首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R64-11(+) donor cells that are thermosensitive for vegetative DNA replication will synthesize DNA at the restrictive temperature when recipient minicells are present. This is conjugal DNA replication because it is R64-11 DNA that is being synthesized and there is no DNA synthesis if minicells that cannot be recipients of R64-11 DNA are used. The plasmid DNA present in the donor cells before mating is transferred to recipient minicells within the first 20 min of mating, but additional copies of plasmid DNA synthesized during the mating continue to be transferred for at least 90 min. However, the transfer of R64-11 DNA to minicells is not continuous because the plasmid DNA in minicells is the size of one R64-11 molecule or smaller, and there are delays between the rounds of plasmid transfer. DNA is synthesized in minicells during conjugation, but this DNA has a molecular weight much smaller than that of R64-11. Thus, recipient minicells are defective and are not able to complete the synthesis of a DNA strand complementary to the single-stranded R64-11 DNA received from the donor cell.  相似文献   

2.
Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork.  相似文献   

3.
Due to the helical structure of DNA the process of DNA replication is topologically complex. Freshly replicated DNA molecules are catenated with each other and are frequently knotted. For proper functioning of DNA it is necessary to remove all of these entanglements. This is done by DNA topoisomerases that pass DNA segments through each other. However, it has been a riddle how DNA topoisomerases select the sites of their action. In highly crowded DNA in living cells random passages between contacting segments would only increase the extent of entanglement. Using molecular dynamics simulations we observed that in actively supercoiled DNA molecules the entanglements resulting from DNA knotting or catenation spontaneously approach sites of nicks and gaps in the DNA. Type I topoisomerases, that preferentially act at sites of nick and gaps, are thus naturally provided with DNA–DNA juxtapositions where a passage results in an error-free DNA unknotting or DNA decatenation.  相似文献   

4.
There is approximately a doubling of the total nuclear DNA between the 8 Lathyrus species and there are significant differences in the amounts of DNA in euchromatin and heterochromatin. Between the 8 species chiasma frequency and total nuclear DNA are not correlated but within complements it is positively correlated with the amount of DNA in the chromosomes. There is no significant correlation between chiasma frequency and euchromatin DNA nor between chiasma frequency and heterochromatin DNA among species, but among chromosomes, as with total DNA, it is positively correlated with euchromatin DNA and heterochromatin DNA. Results show that despite the large differences in DNA amounts between species there are genomic constraints underlying the frequency and distribution of chiasmata in the chromosome complements.  相似文献   

5.
Sizing of DNA fragments is a routine analysis traditionally performed on agarose or polyacrylamide gels. Electrophoretic analysis is labor-intensive with only limited potential for automation. Recovery of DNA fragments from gels is cumbersome. We present data on automated, size-based separation of DNA fragments by ion-pair reversed-phase high performance liquid chromatography (IP RP HPLC) - DNA chromatography - on the WAVE DNA Fragment Analysis System with the DNASep cartridge. This system is suitable for accurate and rapid sizing of double-stranded (ds) DNA fragments from 50 to ca. 2000 base pairs (bp). Fluorescently labeled DNA fragments are compatible with the technology. Length-dependent separation of dsDNA fragments is sequence independent and retention times are highly reproducible. The resolving capabilities of DNA chromatography are illustrated by the analysis of multiple DNA size markers. Resolved dsDNA fragments are easily collected and are suitable for downstream applications such as sequencing and cloning. DNA chromatography under denaturing conditions with fluorescently labeled DNA fragments offers a means for the separation and purification of individual strands of dsDNA. Analysis of DNA fragments on the WAVE System is highly automated and requires minimal manual intervention. DNA chromatography offers a reliable and automated alternative to gel electrophoresis for the analysis of DNA fragments.  相似文献   

6.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

7.
B Kaltenboeck  J W Spatafora  X Zhang  K G Kousoulas  M Blackwell  J Storz 《BioTechniques》1992,12(2):164, 166, 168-164, 166, 171
A modification of the asymmetric PCR method is described, which reliably facilitates sequencing of PCR-amplified DNA. This procedure produces single-stranded DNA fragments as long as two kilobases that are suitable for dideoxy DNA sequencing. First, a PCR for double-stranded DNA is preformed under optimal conditions (double-stranded PCR). Then, a 5-10-microliters fraction of the double-stranded PCR and a single primer are used to generate single-stranded DNA in a separate PCR (single-stranded PCR). The concentration of the single primer are used to generate single-stranded DNA in a separate PCR (single-stranded PCR). The concentration of the single primer is approximately 0.4 microM. Usually 15 to 25 cycles of single-stranded PCR are optimal to produce single-stranded DNA for four to eight sequencing reactions. The single-stranded DNA is purified by centrifugal ultrafiltration and used directly in dideoxy sequencing. This method was employed to produce high-quality single-stranded DNA templates from a variety of organisms for efficient DNA sequencing of PCR-amplified DNA.  相似文献   

8.
A number of drugs target the DNA repair pathways and induce cell kill by creating DNA damage. Thus, processes to directly measure DNA damage have been extensively evaluated. Traditional methods are time consuming, expensive, resource intensive and require replicating cells. In contrast, the comet assay, a single cell gel electrophoresis assay, is a faster, non-invasive, inexpensive, direct and sensitive measure of DNA damage and repair. All forms of DNA damage as well as DNA repair can be visualized at the single cell level using this powerful technique.The principle underlying the comet assay is that intact DNA is highly ordered whereas DNA damage disrupts this organization. The damaged DNA seeps into the agarose matrix and when subjected to an electric field, the negatively charged DNA migrates towards the cathode which is positively charged. The large undamaged DNA strands are not able to migrate far from the nucleus. DNA damage creates smaller DNA fragments which travel farther than the intact DNA. Comet Assay, an image analysis software, measures and compares the overall fluorescent intensity of the DNA in the nucleus with DNA that has migrated out of the nucleus. Fluorescent signal from the migrated DNA is proportional to DNA damage. Longer brighter DNA tail signifies increased DNA damage. Some of the parameters that are measured are tail moment which is a measure of both the amount of DNA and distribution of DNA in the tail, tail length and percentage of DNA in the tail. This assay allows to measure DNA repair as well since resolution of DNA damage signifies repair has taken place. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell 1,2. Cells treated with any DNA damaging agents, such as etoposide, may be used as a positive control. Thus the comet assay is a quick and effective procedure to measure DNA damage.  相似文献   

9.
The DNA-binding, annealing and recombinational activities of purified RecA-DNA complexes stabilized by ATP gamma S (a slowly hydrolysable analog of ATP) are described. Electrophoretic analysis, DNase protection experiments and observations by electron microscopy suggest that saturated RecA complexes formed with single- or double-stranded DNA are able to accommodate an additional single strand of DNA with a stoichiometry of about one nucleotide of added single-stranded DNA per nucleotide or base-pair, respectively, of DNA resident in the complex. This strand uptake is independent of complementarity or homology between the added and resident DNA molecules. In the complex, the incoming and resident single-stranded DNA molecules are in close proximity as the two strands can anneal in case of their complementarity. Stable RecA complexes formed with single-stranded DNA bind double-stranded DNA efficiently when the added DNA is homologous to the complexed strand and then initiate a strand exchange reaction between the partner DNA molecules. Electron microscopy of the RecA-single-stranded DNA complexes associated with homologous double-stranded DNA suggests that a portion of duplex DNA is taken into the complex and placed in register with the resident single strand. Our experiments indicate that both DNA binding sites within RecA helical filaments can be occupied by either single- or double-stranded DNA. Presumably, the same first DNA binding site is used by RecA during its polymerization on single- or double-stranded DNA and the second DNA binding site becomes available for subsequent interaction of the protein-saturated complexes with naked DNA. The way by which additional DNA is taken into RecA-DNA complexes shows co-operative character and this helps to explain how topological problems are avoided during RecA-mediated homologous recombination.  相似文献   

10.
Glenn A. Galau 《Gene》1983,24(1):93-98
A procedure is described to rapidly prepare radioactively labeled DNA inserts from crude recombinant plasmid DNA preparations. These probes can subsequently be used to identify homologous nucleotide sequences in bacteria containing recombinant plasmids by colony hybridization. In a single procedure, crude recombinant plasmid DNA is both 32P-labeled and fragmented by nick-translation in the presence of sufficient pancreatic DNase I to produce radioactive DNA of about 0.2–0.3-kb single-strand length. At this DNA fragment length the majority of the vector and insert sequences are on different DNA fragments. The insert DNA can then be separated from vector and contaminating Escherichia colt host chromosomal DNA by the following method. The DNA fragment population is first denatured and renatured under conditions such that the recombinant plasmid DNA reassociates but host DNA does not. The renatured plasmid DNA fragments are separated from the denatured host DNA by hydroxylapatite chromatography. The plasmid DNA fragments are then denatured and renatured with an excess of insert-free vector DNA. Conditions are chosen such that the insert DNA remains single-stranded while the vector DNA becomes double-stranded. The single-stranded insert DNA can be separated from the double-stranded vector DNA on hydroxylapatite and used directly for colony hybridization.  相似文献   

11.
Mitochondrial DNA Repair Pathways   总被引:5,自引:0,他引:5  
It has long been held that there is no DNA repair in mitochondria. Early observations suggestedthat the reason for the observed accumulation of DNA damage in mitochondrial DNA is thatDNA lesions are not removed. This is in contrast to the very efficient repair that is seen inthe nuclear DNA. Mitochondrial DNA does not code for any DNA repair proteins, but it hasbeen observed that a number of repair factors can be found in mitochondrial extracts. Mostof these participate in the base excision DNA repair pathway which is responsible for theremoval of simple lesions in DNA. Recent work has shown that there is efficient base excisionrepair in mammalian mitochondria and there are also indications of the presence of morecomplex repair processes. Thus, an active field of mitochondrial DNA repair is emerging. Anunderstanding of the DNA repair processes in mammalian mitochondria is an important currentchallenge and it is likely to lead to clarification of the etiology of the common mutations anddeletions that are found in mitochondria, and which are thought to cause various humandisorders and to play a role in the aging phenotype.  相似文献   

12.
The rate of covalent photobinding of trimethylpsoralen to DNA is greater when the DNA is wound with negative superhelical tension than when it is relaxed. In vitro the rate of photobinding is directly proportional to the negative superhelical density of the DNA. Thus measurement of the rate of photobinding provides an assay for probing in vivo unrestrained tension in the winding of the DNA double helix. This approach has been applied to measure torsional tension in DNA as it is packaged in living E. coli. Drosophila and HeLa cells. A method is described for measuring the rate of photobinding to intracellular DNA and rRNA, and for using the latter measurement as an internal control of the rate of me3-psoralen photobinding in vivo. This permits more accurate and reproducible measurement of changes in the DNA-psoralen photobinding reaction. The me3-psoralen probe interacts with intracellular bacterial DNA as expected for a purified DNA duplex wound with superhelical density sigma = -0.05 +/- 0.01. This superhelical tension is relaxed in cells when multiple single-strand breaks are introduced into the chromosomal DNA by gamma-irradiation. Similar relaxation occurs when cells are treated with the DNA gyrase inhibitor coumermycin. The results suggest that the DNA double helix is wound with torsional tension in vivo and that DNA supercoils which are equilibrated with this tension are not completely restrained in nucleosome-like structures. Torsional tension in the DNA of eucaryotic cells is not detectable in analogous measurements of the packaged DNA of HeLa and Drosophila cells. The simplest interpretation of this finding is that, within the limits of detection, all superhelical turns in the DNA are restrained in nucleosomes or nucleosome-like structures in these eucaryotic cells.  相似文献   

13.
Three Size-Classes of Intracellular Adenovirus Deoxyribonucleic Acid   总被引:18,自引:15,他引:3       下载免费PDF全文
When human adenovirus type 2 or 12 infects cells, either productively or non-productively, three classes of viral deoxyribonucleic acid (DNA) are found within the cells: (i) viral DNA which cosediments with DNA extracted from infectious adenovirions at 31.3S for adenovirus type 2 and at 29.0S for adenovirus type 12, (ii) viral DNA which sediments at about 18S, and (iii) viral DNA which sediments at >45S and is apparently integrated into the cellular DNA. A precursor-product relationship is suggested as a working hypothesis; the intact viral DNA is hydrolyzed to slowly sedimenting DNA and the slowly sedimenting DNA is integrated into the cellular DNA. Both the parental and the newly synthesized viral DNA are altered by this route. The intact viral DNA within the cells apparently is cleaved into the slowly sedimenting DNA by a preformed enzyme.  相似文献   

14.
15.
Denaturation of deoxyribonucleic acid in situ effect of formaldehyde.   总被引:3,自引:0,他引:3  
In situ denaturation of nuclear deoxyribonucleic acid (DNA) is studied by use of acridine orange to differentially stain native versus denatured DNA, and a flow-through cytofluorometer for measurements of cell fluorescence. Thermal- or acid-induced DNA denaturation is markedly influenced by formaldehyde. Two mechanisms of the formaldehyde action are distinguished. If cells are exposed to the agent during heating, DNA denaturation is facilitated, most likely by the direct action of formaldehyde as a "passive" denaturing agent on DNA. If cells are pretreated with formaldehyde which is then removed, DNA resistance to denaturation increases, presumably due to chromatin cross-linking. It is believed that both effects occur simultaneously in conventional techniques employing formaldehyde to study DNA in situ, and that the extent of each varies with the temperature and cell type (chromatin condensation). Thus, profiles of DNA denaturation of cells heated with formaldehyde do not represent characteristics of DNA denaturation in situ; DNA denaturation under these conditions is modulated by the reactivity of chromatin components with formaldehyde rather than by DNA interactions with the macromolecules of nuclear mileu.  相似文献   

16.
17.
The template requirements and deoxyribonucleic acid (DNA) products of the DNA polymerases isolated from Rauscher leukemia and avian myeloblastosis viruses have been examined. All DNA preparations or synthetic polydeoxynucleotides which are active as primers possess a duplex structure containing single-stranded regions with a 3'-hydroxyl terminus. Native DNA and fully single-stranded DNA are inactive; moreover, their activity is not enhanced by sonic oscillation or treatment with micrococcal nuclease, Neurospora nuclease, or low levels of deoxyribonuclease I. Poor DNA templates are activated by treatment with exonuclease III, large amounts of deoxyribonuclease I, or an endonuclease isolated from Rauscher viral preparations. In reactions primed with deoxyadenylate-deoxythymidylate copolymer, the product formed is covalently attached to primer strands, indicating that no new strands are initiated. DNA polymerase products formed with exonuclease III- or deoxyribonuclase I-treated DNA are duplex structures. Short single-stranded regions are completely filled in, whereas long single-stranded regions are only partly repaired. DNA preparations containing extensive single-stranded regions are poorly utilized as templates.  相似文献   

18.
Nuclear DNA amount, nuclear area, genome volume and karyotype length were analysed in different populations of two closely related species of Narcissus. There are intra- and interspecific variations in these parameters. 4C DNA amount and karyotype length, on one hand, and 2C DNA amount and telophase nuclear area, on the other, are not correlated. It seems that DNA content and chromosome length are independent parameters. However, 4C DNA content and karyotype volume are correlated, and are also correlated to different density estimations (4C DNA to Kar.length & 2C DNA to telophase area). These facts suggest that the relative length of the chromosomes is genetically controlled and that it is independent of the DNA that they contain. It seems that the interpopulational differences in DNA content are correlated with length changes of small segments in almost all chromosomes.  相似文献   

19.
Isolated nuclei from adenovirus type 2-infected HeLa cells catalyze the incorporation of all four deoxyribonucleoside triphosphates into viral DNA. The observed DNA synthesis occurs via a transient formation of DNA fragments with a sedimentation coefficient of 10S. The fragments are precursors to unit-length viral DNA, they are self-complementary to an extent of at least 70%, and they are distributed along most of the viral chromosome. In addition, accumulation of 10S DNA fragments is observed either in intact, virus-infected HeLa cells under conditions where viral DNA synthesis is inhibited by hydroxyurea or in isolated nuclei from virus-infected HeLa cells at low concentrations of deoxyribonucleotides. Under these suboptimal conditions for DNA synthesis in isolated nuclei, ribonucleoside triphosphates determine the size distribution of DNA intermediates. The evidence presented suggests that a ribonucleoside-dependent initiation step as well at two DNA polymerase catalyzed reactions are involved in the discontinuous replication of adenovirus type 2 DNA.  相似文献   

20.
Radiation-induced free radical damage in solid-state DNA arises from direct-type damage mechanisms. In the present study, free radical yields in film and lyophilized Na DNA model systems are compared. The free radical yields in lyophilized samples are significantly greater than those in films. Since DNA conformation cannot account for the differences in free radical yields between different DNA preparations, it is proposed that the intermolecular spacing of DNA is a critical variable. The differences in the hydration dependence of free radical yields between the film and lyophilized DNA model systems are consistent with this thesis. The relatively large free radical yields observed in lyophilized DNA emphasize the fact that DNA is an extremely effective electron and hole scavenger, more so than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号