首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A newly isolated strain of Cunninghamella echinulata grown on glucose produced significant quantities of biomass and cellular lipids in media with high C/N ratio. The oil yield from glucose consumed increased after nitrogen exhaustion in the growth medium, but gamma-linolenic acid (GLA) content in cellular oil systematically decreased during the lipid accumulation process. When lipid accumulation was completed, GLA concentration in the cellular lipids progressively increased. The highest GLA production (720 mg/l) was achieved in medium with a C/N ratio equal to 163. C. echinulata was also able to grow on orange peel. The C/N ratio in the orange peel decreased from 50 to 26 during solid-state fermentation. Maximum oxygen uptake was observed during assimilation of reducing sugars, whereas a polygalacturonase activity was detected after reducing sugars had been exhausted. The maximum GLA production was 1.2-1.5 mg/g of fermented peel, calculated on a dry weight basis. After enrichment of the pulp with inorganic nitrogen and glucose, an increase in the production of oil and GLA was observed.  相似文献   

2.
Lipid formation and γ-linolenic acid (GLA) production by 48 species of Mucorales fungi grown on sunflower oil (which consists of 70% linoleic acid ; LA) were studied. The strains accumulated 42·7–65·8% lipid in biomass (7·66–13·39 g l−1). Eight cultures produced more than 200 mg GLA l−1. Highest GLA yields exhibited Mucor mucedo CCF-1384 and Cunninghamella echinulata CCF-103 (379 and 373 mg l−1, respectively). Mortierella alpina CCF-185 synthesized 465 mg l−1 arachidonic acid. While the decrease of LA utilization index (ratio of LA content of cell lipid/LA content of oil source) was accompanied with growth of delipidized biomass and with reduction of lipid accumulation within the cells, high lipid yield was as a consequence of the direct oil source incorporation into intracellular lipid.  相似文献   

3.
Oleaginous microbial strains were cultivated to identify the best oil-producing strain amongst Yarrowia lipolytica (CGMCC 2.1398), Lipomyces starkeyi (CGMCC 2.1608), Rhodosporidium toruloides (CGMCC 2.1389), Mortierella isabellina (CGMCC 3.3410), Cunninghamella blakeleana (CGMCC 3.970), and Mycobacterium QJ311. A method for rapid determination of oil content and fatty acid composition was established to identify the optimum oil-producing strains. This method had a relative standard deviation of 4.09%, an average recovery ratio of 97.09% and a detection limit of 0.1-1.0 g. Mortierella isabellina CGMCC 3.3410 was identified as the best oil-producing strain amongst the six strains tested, with a total biomass of 75 g/10 L and a lipid content of 35%. A rapid screening method of oleaginous microorganisms is discussed for the first time.  相似文献   

4.
刺孢小克银汉霉产γ-亚麻酸代谢规律的研究   总被引:1,自引:0,他引:1  
采用液体发酵的方法,通过研究发酵过程中生物量、油量和GLA合成之间的关系以及MgSO4、MnSO4和(NH)2SO4对三者的影响,明确一株刺孢小克银汉霉(Cunninghamella echinulata)产γ-亚麻酸的代谢规律和不同因子对代谢规律的影响和因子添加的可能性。结果显示,生物量和油量的积累先于GLA到达高峰;在生长中期生物量积累处于稳定,GLA的合成速率高于油脂产生的速率,使得油脂中整体GLA含量开始上升;后期由于营养消耗,菌体利用自身合成的油脂作为能量供给减饱和酶系,GLA含量呈快速增长过程并且持续;Mg^2 、Mn^2 和NH4^ 离子对GLA合成有一定的促进,但作用机制各不相同,可通过在不同的时期的添加使GLA的积累增加。  相似文献   

5.
This paper investigates the correlation between mycelial age and fatty acid biosynthesis. The correlation was investigated by analyzing the lipid composition lengthwise the mycelium of the oleaginous fungus Mortierella isabellina, a potential producer of γ-linolenic acid (GLA). Young mycelia were rich in polar lipids (glycolipids plus sphingolipids and phospholipids), while neutral lipid content increased in aged mycelia. In young mycelia, each polar lipid fraction contained almost 40% (w/w) polyunsaturated fatty acids (PUFAs), but this content decreased to less than 30% (w/w) in aged mycelia. On the other hand, PUFA content in neutral lipids fluctuated slightly with age. These results indicate that PUFA biosynthesis is favored in young, fast growing mycelia, while it decreases significantly in aged mycelia. This trend was also observed when we grew M. isabellina on pear pomace, an agro-industrial waste. Pear pomace cultures yielded significant amounts of lipid, which reached 12% (w/w) in dry fermented mass. The produced lipid was rich in GLA and the maximum GLA content in dry fermented mass was 2.9 mg/g.  相似文献   

6.
Single cell oil production from rice hulls hydrolysate   总被引:1,自引:0,他引:1  
Rice hull hydrolysate was used as feedstock for microbial lipids production using the oleaginous fungus Mortierella isabellina. Kinetic experiments were conducted in C/N ratios 35, 44 and 57 and the oil accumulation into fungal biomass was 36%, 51.2% and 64.3%, respectively. A detailed mathematical model was used in order to describe the lipid accumulation process. This model was able to predict reducing sugar and nitrogen consumption, fat-free biomass synthesis and lipid accumulation. Neutral lipids constitute the predominant lipid fraction, while the major fatty acids were oleic, palmitic and linoleic acid. Fatty acids of long aliphatic chain were not detected, thus the microbial oil produced is a promising feedstock for biodiesel production.  相似文献   

7.
以深黄被孢霉AS 3.3410(Mortierella isabellina AS 3.3410)的变异株M_6为出发菌株,γ—亚麻酸含量210mg/L,经紫外线和微波处理得到变异株M_(6-22),摇瓶发酵γ-亚麻酸含量1181mg/L,200升发酵罐发酵γ-亚麻酸含量达到1350mg/L。对200升罐发酵的后提取工艺进行了研究,以乙醇和正己烷分步抽提效果最好。脲素包合法的实验结果表明,在70~75℃、3h的条件下可以使γ-亚麻酸由7.2%浓缩到72%。  相似文献   

8.
The effect of cadmium (Cd) was investigated on the in vitro activities of leaf and root enzymes involved in carbon (C) and nitrogen (N) metabolism of bean (Phaseolus vulgaris L. cv. Morgane). Cd induced a high increase in maximal extractable activity of glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2). Cd promoted ammonium accumulation in leaves and roots, and a tight correlation was observed between ammonium amount and GDH activity. Changes in GDH activity appear to be mediated by the increase in ammonium levels by Cd treatment. Cd stress also enhanced the activities of phosphoenolypyruvate carboxylase (PEPC, EC 4.1.1.31) and NADP(+)-isocitrate dehydrogenase (NADP(+)-ICDH, EC 1.1.1.42) in leaves while they were inhibited in roots. Immuno-titration, the PEPC sensitivity to malate and PEPC response to pH indicated that the increase in PEPC activity by Cd was due to de novo synthesis of the enzyme polypeptide and also modification of the phosphorylation state of the enzyme. Cd may have modified, via a modulation of PEPC activity, the C flow towards the amino acid biosynthesis. In leaves, Cd treatments markedly modified specific amino acid contents. Glutamate and proline significantly accumulated compared to those of the control plants. This study suggests that Cd stress is a part of the syndrome of metal toxicity, and that a readjustment of the co-ordination between N and C metabolism via the modulation of GDH, PEPC and ICDH activities avoided the accumulation of toxic levels of ammonium.  相似文献   

9.
An oleaginous fungus, Mortierella isabellina, able to transform efficiently sugar to storage lipid, was used as a model microorganism which develops a biofilm structure during the semi-solid fermentation process for the production of biodiesel from sweet sorghum. A mathematical model was developed to describe the fungal oil production in M. isabellina biofilm. The model describes diffusion and consumption of sugars and nitrogen of sweet sorghum and single cell oil production in a biofilm, which grows according to the kinetics of double-substrate limitation (sugars and nitrogen) with sugar inhibition. Experimental data from a previous experimental study were used to determine the kinetic parameters of the model. Maximum biofilm thickness and the percentage of lipid inside the biofilm were estimated using the model at 1892 μm and 15%, respectively. The proposed mathematical model could prove a useful tool for designing semi-solid fermentation processes.  相似文献   

10.
Aims: To investigate the effect of organic nitrogen on lipogenesis during growth of Cunninghamella echinulata on tomato waste hydrolysate (TWH) media. Methods and Results: Cunninghamella echinulata grown on a TWH medium rapidly took up glucose and produced large amounts of lipids. However, when some quantities of the organic nitrogen were removed from TWH (by acid followed by alkaline precipitation of proteins) the uptake of glucose was dramatically reduced and large quantities of fungal biomass having low lipid content were produced. Nevertheless, when glycerol was used as carbon source instead of glucose, the uptake rate as well as the biomass production and the lipid accumulation processes were unaffected by the TWH organic nitrogen removal. Finally, when the fungus was grown on a glucose supplemented TWH medium that contained no assimilable organic nitrogen (after further precipitation of proteins with methanol), the produced biomass contained non-negligible quantities of lipids, although glucose uptake remained low. Lipid analysis showed that the produced lipids comprised mainly of neutral lipids, which were preferentially consumed during lipid turnover. Lipid production on the original TWH medium having glucose as carbon source was 0·48 g of lipid per gram of dry biomass, corresponding to 8·7 g of lipid per litre of growth medium. The produced lipids contained 11·7%γ-linolenic acid (GLA), hence the GLA yield was more than 1 g l−1. Conclusions: Organic nitrogen compounds found in TWH favour glucose (but not glycerol) uptake and lipid accumulation in C. echinulata. Significance and Impact of the Study: Agro-industrial wastes containing organic nitrogen, such as tomato waste, are produced in vast amounts causing severe environmental problems. These wastes could be used as fermentation feedstock to produce microbial lipids.  相似文献   

11.
Mortierella isabellina cultivated in nitrogen-limited media presented remarkable cell growth (up to 35.9 g/l) and high glucose uptake even with high initial sugar concentrations (e.g. 100 g/l) in media. After nitrogen depletion, significant fat quantities were accumulated inside the fungal mycelia (50-55%, wt/wt oil in dry biomass), resulting in a notable single cell oil production of 18.1 g/l of culture medium. Total dry biomass and lipid yields presented greatly increased values (0.34 and 0.17 g respectively per gram of glucose consumed). The microbial lipid produced contained gamma-linolenic acid (GLA) at a concentration of 3.5+/-1.0%, wt/wt, which corresponded to 16-19 mg GLA per gram of dry microbial mass and a maximum concentration of 0.801 g GLA per liter of culture medium.  相似文献   

12.
Various inorganic and organic nitrogen sources were used to compare their effects on the lipogenesis and the activities of lipogenic enzymes (providing acetyl-CoA and donating NADPH) in gamma-linolenic acid-producing fungus Cunninghamella echinulata. Lipid accumulation was enhanced by organic nitrogen, among them the presence of corn-steep led to almost 40% oil in the biomass. While organic nitrogen increased activities of acetyl-CoA carboxylase (ACC) and malic enzyme (ME), ATP:citrate lyase (ACL) was rapidly enhanced by ammonium ion. The use of NaNO(3) resulted in high activities of glucose 6-phosphate dehydrogenase (GPD) and 6-phosphogluconate dehydrogenase (PGD). NADP-isocitrate dehydrogenase (NADP-ICD) was more active when the fungus utilized all inorganic N-compounds. The rise of nitrogen concentration in medium was accompanied with reduced lipid accumulation and a fall of ACL, ACC, and ME. In contrast, N-sufficient conditions favored biomass growth and elevated activities of GPD and PGD. Kinetic experiments also suggest that a significant portion of the required acetyl-CoA was being provided via ACL and ACC, and ME (probably coupled with GPD) channeled the NADPH into the fatty acid biosynthesis. The contribution of the lipogenic enzymes to metabolic pathways other than lipogenesis is also discussed.  相似文献   

13.
Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.  相似文献   

14.
深黄被孢霉利用不同碳源产油脂比较   总被引:5,自引:0,他引:5  
本研究主要探讨深黄被孢霉M2菌株对生物质全糖的利用,考察其碳源同化能力、不同碳源下产脂情况以及对玉米皮渣的利用能力。研究结果表明,M2菌株能够利用葡萄糖、木糖、阿拉伯糖和甘露糖进行生长和油脂积累。M2菌株以6%糖浓度的玉米皮渣水解液为底物发酵培养,油脂微生物生物量达18.2g/L,干菌体油脂含量45.7%,单位体积发酵液油脂产量为8.3g/L。  相似文献   

15.
Supercritical CO2 has been used to extract an oil containing -linolenic acid (GLA) from Cunninghamella echinulata. The highest oil recovery from dry biomass (26.4%, w/w) and GLA yield (26.1 g/kg biomass) has been achieved at 30 MPa and 50 °C after 180 min using fungal particles smaller than 0.5 mm and mass flow of 50 kg CO2/kg dry biomass. Extractions with hexane/ethanol and chloroform/methanol methods gave less than 90% of the GLA/kg reached with the supercritical CO2 method.  相似文献   

16.
本文研究了由被抱霉变株MA-90生产了γ-亚麻酸的发酵条件.确定了最适碳源、复源及C/N.初步建立了生产γ-亚麻酸的工艺条件。葡萄糖、蔗糖及天冬酰胺和尿素为最适碳、氮源。在C/N为20/1,葡萄糖浓度为80g/L的条件下.油脂产量和油脂中γ-亚麻酸的含量分别为8.2g/L和14.13%,γ-亚麻酸产量及生物量分别为1.157g/L和31.2g/L。后期适当降低培养温度和良好的通气条件均有利于γ-亚麻酸的积累。  相似文献   

17.
The lipid accumulation, fatty acid composition and γ-linolenic acid (GLA) production by 28 strains belonging to Mucorales were investigated. The lipid content varied from 5 to 30% on dry biomass and the percentage of γ-linolenic acid in total intracellular lipid was in a range from 2.5 to 15.4% (w/w). The best yield of γ-linolenic acid (expressed as mg GLA per 1 g biomass) was found for Mucor mucedo CCF – 1384 (28.4) and Cunninghamella echinulata CCF – 103 (25.1).  相似文献   

18.
19.
20.
ABSTRACT: BACKGROUND: Lipids produced from filamentous fungi show great promise for biofuel production, but a major limiting factor is the high production cost attributed to feedstock. Lignocellulosic biomass is a suitable feedstock for biofuel production due to its abundance and low value. However, very limited study has been performed on lipid production by culturing oleaginous fungi with lignocellulosic materials. Thus, identification of filamentous fungal strains capable of utilizing lignocellulosic hydrolysates for lipid accumulation is critical to improve the process and reduce the production cost. RESULTS: The growth performances of eleven filamentous fungi were investigated when cultured on glucose and xylose. Their dry cell weights, lipid contents and fatty acid profiles were determined. Six fungal strains with high lipid contents were selected to culture with the hydrolysate from dilute sulfuric acid pretreatment of wheat straw. The results showed that all the selected fungal strains were able to grow on both detoxified liquid hydrolysate (DLH) and non-detoxified liquid hydrolysate (NDLH). The highest lipid content of 39.4% was obtained by Mortierella isabellina on NDLH. In addition, NDLH with some precipitate could help M. isabellina form pellets with an average diameter of 0.11 mm. CONCLUSION: This study demonstrated the possibility of fungal lipid production from lignocellulosic biomass. M. isabellina was the best lipid producer grown on lignocellulosic hydrolysates among the tested filamentous fungi, because it could not only accumulate oils with a high content by directly utilizing NDLH to simplify the fermentation process, but also form proper pellets to benefit the downstream harvesting. Considering the yield and cost, fungal lipids from lignocellulosic biomass are promising alternative sources for biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号