首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
The placenta is a regulator organ for many metabolic activities between mother and fetus. Therefore, fetal growth is directly related to the placental development. Placental development is a series of events that depend on the coordinated action of trophoblasts’ proliferation, differentiation and invasion. Studies on cell cycle related proteins which control these events are fairly limited. How placental tissue proliferation is affected by diabetes is not exactly known yet. Therefore in this study, the immunohistochemical localizations of cell cycle related proteins like PCNA, Ki67, cyclin D3, p27 and p57 in the differentiation, proliferation and apoptosis mechanisms of normal and diabetic placentas were investigated. Information on cell cycle related proteins that control these events is limited and how they are affected in diabetes mellitus is not fully understood yet. Therefore, in this study, to understand the role of cell cycle regulators in diabetic placentas we aimed to determine the spatio-temporal immunolocalizations of cell cycle regulators in diabetic and normal human term placentas. Term placentas were obtained from diabetic women and from normal pregnancies with informed consent following caesarean deliveries. Placental samples were stained via immunohistochemistry with PCNA, Ki67, cyclin D3, p27 and p57 antibodies and were examined by light microscopy. When compared to control placentas, PCNA, Ki67 and cyclin D3 staining intensities significantly increased in villous parts of diabetes group. Moreover, Ki67 and cyclin D3 stainings also significantly increased in basal plates and chorionic plate respectively. In chorionic plates, p27 and p57 staining intensities significantly decreased in diabetic group. p57 staining also significantly decreased in villous parts of diabetic placentas. Placental abnormalities seen in diabetic placentas could be associated with proliferation and cell cycle arrest mechanisms’ alterations occurred in diabetes mellitus.  相似文献   

2.
Placenta is a transitional area making many physiological activities between mother and fetus and therefore, it is a critical organ influencing the outcome of pregnancy. Fetal growth is directly related to placental development. Accurate placental development depends on coordinated action of trophoblasts’ proliferation, differentiation and invasion. Information on cell cycle related proteins that control these events is limited and how they are affected in preeclampsia is not fully understood yet. Therefore, in this study, in order to understand the role of cell cycle regulators in preeclamptic placentas we aimed to determine the spatio-temporal immunolocalizations of cell cycle regulators in preeclamptic and normal human term placentas. Term placentas were obtained from women diagnosed with preeclampsia and from normal pregnancies with informed consent following cesarean deliveries. Placental samples were stained via immunohistochemistry with PCNA, Ki67, p27, p57, vimentin and cytokeratin 7 antibodies and were examined by light microscopy. PCNA and Ki67 staining intensities significantly increased in villous parts, significantly decreased in basal plates of PE group and did not change in chorionic plates. Staining intensities of cell cycle inhibitors p27 and p57 significantly increased in all parts of preeclamptic placentas compared to control. Placental abnormalities of preeclamptic placentas might be associated with proliferation and cell cycle arrest mechanisms’ alterations occurred in preeclampsia.  相似文献   

3.
Progression through the cell cycle in eukaryotic cells is controlled by a family of protein kinases, termed cyclin-dependent kinases (CDKs), and their specific partners, the cyclins. In particular, the control of mammalian cell proliferation occurs largely during the G1 phase of the cell cycle. Five mammalian G1 cyclins have been enumerated to date: cyclins D1, D2, and D3 (D-type cyclins), and cyclins E and E2. By the use of immunohistochemistry and immunoelectron microscopy, we observed that in the first trimester of gestation of human placenta, cyclin D1 was distributed in the nuclei of the cytotrophoblast compartment together with a weak positivity of endothelial cells surrounding blood vessels. The endothelial positivity of cyclin D1 strongly increased in the third trimester of gestation. Moreover, we observed the subcellular localization of cyclin D1 that was present both in the stroma of placental villi and in the nuclei of syncytiotrophoblast cells. Therefore, we observed that CDK4 was localized in the nuclei of the cytotrophoblast compartment during the first and third trimesters and it also had a nuclear positivity in the endothelial cells of blood vessels at the end of the third trimester of gestation. In conclusion we may hypothesize that cyclin D1/CDK4 complex functions to regulate the cell cycle progression in the proliferative compartment of human placenta, the cytotrophoblast, during the first trimester through interaction with p107 and p130. Therefore, cyclin D1 and CDK4 seem to be involved in the control of placental angiogenesis during the third trimester of gestation.This work was supported by the University of Naples Federico II (M.D.F., V.F. and V.L.), by the Second University of Naples (L.C. and A.D.L.) and I.S.S.C.O. (President H.E. Kaiser)  相似文献   

4.
The immunohistochemical expression of p53, p21, Rb, p16, cyclin D1, Ki67, cyclin A, cyclin B1, p27, bcl2, bax, and bak proteins and the apoptotic index (Al) were investigated in 20 normal thymuses (8 adults, 3 adolescents, 5 infants and 4 newborns). The expressions of Rb, Ki67, cyclin A and cyclin B1 were overlapping, being high in the cortex with a tendency for decreased expression toward the medulla. Apoptotic cells were mainly detected in the cortex and the corticomedullary junction, rarely being present in Hassall's corpuscles. The mean values of Ki67, cyclin A, and cyclin B1 expression in thymuses were 77.2%, 32.2% and 21.4% (newborns), 62.4%, 33.7% and 18.5% (infants), 56.9%, 23.4% and 18.9% (adolescents) and 38.7%, 21.7% and 14.6% (adults), respectively. The mean values of AI in thymuses from newborns, infants, adolescents and adults were 1.4%, 2.9%, 2.7% and 3.8%, respectively. This decrease in proliferation and increase in apoptosis may account for the process of thymic involution. P16 expression was widespread with most of Hassall's corpuscles being p16-positive. P16-positive cells and Hassall's corpuscles increased with the increase in age, in keeping with the suggested role of p16 in cellular senescence. P27 expression was undetectable in subcapsular thymocytes with a tendency for increased expression toward the medulla. The expressions of Ki67, cyclin A and cyclin B1 were inversly related with that of p27, consistent with previous evidence that p27 concentration is reduced when the cell-cycle progresses. P21 and much less frequently p53 proteins were mainly detected in a part of the subcapsular cortical epithelial cells. These findings suggest that a) in thymocytes, the apoptotic pathway is mostly p53-independent and the function of p21 as a negative regulator of the cell cycle must be redundant to other negative regulators, such as p16 and p27 which were abundantly detected in thymocytes and b) in some thymic epithelial cells, the p21 expression may be induced by p53, but in most of them seems to be p53-independent. Most of Hassall's corpuscles were p21-positive, consistent with previous evidence that these structures represent end stages of maturation of thymic medullary epithelium and that p21 protein is involved in the process of terminal differentiation. Cyclin D1 positivity was found in some macrophages. Bcl2 expression was mainly seen in medullary thymocytes, reflecting the surviving thymocytes in this region. The expressions of Bax and bak were more widespread in both the medulla and cortex, suggesting that these proteins play a broader role than bcl2 in the regulation of thymic apoptosis.  相似文献   

5.
Fifty-seven cases of T-cell lymphomas (TCL) including 5 lymphoblastic (T-LBL) and 52 peripheral TCL (PTCL) were analyzed by immunohistochemistry for the expression of p53, mdm2, p21, Rb, cyclin D1, cyclin A, cyclin B1, and Ki67/MIB1 proteins and 39/52 PTCL were also analyzed for the expression of p16 protein and for the presence of apoptotic cells by the TUNEL method. The aim was to search for abnormal immunoprofiles of p53 and Rb growth control pathways and to determine the proliferative activity and the apoptotic index of TCL. Abnormal overexpression of p53, p21 and mdm2, in comparison to normal lymph nodes, was found in 12/57, 10/57 and 2/57 cases of TCL, respectively. Abnormal loss of Rb and p16 expression was found in 1/57 and 2/39 cases, respectively, whereas abnormal overexpression of cyclin D1 was not detected in any of the 57 cases. Our data revealed entity-related p53/p21/mdm2 phenotypes. Indeed, most nodal and cutaneous CD30+ anaplastic large cell lymphomas (ALCL) showed concomitant overexpression of p53 and p21 proteins (7/8 cases), and mdm2 was overexpressed in 2 p53-positive nodal ALCL. In contrast, overexpression of p53 was found in 3/17 cases of nodal peripheral TCL unspecified (PTCL-UC) and 2/7 non-ALCL cutaneous pleomorphic TCL. Overexpression of p21 protein was detected in 2/3 p53-positive PTCL-UC and in 1/2 p53-positive non-ALCL cutaneous pleomorphic TCL. Finally, all the remaining 25 cases of TCL did not show p53 and p21 overexpression. Overall, the p53+/p21+ phenotype in 10/57 TCL suggests wild-type p53 capable of inducing p21 expression. The highest apoptotic index (AI) was found in ALCL and a positive correlation between apoptotic index and Ki67 index (p<0.001) was detected. Ki67, cyclin A and cyclin B1 expression was found in all 57 TCL and on the basis of the combined use of these 3 variables, 3 groups of proliferative activity could be determined: a) high in ALCL and T-LBL, b) low in mycosis fungoides (MF) and gammadelta hepatosplenic TCL, and c) intermediate in the remaining TCL entities. The proliferative activity in the 12 p53 overexpressing cases was higher in comparison to the 45 p53-negative cases. Ki67 expresion in more than 25% of tumour cells showed significant correlation with p53 overexpression (p<0.001). Rb expression tended to be parallel to Ki67, cyclin A and cyclin B1 expression in all but one case of nodal PTCL-UC which displayed loss of RB expression. Interestingly, this case was p53-negative, whereas the p53-positive cases were Rb-positive. These findings suggest that different pathogenetic routes may function in some TCL, involving either the p53 or, less frequently, the Rb pathways.  相似文献   

6.
E-cadherin is a cell–cell adhesion protein expressed in cytotrophoblasts, which is lost as they differentiate and syncytialise. We have exploited E-cadherin as a marker of cytotrophoblasts to investigate villous tissue composition in first and third trimester placentae, both in normal pregnancy and pregnancies complicated by pre-eclampsia. We have achieved this by measuring expression levels of E-cadherin at the mRNA level, using Q-PCR, and at the protein level using semi-quantitative Western blotting. We have also combined E-cadherin immunohistochemistry with morphometric analysis of area measurements to define cytotrophoblast and syncytiotrophoblast compartments. This novel use of E-cadherin has revealed a decrease in the proportion of cytotrophoblasts in villous tissue as pregnancy progresses, in the absence of changes in syncytiotrophoblast cover. Moreover, in pre-eclampsia, placental E-cadherin was raised compared to syncytiotrophoblast, suggesting either exaggerated cytotrophoblast proliferation or impaired cytotrophoblast differentiation, both alterations of potential pathogenic importance.  相似文献   

7.
The main disorders of human pregnancy are rooted in defective placentation. Normal placental development depends on proliferation, differentiation, and fusion of cytotrophoblasts to form and maintain an overlying syncytiotrophoblast. There is indirect evidence that the insulin-like growth factors (IGFs), which are aberrant in pregnancy disorders, are involved in regulating trophoblast turnover, but the processes that control human placental growth are poorly understood. Using an explant model of human first-trimester placental villus in which the spatial and ontological relationships between cell populations are maintained, we demonstrate that cytotrophoblast proliferation is enhanced by IGF-I/IGF-II and that both factors can rescue cytotrophoblast from apoptosis. Baseline cytotrophoblast proliferation ceases in the absence of syncytiotrophoblast, although denuded cytotrophoblasts can proliferate when exposed to IGF and the rate of cytotrophoblast differentiation/fusion and, consequently, syncytial regeneration, increases. Use of signaling inhibitors suggests that IGFs mediate their effect on cytotrophoblast proliferation/syncytial formation through the MAPK pathway, whereas effects on survival are regulated by the phosphoinositide 3-kinase pathway. These results show that directional contact between cytotrophoblast and syncytium is important in regulating the relative amounts of the two cell populations. However, IGFs can exert an exogenous regulatory influence on placental growth/development, suggesting that manipulation of the placental IGF axis may offer a potential therapeutic route to the correction of inadequate placental growth.  相似文献   

8.
Regulation of cytotrophoblast differentiation toward extravillous trophoblasts (EVTs) is critical for establishing successful pregnancy. Previous studies have focused primarily on the factors promoting the differentiation, while inhibitory regulators except hypoxia have been less documented. In this study, to test our hypothesis that angiotensin II (Ang II) would inhibit EVT differentiation, we investigated the effects of Ang II on trophoblast outgrowth and the expression of molecules associated with the proliferation and invasion of trophoblasts using human first trimester villous explant cultures. Ang II increased EVT outgrowth and the number of cells in cell columns. Moreover, Ang II-treated explants exhibited increased Ki67 and integrin alpha5 immunoreactivity in EVTs as well as matrix metalloproteinase-2 activity in the conditioned media, and decreased alpha1 integrin immunoreactivity, which are compatible with the features of the proliferative phenotype EVTs. These effects of Ang II were similar to those of hypoxia (3% O(2)). Ang II stimulated the expression of hypoxia inducible factor-1alpha at both mRNA and protein levels, and also enhanced the expression of plasminogen activator inhibitor-1 (PAI-1). Data presented herein suggest a possible role for Ang II in impairing trophoblast differentiation toward an invasive phenotype, which might be associated with shallow invasion in preeclamptic placentas.  相似文献   

9.
Mammalian cardiomyocytes actively proliferate during embryonic stages, following which cardiomyocytes exit their cell cycle after birth. The irreversible cell cycle exit inhibits cardiac regeneration by the proliferation of pre-existing cardiomyocytes. Exactly how the cell cycle exit occurs remains largely unknown. Previously, we showed that cyclin E- and cyclin A-CDK activities are inhibited before the CDKs levels decrease in postnatal stages. This result suggests that factors such as CDK inhibitors (CKIs) inhibit CDK activities, and contribute to the cell cycle exit. In the present study, we focused on a Cip/Kip family, which can inhibit cyclin E- and cyclin A-CDK activities. Expression of p21Cip1 and p27Kip1 but not p57Kip2 showed a peak around postnatal day 5, when cyclin E- and cyclin A-CDK activities start to decrease. p21Cip1 and p27Kip1 bound to cyclin E, cyclin A and CDK2 at postnatal stages. Cell cycle distribution patterns of postnatal cardiomyocytes in p21Cip1 and p27Kip1 knockout mice showed failure in the cell cycle exit at G1-phase, and endoreplication. These results indicate that p21Cip1 and p27Kip play important roles in the cell cycle exit of postnatal cardiomyocytes.  相似文献   

10.
11.
We have recently shown that two proteins, proliferating cell nuclear antigen (PCNA) and p21, are associated with cyclin D. Here we show that PCNA and p21 are common components of a wide variety of cyclin/cyclin-dependent kinase complexes in nontransformed cells. These include kinase complexes containing cyclin A, cyclin B, and cyclin D, associated either with CDC2, CDK2, CDK4, or CDK5. We show that PCNA and p21 form separate quaternary complex with each cyclin/CDK and that these quaternary complexes contain a substantial, if not major, fraction of the cell cycle kinases in asynchronously growing cells. These results suggest that PCNA and p21 may perform a common function for all these kinases.  相似文献   

12.
A delicate balance between proliferation and differentiation must be maintained in the developing pituitary to ensure the formation of the appropriate number of hormone producing cells. In the adult, proliferation is actively restrained to prevent tumor formation. The cyclin dependent kinase inhibitors (CDKIs) of the CIP/KIP family, p21, p27 and p57, mediate cell cycle inhibition. Although p21 is induced in the pituitary upon loss of Notch signaling or initiation of tumor formation to halt cell cycle progression, its role in normal pituitary organogenesis has not been explored. In wildtype pituitaries, expression of p21 is limited to a subset of cells embryonically as well as during the postnatal proliferative phase. Mice lacking p21 do not have altered cell proliferation during early embryogenesis, but do show a slight delay in separation of proliferating progenitors from the oral ectoderm. By embryonic day 16.5, p21 mutants have an alteration in the spatial distribution of proliferating pituitary progenitors, however there is no overall change in proliferation. At postnatal day 21, there appears to be no change in proliferation, as assessed by cells expressing Ki67 protein. However, p21 mutant pituitaries have significantly less mRNA of Myc and the cyclins Ccnb1, Ccnd1, Ccnd2 and Ccne1 than wildtype pituitaries. Interestingly, unlike the redundant role in cell cycle inhibition uncovered in p27/p57 double mutants, the pituitary of p21/p27 double mutants has a similar proliferation profile to p27 single mutants at the time points examined. Taken together, these studies demonstrate that unlike p27 or p57, p21 does not play a major role in control of progenitor proliferation in the developing pituitary. However, p21 may be required to maintain normal levels of cell cycle components.  相似文献   

13.
The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16(INK4a), a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.  相似文献   

14.
The cellular localization of protein tyrosine phosphatase 51 (PTPIP51) and its in vitro interacting partner protein tyrosine phosphatase 1B (PTP1B) was studied in human placentae of different gestational stages. The expression of PTPIP51 protein and mRNA was observed in the syncytiotrophoblast and cytotrophoblast layer of placentae from the first, second, and third trimesters. In contrast, PTP1B expression was restricted to the syncytiotrophoblast during all gestational stages. Cells of the cytotrophoblasts and parts of the syncytiotrophoblasts expressing high amounts of PTPIP51 were found to execute apoptosis as shown by TdT-mediated dUTP-biotin nick end labeling assay, cytokeratin 18f, and caspase 3 expression. PTPIP51 could also be traced in the endothelium and smooth muscle cells of placental arterial and venous vessels, identified by double immunostainings with antibodies directed against van Willebrand factor and alpha-smooth muscle actin. Some of these cells showing a high PTPIP51 reactivity were Ki67 positive, indicating proliferation. Additionally, a small population of placental CD14-positive macrophages and mesenchymal cells within the villous stroma were detected as PTPIP51 positive. Our data suggest that both proteins, PTPIP51 and PTP1B, play a role in differentiation and apoptosis of the cytotrophoblast and syncytiotrophoblast, respectively. Moreover, PTPIP51 may also serve as a cellular signaling partner in angiogenesis and vascular remodeling.  相似文献   

15.
During human pregnancy, the trophoblast develops from differentiation of cytotrophoblast cells into an endocrine active syncytiotrophoblast. In culture, isolated mononuclear cytotrophoblasts aggregate and then fuse to form a syncytium, reproducing the in vivo process. In this study, we examined the effect of low oxygen tension (approximately 9%, hypoxia) compared to standard conditions (approximately 19% oxygen, normoxia) on these cellular events. Under hypoxia, syncytial formation was less frequently observed, cell staining and electron microscopy revealed that cytotrophoblasts remain aggregated, with a positive proliferative cell nuclear antigen (PCNA) immunostaining. Desmoplakin and E-cadherin, both known to disappear with cytotrophoblast fusion, showed persistent expression in hypoxic cells after 3 days of culture. In contrast, the expression of actin and ezrin, two cytoskeletal proteins, was unchanged. hCG secretion and hPL expression were both decreased in hypoxic cells, reflecting a reduced syncytial formation. Thus, on day 3, the mean values for hCG secretion were 1,100 ± 155 and 289 ± 26 mlU/mL in normoxic and hypoxic conditions, respectively. The reduced cell fusion process as well as hCG secretion and hPL expression under hypoxia were reversed by reoxygenation of the cells. We conclude that under hypoxia, the formation of functional syncytiotrophoblast is impaired due to a defect in the cytotrophoblast fusion process. This may explain the observation of a higher number of cytotrophoblast cells and a reduced syncytial layer in placentas of some pathological pregnancies. © 1996 Wiley-Liss, Inc.  相似文献   

16.
As cell cycle regulation is fundamental to the normal growth and development of the placenta, the aim of the present study was to determine the immunolocalizations of cell cycle related proteins, which have key roles in proliferation, differentiation and apoptosis during the development of the rat placenta. Here immunohistochemistry has been used to localize G1 cyclins (D1, D3, E), which are major determinants of proliferation, CIP/KIP inhibitors (p21, p27, p57), p53 as a master regulator and proliferating cell nuclear antigen in all cell types of the rat term placenta. The proportion of each cell type immunolabeled was counted. Cyclin D1 and cyclin D3 were present mostly in cells of the fetal aspect of the placenta, whereas the G1/S cyclin E was present only in the spongio- and labyrinthine trophoblast populations. Among the CIP/KIP inhibitors, p21 was present only in cells of the fetal aspect whereas p27 and p57 were found in all cell types studied. p53 was only found in a small proportion of cells with no co-localization of p53 and p21. The data suggest that the cells of the fetal side of the rat placenta still have some proliferation potential which is kept in check by expression of the CIP/KIP cell cycle inhibitors, whereas cells of the maternal aspect have lost this potential. Apoptosis is only marginal in the term rat placenta. In conclusion, proliferation and apoptosis in rat placental cells appears controlled mostly by the CIP/KIP inhibitors in late pregnancy.  相似文献   

17.
At the human feto-maternal interface, trophoblasts differentiate towards extravillous trophoblasts (EVTs) and form the cell column. EVTs acquire invasive activity in the distal part of the cell column and begin to migrate into the maternal tissue. We previously reported that dipeptidyl peptidase IV (DPPIV) is expressed on EVTs in the proximal part of cell column and is involved in the inhibition of their migration. Because DPPIV has been shown to degrade several chemokines, we examined possible roles of chemokines in EVT migration. Immunohistochemistry demonstrated that C-C chemokine receptor 1 (CCR1) was hardly detected on cytotrophoblasts and syncytiotrophoblast but was expressed on EVTs in the cell column. In vitro, CCR1 protein was also present on the surface of EVTs that grew out from chorionic villous explants cultured under 20% O2. Chemokines that can bind to CCR1 (CCR1 ligands), such as regulated on activation, normal T cell expressed and secreted (RANTES) and macrophage inflammatory protein-1alpha (MIP-1alpha), were confirmed in the decidual tissues by RT-PCR and immunohistochemistry. These CCR1 ligands promoted the migration of the EVTs that were isolated from the explant cultures in vitro. These results indicate that CCR1 is expressed on trophoblasts as they differentiate to EVTs and that CCR1 ligands produced from the decidual tissue induce EVT migration. By contrast, CCR1 was scarcely expressed on EVTs that grew out from villous explants cultured in 1% O2, indicating that a relatively high oxygenic environment is needed to induce CCR1 expression. Moreover, CCR1 expression on the isolated EVTs was significantly reduced in the presence of decidua-conditioned medium. Such regulation of CCR1 by surrounding oxygenic and decidual environments supports a close correlation between EVT invasion and their expression of CCR1. This study demonstrates that trophoblasts acquire CCR1 as they differentiate to an invasive phenotype at the villus-anchoring sites and indicates a novel role for the chemokine-CCR1 system in the initial step of trophoblastic invasion towards the maternal tissue.  相似文献   

18.
Trophoblast cells from placental explants differentiate in culture to extravillous trophoblast cells (EVT cells). During trophoblast differentiation heat-shock-protein-27 (HSP27) mRNA and multidrug-resistance-protein-5 (MRP5, transporter of cyclic nucleotides) expression are increased. HSP27 is a regulator of actin filaments structure and dynamic, has a role in cell differentiation and may affect NF-kB activity. In this study we aimed to assess HSP27 level in trophoblast cells and its correlation with motility and differentiation related processes [MMPs activity, nitric oxide (NO), inducible nitric oxide synthase (iNOS), proliferation and MRP5 levels]. We evaluated HSP27 expression in a first trimester human trophoblast explants model designed to assess EVT cells differentiation/migration with/without 6-mercaptopurine (6MP, an EVT inhibitor of migration). We found that HSP27 level is expressed in the nucleous and cytoplasm of non-proliferting villous-trophoblast cells (negative for Ki67) and in the cell periphery and cytoplasm of motile EVT cells. Moreover, 6MP decreased HSP27 nucleous expression that was associated with inhibited MMP2 activity and NO production. Also decreased iNOS expression and increased MRP5 mRNA levels were observed. In conclusion, HSP27 expression is modulated in concordance with migration dependent parameters in trophoblast cells.  相似文献   

19.
Airway epithelium alterations, including squamous cell metaplasia, characterize smokers with and without chronic obstructive pulmonary disease (COPD). The p21 regulates cell apoptosis and differentiation and its role in COPD is largely unknown. Molecules regulating apoptosis (cytoplasmic p21, caspase-3), cell cycle (nuclear p21), proliferation (Ki67/PCNA), and metaplasia (survivin) in central airways from smokers (S), smokers-COPD (s-COPD) and non-smokers (Controls) were studied. The role of cigarette smoke extracts (CSE) in p21, survivin, apoptosis (caspase-3 and annexin-V binding) and proliferation was assessed in a bronchial epithelial cell line (16HBE). Immunohistochemistry, image analysis in surgical samples and flow-cytometry and carboxyfluorescein succinimidyl ester proliferative assay in 16HBE with/without CSE were applied. Cytoplasmic and nuclear p21, survivin, and Ki67 expression significantly increased in large airway epithelium in S and in s-COPD in comparison to Controls. Caspase-3 was similar in all the studied groups. p21 correlated with epithelial metaplasia, PCNA, and Ki67 expression. CSE increased cytoplasmic p21 and survivin expression but not apoptosis and inhibited the cell proliferation in 16HBE. In large airway epithelium of smokers with and without COPD, the cytoplasmic p21 inhibits cell apoptosis, promotes cell proliferation and correlates with squamous cell metaplasia thus representing a potential pre-oncogenic hallmark.  相似文献   

20.
Gap junctions and their structural proteins, connexins (Cxs), have been implicated in carcinogenesis. To explore the involvement of Cx32 in gastric carcinogenesis, immunochemical analysis of Cx32 and proliferation marker Ki67 using tissue-microarrayed human gastric cancer and normal tissues was performed. In addition, after Cx32 overexpression in the human gastric cancer cell line AGS, cell proliferation, cell cycle analyses, and p21Cip1 and p27Kip1 expression levels were examined by bromodeoxyuridine assay, flow cytometry, real-time RT-PCR, and western blotting. Immunohistochemical study noted a strong inverse correlation between Cx32 and Ki67 expression pattern as well as their location. In vitro, overexpression of Cx32 in AGS cells inhibited cell proliferation significantly. G1 arrest, up-regulation of cell cycle-regulatory proteins p21Cip1 and p27Kip1 was also found at both mRNA and protein levels. Taken together, Cx32 plays some roles in gastric cancer development by inhibiting gastric cancer cell proliferation through cell cycle arrest and cell cycle regulatory proteins. [BMB Reports 2013; 46(1): 25-30]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号