首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and specific high-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay for dioscin in rat plasma was developed. Ginsenoside Rh2 was employed as an internal standard. Dioscin is a naturally occurring saponin present in many traditional Chinese medicinal plants. Dioscin was determined after the acetonitrile-mediated plasma protein precipitation. The mobile phase consisted of acetonitrile:10 mmol/l aqueous ammonium acetate (95:5, v:v), which was pumped at 0.8 ml/min. The analytical column (100 mm x 4.6 mm i.d.) was packed with Hypersil ODS material (5 microm). The standard curve was linear from 1 to 100 ng/ml. The assay was specific, accurate (percentage deviations from nominal concentrations were <10%), precise and reproducible (within- and between-day coefficients of variation <10%). Dioscin in rat plasma was stable over three freeze-thaw cycles and at ambient temperatures for 24 h. The utility of the assay was demonstrated by determining dioscin plasma concentrations in five rats for 120 h following a single oral gavage dose of 90 mg/kg.  相似文献   

2.
Protodioscin (3-O-[alpha-L-rhamnopyranosyl-(1-->2)-{alpha-L-rhamnopyranosyl-(1-->4)}-beta-D-glucopyranosyl]-26-O-[beta-D-glucopyranosyl]-(25 R)-furost-5-ene-3 beta,26-diol) is a naturally occurring saponin present in many oriental vegetables and traditional medicinal plants, which has been associated with potent bioactivity. However, there is no specific and sensitive assay for quantitative determination of protodioscin in biological samples. We have established a rapid, sensitive and selective LC-ESI-MS/MS method to measure protodioscin in rat plasma and investigated the pharmacokinetics of protodioscin after intravenous administrations. Plasma samples were prepared after plasma protein precipitation, and a aliquot of the supernatant was injected directly onto an analytical column with a mobile phase consisted of acetonitrile-water-formic acid (80:20:0.1, v/v/v). Analytes were detected with a LC-ESI-MS/MS system in positive selected multiple reaction-monitoring mode. The lower limit of quantification (LLOQ) was 20.0 ng/mL and a linear range of 20-125,000 ng/mL. The intra- and inter-day relative standard deviation (R.S.D.) across three validation runs over the entire concentration range was <8.0%. Accuracy determined at three concentrations (50, 5000 and 50,000 ng/mL for protodioscin) ranged from 0.2 to 1.8% as terms of relative error (R.E.). Each plasma sample was chromatographed within 3.5 min. This LC-ESI-MS/MS method allows accurate, high-throughput analysis of protodioscin in small amounts of plasma.  相似文献   

3.
A sensitive and selective analytical method based on liquid chromatography-triple-quadrupole mass spectrometer has been developed to determine mildronate in human plasma and urine. The aim of this work was to find a valid method to study the pharmacokinetic profiles of mildronate in humans. Mildronate is a heart protection medicine, a carnitine's structural analogue, so levocarnitine was used as an internal standard for quantification. Under the electrospray ionization source positive ion mode, calibration curves with good linearities (r=0.9998 for plasma sample and r=0.9999 for urine sample) were obtained in the range of 1.0-20,000 ng ml(-1) for mildronate. The detection limit was 1 ng ml(-1). Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of mildronate in humans, and to the best of our knowledge, this is the first report on LC-MS-MS analysis of mildronate in plasma and urine.  相似文献   

4.
Sprouts of several plants (10 families and 28 species) were cultivated in a high selenium environment, and the chemical species of selenium in these selenium-enriched sprouts were identified by using high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). Cultivation of sprouts of kaiware daikon (type of radish) with 5.0 microg/ml or 10.0 microg/ml of selenium as selenite inhibited the growth. However, no abnormalities in the shape or color were apparent even in the sprouts exposed to 10.0 microg/ml of selenium. The selenium concentration in the sprouts of most plants examined was higher than that from environmental exposure. Among the types of selenium that were accumulated, a large part (69-98%) was extractable in 0.2 M HCl. Chemical analysis of selenium in the HCl extract showed that the main selenium species in all the sprouts examined was Se-methylselenocysteine. In addition to Se-methylselenocysteine, selenomethionine, non-metabolized selenite, gamma-glutamyl-Se-methylselenocysteine and an unknown selenium compound were also detected in several high-selenium sprouts. Since higher anticarcinogenic activities of these monomethylated selenoamino acids have been observed, it is anticipated that such selenium-enriched sprouts will be used as a foodstuff for cancer prevention.  相似文献   

5.
A method based on liquid chromatography (LC) in combination with mass spectrometry (MS) for the analysis of alachlor (ALA) and its metabolites, 2-chloro-N-[2,6-diethylphenyl]acetamide (CDEPA) and 2,6-diethylaniline (DEA), in rat plasma and urine has been developed. 13C-labeled ALA was used as the internal standard for quantitation. The analyte in plasma or urine was isolated using a Waters Oasis HLB extraction plate. The mass spectrometer was operated in the ESI MS-SIM mode with a programming procedure. The retention times for ALA, CDEPA and DEA were 1.84, 3.11 and 4.12 min, respectively. The limits of quantification (LOQ) for ALA, CDEPA and DEA were 2.3, 0.8 and 0.8 ng per injection, respectively. The linear fit of analyte to mass response had an R2 of 0.99. Reproducibility of the sample handling and LC-MS analysis had a RSD of < or = 10%. The average recoveries for these analytes in rat plasma were better than 90%. Similar results were obtained with rat urine.  相似文献   

6.
A HPLC method without solvent extraction and using ultraviolet detection at 302 nm for the determination of omeprazole in rat plasma has been validated. Plasma samples after pretreatment with acetonitrile to effect deproteinization were dried under N(2) at 40 degrees C and reconstituted with mobile phase. The standard calibration curve for omeprazole was linear (r(2)=0.9999) over the concentration range of 0.02-3 microgml(-1). The intra- and inter-day assay variability range was 4.8-9.2% and 5.2-10.3% individually. This method has been successfully applied to a pharmacokinetic study of omeprazole in rats.  相似文献   

7.
A rapid, simple and sensitive method was developed for the determination of para-aminohippuric acid (PAH) in rat plasma using liquid chromatography tandem mass spectrometry (LC-MS-MS). Acetaminophen was used as the internal standard. Chromatographic separation was performed using a Symmetry C18 column and the mobile phase was composed of A: 2 mM ammonium formate and 0.1% formic acid in water and B: 2 mM ammonium formate and 0.1% formic acid in acetonitrile (ACN) (A:B, 30:70, v/v). Detection was performed on a triple–quadrupole tandem mass spectrometer using positive ion mode electrospray ionization (ESI) in the multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 195.2 → 120.2 and 152.1 → 110.1 for PAH and acetaminophen, respectively. Good linearity is observed over the concentration range of 0.1–500 μg/ml. The method was proved to be accurate and reliable and was applied to a pharmacokinetic study in rat.  相似文献   

8.
The major urinary metabolite of selenium (Se) in rats was identified by HPLC-inductively coupled argon plasma mass spectrometry (ICP-MS) and--electrospray tandem mass spectrometry (ESI-MS/MS). As the urine sample was rich in matrices such as sodium chloride and urea, it was partially purified to meet the requirements for ESI-MS. The group of signals corresponding to the Se isotope ratio was detected in both the positive and negative ion modes at m/z 300 ([M+H]+) and 358 ([M+CH3COO]-) for 80Se, respectively. These results suggested that the molecular mass of the Se metabolite was 299 Da for 80Se. The Se metabolite was deduced to contain one methylselenyl group, one acetyl group and at least two hydroxyl groups from the mass spectra of the fragment ions. The spectrum of the Se metabolite was completely identical to that of the synthetic selenosugar, 2-acetamide-1,2-dideoxy-beta-D-glucopyranosyl methylselenide. However, the chromatographic behavior of the Se metabolite was slightly different from that of the synthetic selenosugar. Thus, the major urinary Se metabolite was assigned as a diastereomer of a selenosugar, Se-methyl-N-acetyl-selenohexosamine.  相似文献   

9.
A sensitive and specific high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) method has been developed and validated for the determination of palmatine in canine plasma. Palmatine and jatrorrhizine (internal standard, I.S.) were extracted from plasma samples by solid-phase extraction (SPE) using Oasis HLB cartridges. The chromatographic separation was performed on a Waters XTerra MS C(18) reversed-phase column at 30 degrees C. The gradient mobile phase, delivered at 0.25 mL/min, was composed of a mixture of acetonitrile -0.1% (v/v) acetic acid aqueous solution adjusted to pH 2.8 with triethylamine. Positive electrospray ionization was utilized as the ionization source. Palmatine and the internal standard (I.S.) were determined using multiple reaction monitoring (MRM) of precursor-->product ion transitions at m/z 352-->336 and m/z 338-->322, respectively. The lower limit of quantification (LLOQ) was 0.1 ng/mL using 100 microL plasma samples and the linear calibration range was from 0.1 to 500 ng/mL. The inter-day and intra-day RSDs were lower than 9.9% and the recoveries of palmatine ranged from 87.3 to 100.9%. The mean extraction recoveries of palmatine and the I.S. were 99.2 and 96.8%, respectively. The method has been successfully applied to the pharmacokinetic studies of palmatine in beagle dogs after oral administration and intramuscular injection of palmatine.  相似文献   

10.
A fast and selective HPLC-MS-MS method was established to determine L-threonate in human plasma and urine. Plasma and urine samples were extracted by protein precipitation and diluted with water, then chromatographed on an YMC J'Sphere C(18) column with methanol-acetonitrile-10mM ammonium acetate (20:5:75, v/v) as mobile phase, and at a flow rate of 0.2 ml/min. Detection was performed on a triple-quadrupole tandem mass spectrometer using negative electrospray ionization (ESI). Multiple reactions monitoring (MRM) was used and L-threonate was quantified by monitoring the ion transition of m/z 134.5-->74.7. The linear calibration curves of L-threonate in plasma and urine were obtained over the concentration range of 0.25-50 microg/ml and 2.5-500 microg/ml, respectively. Lower limit of quantitation was 0.25 and 2.5 microg/ml, respectively. Accuracy was within 85-115%, and intra- and inter-batch precision (R.S.D.%) were within +/-15%. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of L-threonate in Chinese healthy subjects.  相似文献   

11.
A rapid and sensitive liquid chromatographic/tandem mass spectrometric method for determination of misoprostol acid, the active metabolite of misoprostol, was developed and validated. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a C(18) column. An API 4000 tandem mass spectrometer equipped with Turbo IonSpray ionization source was used as detector and was operated in the negative ion mode. Multiple reaction monitoring using the precursor to product ion combinations of m/z 367-249 and 296-269 was performed to quantify misoprostol acid and the internal standard hydrochlorothiazide, respectively. The method was linear in the concentration range of 10.0-3000 pg mL(-1) using 200 microL plasma. The lower limit of quantification was 10.0 pg mL(-1). The intra- and inter-day relative standard deviation over the entire concentration range was less than 8.3%. Accuracy determined at three concentrations (25.0, 200 and 2700 pg mL(-1) for misoprostol acid) ranged from -0.5 to 1.2% in terms of relative error. Each plasma sample was chromatographed within 3.5 min. The method was successfully used in a pharmacokinetic study of misoprostol in human plasma after an oral administration of 0.6 mg misoprostol.  相似文献   

12.
Higenamine is an active ingredient of Aconite root in Chinese herbal medicine and might be used as a new agent for a pharmaceutical stress test and was approved to undergo clinical pharmacokinetic study. Therefore, there exists a need to establish a sensitive and rapid method for the determination of higenamine in human plasma and urine. This paper described a sensitive and rapid method based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the determination of higenamine in human plasma and urine. Solid-phase extraction (SPE) was used to isolate the compounds from biological matrices followed by injection of the extracts onto an Atlantis dC18 column with isocratic elution. The mobile phase was 0.05% formic acid in water-methanol (40:60, v/v). The mass spectrometry was carried out using positive electrospray ionization (ESI) and data acquisition was carried out in the multiple reaction monitoring (MRM) mode. The method was fully validated over the concentration range of 0.100-50.0 ng/mL and 1.00-500 ng/mL in plasma and urine, respectively. The lower limits of quantification (LLOQs) were 0.100 and 1.00 ng/mL in plasma and urine, respectively. Inter- and intra-batch precision was less than 15% and the accuracy was within 85-115% for both plasma and urine. Extraction recovery was 82.1% and 56.6% in plasma and urine, respectively. Selectivity, matrix effects and stability were also validated in human plasma and urine. The method was applied to the pharmacokinetic study of higenamine hydrochloride in Chinese healthy subjects.  相似文献   

13.
A method is described for the determination of betamethasone in rat plasma by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The analyte was recovered from plasma by solid-phase extraction and subsequently analyzed by LC-MS-MS. A Packard Multiprobe II, an automated liquid handling system, was employed for the preparation and extraction of a 96-well plate containing unknown plasma samples, standards and quality control samples in an automated fashion. Prednisolone, a structurally related steroid, was used as an internal standard. Using the described approach, a limit of quantitation of 2 ng/ml was achieved with a 50 microl aliquot of rat plasma. The described level of sensitivity allowed the determination of betamethasone concentrations and subsequent measurement of kinetic parameters of betamethasone in rat. Combination of automated plasma extraction and the sensitivity and selectivity of LC-MS-MS offers a valuable alternative to the methodologies currently used for the quantitation of steroids in biological fluids.  相似文献   

14.
A rapid, sensitive, and environmental-friendly method has been developed for the simultaneous determination of seven neonicotinoid insecticides residues in bovine muscle and liver. The sample preparation procedure was based on a high automated pressurized solvent extraction (PSE) combined with solid-phase extraction (SPE) clean-up. The target compounds were identified and quantitatively determined by liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) operated in multiple reaction monitoring mode. Average recoveries of the seven analytes from fortified samples ranged between 83.2% and 101.9%, with relative standard deviations (RSDs) lower than 10.8%. The limits of detection (LODs) and quantification (LOQs) for neonicotinoids were in the ranges of 0.8-1.5 μgkg?1 and 2.5-5.0 μgkg?1, respectively. This validated method was successively applied to the determination of neonicotinoid insecticides in real samples from markets.  相似文献   

15.
Astragaloside IV (AGS-IV) is an active constituent of Radix Astragali used in many Traditional Chinese Medicines. This paper describes a sensitive and specific assay for the quantitation of AGS-IV in rat plasma. After solid phase extraction (SPE), samples were analyzed by liquid chromatography electrospray ionization mass spectrometry using a reversed-phase C18 column. The assay was linear in the range 1-500 ng/ml with a limit of detection of 0.5 ng/ml. The recovery was 92.5% and within-day and between-day precision were 3.7-6.0 and 2.8-9.8%, respectively. The assay was applied to a pharmacokinetic study in rat after a single oral dose. The drug was rapidly absorbed and subsequently eliminated according to a biphasic concentration-time curve.  相似文献   

16.
A sensitive and selective LC-MS-MS method has been developed and validated for the determination of cryptotanshinone (CTS) and its active metabolite tanshinone II A (TS II A) in rat plasma using fenofibrate (FOFB) as internal standard. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a Waters symmetry ODS column using methanol and water (85:15) as mobile phase delivered at 1.0 mL/min. LC-MS-MS analysis was carried out on a Finnigan LC-TSQ Quantum mass spectrometer using atmospheric pressure chemical ionization (APCI) and positive multiple reaction monitoring. Ions monitored were m/z 297.0--> 251.0 for CTS, m/z 295.0--> 249.0 for TS II A, and m/z 361.1--> 233.0 for FOFB with argon at a pressure of 0.2 Pa and collision energy of 25 eV for collision-induced dissociation (CID). The assay was linear over the range 0.1-20 ng/mL for CTS and 0.2-15 ng/mL for TS II A. The average recoveries of CTS and TS II A from rat plasma were 93.7 and 94.7%, respectively. The established method has been applied in a pharmacokinetic study of CTS in rats.  相似文献   

17.
Rhodamine 123 (R123), as a typical of P-gp substrate, was widely used to quantify P-glycoprotein (P-gp) functional efflux activity in vivo. A new, rapid and sensitive method was developed for quantifying R123 in rat plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). R123 and Rhodamine 6G (R6G, the internal standard, IS) were extracted from aliquots of plasma with ethyl acetate and dichloromethane (4:1) as the solvent and chromatographic separation was performed using a Zorbax Eclipse Plus C18 column. The mobile phase was composed of A: ammonium formate-formic acid buffer containing 5 mM ammonium formate and 0.1% formic acid and B: methanol (A:B, 5:95, v/v). To quantify R123 and IS respectively, multiple reaction monitoring (MRM) transition of m/z 345.2→285.2 and m/z 443.3→415.2 was performed. The analysis time was 4 min in positive mode; the calibration curve was linear in the concentration range of 1-200 ng/ml. The lowest limit of quantification (LLOQ) reached 1 ng/ml. The intra and inter-day precision were less than 9.2% for the low quality control (QC) level, and 3.4% for other QC levels, respectively, while the intra and inter-day relative errors ranged between -7.4% and 9.1% for three QC concentration levels. The LC-MS/MS method proved to be simple, accurate, reliable and with a shorter running time and has been successfully applied to evaluate the functional activity of P-glycoprotein in an absorption experiment in the rat.  相似文献   

18.
As a part of a pilot clinical study, a high-performance reversed-phase liquid chromatography analysis was developed to quantify temozolomide in plasma and urine of patients undergoing a chemotherapy cycle with temozolomide. All samples were immediately stabilized with 1 M HCl (1 + 10 of biological sample), frozen and stored at −20°C prior to analysis. The clean-up procedure involved a solid-phase extraction (SPE) of clinical sample (100 μl) on a 100-mg C18-endcapped cartridge. Matrix components were eliminated with 750 μl of 0.5% acetic acid (AcOH). Temozolomide was subsequently eluted with 1250 μl of methanol (MeOH). The resulting eluate was evaporated under nitrogen at RT and reconstituted in 200 μl of 0.5% AcOH and subjected to HPLC analysis on an ODS-column (MeOH-0.5% AcOH, 10:90) with UV detection at 330 nm. The calibration curves were linear over the concentration range 0.4–20 μg/ml and 2–150 μg/ml for plasma and urine, respectively. THe extraction recovery of temozolomide was 86–90% from plasma and 103–105% from urine over the range of concentrations considered. The stability of temozolomide was studied in vitro in buffered solutions at RT, and in plasma and urine at 37°C. An acidic pH (<5–6) shoul be maintained throughout the collection, the processing and the analysis of the sample to preserve the integrity of the drug. The method reported here was validated for use in a clinical study of temozolomide for the treatment of metastatic melanoma and high grade glioma.  相似文献   

19.
Despite the new advances in bioanalytical techniques, the analysis of low-molecular-weight organic acids in complex matrices is still a challenge. Although new strategies applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) seem to be promising, sample preparation methodologies hamper its application in most clinical laboratories. The quantitation of methylmalonic acid (MMA) in biological matrices is an emblematic example due to its low concentration, the need for derivatization to increase its molecular weight, and the presence of the physiologically more abundant isomer succinic acid. Here we present a new strategy for rapid and sensitive MMA quantitation by combining alkylative extraction and LC-MS/MS. Alkylative extraction conditions were optimized to allow endogenous detection of MMA using only 50 μL of serum with a short sample preparation procedure. The formation of a unique ion from the MMA dipentafluorobenzyl derivative in negative atmospheric pressure chemical ionization (APCI) allowed its detection with high sensitivity and with no interference from succinic acid, a more abundant physiologically present isomer.  相似文献   

20.
Fast, reliable, specific and sensitive methods are reported to accurately quantitate unchanged propranolol in plasma, and its major metabolites in plasma and urine after enzymatic hydrolysis without the need for solvent extraction. These methods enable the analyst to process a large number of propranolol samples in one working day and should prove valuable to clinical laboratories demanding both speed and specificity in an assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号