of the taurine-pyruvate aminotransferase revealed an optimal temperature of 37(deg)C and a broad optimal pH range of 7.5 to 9.5.  相似文献   

7.
A new type of thermophilic cyanobacterial mat, rich in elemental sulfur and containing large numbers of sulfur-reducing bacteria able to utilize different growth substrates at 55° C, was found in the Uzon caldere (Kamchatka). One of the largest groups among these organisms were acetate-oxidizing sulfur-reducing bacteria, numbering 106 cells · cm–3 of mat. The pure culture of a sulfur-reducing eubacterium growing on acetate was isolated. Cells of the new isolate are Gram-negative short rods, often in pairs, motile, with a single polar flagellum. The optimal temperature for growth is 52 to 57° C, with no growth observed at 42 or 73° C. The pH optimum is 6.8 to 7.0. The new isolate is demonstrated to be a true dissimilatory sulfur reducer: it is an obligate anaerobe, it is unable to ferment organic substrates and it can use no electron acceptors other than elemental sulfur. Acetate is the only energy and carbon source, and H2S and CO2 are growth products. No cytochromes were detected. The G+C content of DNA is rather low, only 31.4 mol%. Thus, morphological and physiological features of the new isolate are quite close to those of Desulfuromonas. But on the grounds of a significant difference in the G+C content of DNA, the absence of cytochromes and because of its thermophilic nature, a new genus Desulfurella is proposed with the type species Desulfurella acetivorans.  相似文献   

8.
A thermophilic bacillus (minimal growth temperature 41 C, optimal 55 to 58 C, and maximal 65 C) was isolated from a manure pile. It is very similar to Bacillus stearothermophilus, but it differs in its inability to hydrolyze starch. The thermophilic isolate is a prototroph which grows in a minimal medium consisting of glucose, ammonium salt, phosphate buffer, and inorganic salts. At all temperatures studied (low to high), the same minimal nutritional requirements prevailed. The Arrhenius constant for growth was found to be 15,000 and 13,500 cal/mole in the minimal and rich media, respectively.  相似文献   

9.
The methanogenic strain MM isolated from an anaerobic microbial community degrading p-toluene sulfonate showed optimal values of temperature and pH for growth equal to 37 degrees C and 6.3-6.9, respectively. The doubling times of the isolate grown on methanol, acetate, and methylamines under the optimal conditions were 8.8, 19.1, and 10.3-28.1 h, respectively. The growth of strain MM was observed only when the cultivation medium contained casamino acids or p-toluene sulfonate. The G + C content of the DNA of the isolate was 40.3 mol%. This, together with DNA-DNA hybridization data, allowed the new isolate to be identified as a strain of the species Methanosarcina mazei. The new isolate differed from the known representatives of this species in that it was resistant to alkylbenzene sulfonates and able to demethylate p-toluene sulfonate when grown on acetate.  相似文献   

10.
Protons and sodium ions are the most commonly used coupling ions in energy transduction in bacteria and archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high compared with that of sodium ions. In some thermophiles, sodium is the sole energy-coupling ion. To test whether sodium is the preferred coupling ion at high temperatures, the proton- and sodium permeability was determined in liposomes prepared from lipids isolated from various bacterial and archaeal species that differ in their optimal growth temperature. The proton permeability increased with the temperature and was comparable for most species at their respective growth temperatures. Liposomes of thermophilic bacteria are an exception in the sense that the proton permeability is already high at the growth temperature. In all liposomes, the sodium permeability was lower than the proton permeability and increased with the temperature. The results suggest that the proton permeability of the cytoplasmic membrane is an important parameter in determining the maximum growth temperature.  相似文献   

11.
一株产蛋白酶嗜碱菌株的分离、鉴定及酶学特性   总被引:4,自引:1,他引:3  
【目的】筛选产蛋白酶嗜碱菌并对其进行鉴定和特性分析。【方法】利用碱性脱脂牛奶培养基分离纯化产蛋白酶嗜碱菌,通过形态特征、生理生化、16S rRNA基因序列分析以及DNA-DNA杂交实验确定菌株的分类地位,利用酪蛋白水解法分析所产蛋白酶的pH和温度作用范围、稳定性和耐氧化剂能力。【结果】从我国西藏盐碱湖样品中分离到一株产碱性蛋白酶的菌株ZL223,该菌株为革兰氏阳性菌,最适生长温度为37℃,最适生长pH9.0,16S rRNA基因序列分析显示,菌株ZL223与假强芽孢杆菌Bacillus pseudo firmus OF4亲缘关系最近,16S rRNA基因序列相似性为98.6%,DNA-DNA杂交结果显示与B.pseudofirmus OF4同源性为86%。菌株ZL223产生的蛋白酶作用的最适pH为12.0,最适温度为40℃。【结论】结合生理生化指标测定的结果,鉴定菌株为假强芽孢杆菌ZL223(B.pseudofirmus ZL223)。该菌株产生的碱性蛋白酶具有较高的pH适应性,值得进一步研究。  相似文献   

12.
When Tetrahymena ciliates are cultured with Legionella pneumophila, the ciliates expel bacteria packaged in free spherical pellets. Why the ciliates expel these pellets remains unclear. Hence, we determined the optimal conditions for pellet expulsion and assessed whether pellet expulsion contributes to the maintenance of growth and the survival of ciliates. When incubated with environmental L. pneumophila, the ciliates expelled the pellets maximally at 2 days after infection. Heat-killed bacteria failed to produce pellets from ciliates, and there was no obvious difference in pellet production among the ciliates or bacterial strains. Morphological studies assessing lipid accumulation showed that pellets contained tightly packed bacteria with rapid lipid accumulation and were composed of the layers of membranes; bacterial culturability in the pellets rapidly decreased, in contrast to what was seen in ciliate-free culture, although the bacteria maintained membrane integrity in the pellets. Furthermore, ciliates newly cultured with pellets were maintained and grew vigorously compared with those without pellets. In contrast, a human L. pneumophila isolate killed ciliates 7 days postinfection in a Dot/Icm-dependent manner, and pellets harboring this strain did not support ciliate growth. Also, pellets harboring the human isolate were resuscitated by coculturing with amoebae, depending on Dot/Icm expression. Thus, while ciliates expel pellet-packaged environmental L. pneumophila for stockpiling food, the pellets packaging the human isolate are harmful to ciliate survival, which may be of clinical significance.  相似文献   

13.
An obligately chemolithoautotrophic and aerobic hydrogen-oxidizing bacterium was isolated from seawater of the Shonan Coast, Kanagawa Pref., Japan. The isolate was a Gram-negative, comma-shaped rod cell measuring 0.2 to 0.5 by 1 to 2 m. The cells occurred singly and were motile by a polar flagellum. The deoxyribonucleic acid base composition of the isolate was 44.1 mol% guanine plus cytosine. The optimal temperature for autotrophic growth on H2–O2–CO2 was around 37°C, and no growth was observed at 5° C or 45° C. The optimal pH for growth was around 6.5. NaCl was required for growth with an optimum of 0.5 M. Elemental sulfur, thiosulfate or tetrathionate was utilized, as well as molecular hydrogen, as the sole energy source. No heterotrophic growth was observed on organic media tested. To our knowledge, this is the first report of the isolation of a marine, aerobic hydrogen-oxidizing bacterium, and of an obligately chemolithoautotrophic, mesophilic and aerobic hydrogen-oxidizing bacterium.  相似文献   

14.
Remediation of soils contaminated by nitroaromatic compounds and nitramines, i.e. explosives, is known as very important, complicated, and rapidly developing area of biotechnology. A search for optimal growth conditions for soil bacteria is of a great importance in order to isolate various xenobiotic degraders. Bacteria consortium A43 was isolated from soils contaminated with explosives. In the presence of carbohydrate and plant extract, an addition of TNT to the solidified minimal medium stimulated the growth of the tested bacteria, as compared to other bacteria consortium isolated from the same soils. Reducing sugars as carbohydrates, and cabbage leaf extract as a plant extract were used in these experiments. Cultivation of the A43 in liquid medium of the same content showed that addition of cabbage leaf extract alone to medium is much more efficient for TNT degradation by growing biomass as compared to addition of carbohydrate alone.  相似文献   

15.
The isolation and characterization of a denitrifying bacterium that is both moderately halophilic and alkaliphilic is described. The organism was isolated for use in the development of a bioprocess that could potentially reduce the costs of ion exchange resin regenerant disposal. The process of ion exchange, after resin regeneration, produces a briny, alkaline waste that is difficult and expensive to dispose. The biological removal of nitrate and subsequent reuse of these brines can potentially provide a cost-saving alternative to disposing of this waste product. To achieve our objective, a moderately halophilic, alkaliphilic bacterium was isolated from sediment samples taken from the salt plain of Alkali Lake in Washington State (USA). The haloalkaliphilic bacterium, designated strain 4A, is motile with rod-shaped cells that are 3 to 5 microm long and 1 microm wide. Electron acceptors used include oxygen, nitrate, and nitrite. In addition, it has similar specific nitrate reduction rates and biomass yields as non-halophilic denitrifying bacteria. It is capable of using a variety of electron donors. This organism can grow at NaCl concentrations ranging from 0.2 to 4.5 M with optimum growth occurring at 1.5 M and pH values ranging from 6 to 12 with 9.5 being the optimum pH. The temperature range for growth of strain 4A is 4-50 degrees C with optimal growth occurring at 30 degrees C. The G + C content is 66 mol%. Phylogenetic analyses based upon 16S rDNA gene sequence placed isolate 4A in the genus Halomonas. In addition, DNA-DNA hybridization experiments clearly indicate that it is a unique species. Phenotypic and phylogenetic studies indicate that isolate 4A represents a new species. We propose the name Halomonas campisalis for this species and strain 4A (ATCC 700597) as the type strain. Due to its denitrification ability, broad carbon utilization range and its high salinity and pH tolerance this organism, and similar ones, hold promise for the treatment of saline, alkaline waste.  相似文献   

16.
A newly described bacterial isolate, designated strain NS-E, differs from presently known extremely thermophilic bacteria in various characteristics. It is a strictly heterotrophic eubacterium of marine origin and has a temperature range for growth of 50 to 95°C with an optimum at 77°C and a pH of 7.5. Its DNA base composition is 41.3 mol% guanine + cytosine. It is obligately anaerobic, utilizes various sugars as well as yeast extract, and reduces elemental sulfur facultatively to hydrogen sulfide. In 24-h cultures cell densities are up to fourfold higher in the presence than in the absence of elemental sulfur. Sulfide concentrations of 1.0 and 10.0 mM limit growth by 65 and 95%, respectively. Oxygen sensitivity is apparent only at or above that range of temperature at which growth occurs.  相似文献   

17.
Six media were evaluated to determine their ability to isolate yeasts and inhibit bacteria. The media included the following: Snyder, Snyder tellurite, Sabouraud tellurite, Littman-gentamicin, molybdate, and Mycosel (BBL). Doses of mixed intestinal gram-negative bacilli and enterococci were most effectively inhibited by Snyder tellurite agar. Klebsiella pneumoniae was the most common bacterial contaminant of the other media. All six media were comparable in isolating yeasts while preventing the growth of the oral bacterial flora. The selection of a basal fungal growth medium for tellurite incorporation to inhibit bacteria but permit growth of yeasts was affected by pH. The bacteriostatic effect of tellurite was decreased with increasing pH of media while fungistatic action was increased. The arbitrary selection of Snyder and Littman agars to isolate yeast from burn wound cultures demonstrated the need to include a selective medium for these specimens. Blood, phenylethyl alcohol blood agar, and Columbia CN blood agar were all inadequate for isolating yeasts from burns. Growth of a variety of filamentous saprophytic and pathogenic dimorphic fungi grew adequately on four of five selective media tested.  相似文献   

18.
An obligately chemolithoautotrophic and aerobic hydrogen-oxidizing bacterium was isolated from a seaside saline hot spring in Izu Peninsula, Japan. The isolate was a Gram-negative, non-motile, non-spore-forming rod cell measuring 0.3 to 0.5 by 1.0 to 2.5 m. The optimal temperature for growth was around 70°C, and no growth was observed at 40°C or 80°C. Elemental sulfur or thiosulfate could be an alternative to molecular hydrogen as the sole energy source. The DNA base composition of the isolate was 46.0 mol% G+C. 2-Methylthio-3-VI,VII-tetrahydromultiprenyl7-1,4-naphthoquinone (methionaquinone) was the major component of the quinone system. C18:0, C18:1 and C20:1 were the major components of the cellular fatty acids. These properties clearly indicate that the isolate belongs to genus Hydrogenobacter, but differed from H. thermophilus in some respects. Specifically, the isolate was a halophile which grew optimally at around 0.3–0.5 M NaCl, while H. thermophilus could not grow at such NaCl concentration levels. A new species name H. halophilus is proposed for this new halophilic isolate.  相似文献   

19.
AIMS: The present study was conducted by screening soil bacteria in an attempt to isolate a bacterium that produced extracellular alkaline protease, and for purification and characterization of the protease. METHODS AND RESULTS: Soil bacteria were screened by growth on casein as the sole carbon source. Characterization of a strain isolated from soil of Abashiri, Japan indicated a taxonomic affiliation to Stenotrophomonas maltophilia, and was named S-1 strain. The purified S-1 protease, designed S. maltophilia Protease-1 (SmP-1), exhibited an optimal pH of 12.0, optimal reaction temperature of 50 degrees C and a molecular mass of approximately 40 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The cleavage sites of the oxidized-insulin B chain by SmP-1 were identified as Leu6-Cys7, Cys7-Gly8, Tyr16-Leu17 and Leu17-Val18. The N-terminal amino acid sequence of the purified alkaline protease was determined as NH2-SASAPMVSGVAALVLE. CONCLUSION: A novel extracellular alkaline serine protease was isolated from S. maltophilia strain S-1. The optimal pH of the proteolytic activity was pH 12.0. SIGNIFICANCE AND IMPACT OF THE STUDY: The extremely high optimal pH and heat stability of the alkaline serine protease SmP-1 might make it widely applicable to food and other industries.  相似文献   

20.
Abstract A new, extremely thermophilic, anaerobic, chemo-organotrophic bacterium was isolated from intertidal habitats where seepage of geothermally heated water occurs. The antibiotic sensitivity pattern and the presence of muramic acid strongly suggest an eubacterial nature of the novel isolate. Growth was measured between pH 4.8–8.2 (optimal pH 7.0) and at temperatures up to 90°C with a doubling time of 50 min at optimal temperatures of 80–85°C. This is the highest optimal growth temperature for an eubacterium described so far.
The Gram-negative, non-motile, non-sporulating, short rod to coccal shaped cells were enclosed in a sphere-like cell envelope protruding from either end. A wide range of carbohydrates, including xylose, glucose, fructose, maltose, starch, carboxymethylcellulose, and amylopectin were used in an obligately fermentative metabolism.
Morphological, physiological and molecular properties (mol% G + C = 46) are distinct from other known extremely thermophilic eubacterial genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号