首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pericardial adipose tissue (PAT) is positively associated with fatty liver and obesity‐related insulin resistance. Because PAT is a well‐known marker of visceral adiposity, we investigated the impact of weight loss on PAT and its relationship with liver fat and insulin sensitivity independently of body fat distribution. Thirty overweight nondiabetic women (BMI 28.2–46.8 kg/m2, 22–41 years) followed a 14.2 ± 4‐weeks low‐calorie diet. PAT, abdominal subcutaneous (SAT), and visceral fat volumes (VAT) were measured by magnetic resonance imaging (MRI), total fat mass, trunk, and leg fat by dual‐energy X‐ray absorptiometry and intrahepatocellular lipids (IHCL) by (1)H‐magnetic resonance spectroscopy. Euglycemic hyperinsulinemic clamp (M) and homeostasis model assessment of insulin resistance (HOMAIR) were used to assess insulin sensitivity or insulin resistance. At baseline, PAT correlated with VAT (r = 0.82; P < 0.001), IHCL (r = 0.46), HOMAIR (r = 0.46), and M value (r = ?0.40; all P < 0.05). During intervention, body weight decreased by ?8.5%, accompanied by decreases of ?12% PAT, ?13% VAT, ?44% IHCL, ?10% HOMA2‐%B, and +24% as well as +15% increases in HOMA2‐%S and M, respectively. Decreases in PAT were only correlated with baseline PAT and the loss in VAT (r = ?0.56; P < 0.01; r = 0.42; P < 0.05) but no associations with liver fat or indexes of insulin sensitivity were observed. Improvements in HOMAIR and HOMA2‐%B were only related to the decrease in IHCL (r = 0.62, P < 0.01; r = 0.65, P = 0.002) and decreases in IHCL only correlated with the decrease in VAT (r = 0.61, P = 0.004). In conclusion, cross‐sectionally PAT is correlated with VAT, liver fat, and insulin resistance. Longitudinally, the association between PAT and insulin resistance was lost suggesting no causal relationship between the two.  相似文献   

2.
Objective: High visceral adipose tissue (VAT) and high liver fat (LF) are associated with the metabolic syndrome and diabetes. We studied changes in these two fat depots during weight loss and analyzed whether VAT and LF at baseline predict the response to lifestyle intervention. Research Methods and Procedures: One hundred twelve subjects (48 men and 64 women; age, 46 ± 11 years; BMI, 29.2 ± 4.4 kg/m2) were studied after a follow up‐time of 264 ± 60 (SD) days. Insulin sensitivity was estimated from the oral glucose tolerance test. Body fat depots were quantified using magnetic resonance imaging and spectroscopy. Results: Cross‐sectionally high VAT (r = ?0.22, p = 0.02) and high LF (r = ?0.36, p < 0.0001) were independently associated with low insulin sensitivity. With intervention, BMI (?3.0%), VAT (?12.0%), and LF (?33.0%) were reduced (all p < 0.001). Insulin sensitivity was improved (+17%, p < 0.01). The changes in BMI (r = ?0.41), VAT (r = ?0.28), and LF (r = ?0.39) were associated with the increase in insulin sensitivity (all p < 0.01). High VAT (r = ?0.28, p = 0.01) and high LF (r = ?0.38, p < 0.01) at baseline were associated with a lesser increase in insulin sensitivity. Discussion: Baseline values and changes in BMI, VAT, and LF are related to changes in insulin sensitivity during lifestyle intervention. Subjects with high VAT and LF have a lower chance of profiting from lifestyle intervention and may require intensified lifestyle prevention strategies or even pharmacological approaches to improve insulin sensitivity.  相似文献   

3.
Objective: To validate transthoracic echocardiography as an easy and reliable imaging method for visceral adipose tissue (VAT) prediction. VAT is recognized as an important indicator of high cardiovascular and metabolic risk. Several methods are applied to estimate VAT, with different results. Research Methods and Procedures: We selected 60 healthy subjects (29 women, 31 men, 49.5 ± 16.2 years) with a wide range of body mass indexes. Each subject underwent transthoracic echocardiogram and magnetic resonance imaging (MRI) to measure epicardial fat thickness on the right ventricle. Measurements of epicardial adipose tissue thickness were obtained from the same echocardiographic and MRI views and points. MRI was also used to measure VAT cross‐sectional areas at the level of L4 to L5. Anthropometric indexes were also measured. Results: Subjects with predominant visceral fat accumulation showed higher epicardial adipose tissue thickness than subjects with predominant peripheral fat distribution: 9.97 ± 2.88 vs. 4.34 ± 1.98 (p = 0.005) and 7.19 ± 2.74 vs. 3.43 ± 1.64 (p = 0.004) in men and women, respectively. Simple linear regression analysis showed an excellent correlation between epicardial adipose tissue and waist circumference (r = 0.895, p = 0.01) and MRI abdominal VAT (r = 0.864, p = 0.01). Multiple regression analysis showed that epicardial adipose tissue thickness (r2 = 0.442, p = 0.02) was the strongest independent variable correlated to MRI VAT. Bland test confirmed the good agreement between the two methods. Discussion: Epicardial adipose tissue showed a strong correlation with anthropometric and imaging measurements of VAT. Hence, transthoracic echocardiography could be an easy and reliable imaging method for VAT prediction.  相似文献   

4.
Objective: African Americans (AAs) have less visceral and more subcutaneous fat than whites, thus the relationship of adiponectin and leptin to body fat and insulin sensitivity in AA may be different from that in whites. Methods and Procedures: Sixty‐nine non‐diabetic AA (37 men and 32 women), aged 33 ± 1 year participated. The percent fat was determined by dual‐energy X‐ray absorptiometry, abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volume by computerized tomography (CT), and insulin sensitivity by homeostasis model assessment (HOMA). Results: VAT was greater in men (1,619 ± 177 cm3 vs. 1,022 ± 149 cm3; P = 0.01); women had a higher percentage of body fat (34.1 ± 1.4 vs. 24.0 ± 1.2; P < 0.0001), adiponectin (15.8 ± 1.2 μg/ml vs. 10.4 ± 0.8 μg/ml; P = 0.0004) and leptin (23.2 ± 15.8 ng/ml vs. 9.2 ± 7.2 ng/ml; P < 0.0001). SAT and HOMA did not differ because of the sex. Adiponectin negatively correlated with VAT (r = ?0.41, P < 0.05) in men, and with VAT (r = ?0.55, P < 0.01), and SAT (r = ?0.35, P < 0.05) in women. Adiponectin negatively correlated with HOMA in men (r = ?0.38, P < 0.05) and women (r = ?0.44, P < 0.05). In multiple regression, sex (P = 0.02), HOMA (P = 0.03) and VAT (P = 0.003) were significant predictors of adiponectin (adj R 2 = 0.38, P < 0.0001). Leptin positively correlated with VAT, SAT, percent fat and HOMA in men (r = 0.79, r = 0.86, r = 0.89, and r = 0.53; P < 0.001) and women (r = 0.62, r = 0.75, r = 0.83, and r = 0.55; P < 0.01). In multiple regression VAT (P = 0.04), percent body fat (P < 0.0001) and sex (P = 0.01), but not HOMA were significant predictors of serum leptin (adj R 2= 0.82, P < 0.0001). Discussion: The relationship of adiponectin and leptin to body fat content and distribution in AA is dependent on sex. Although VAT and insulin sensitivity are significant determinants of adiponectin, VAT and percent body fat determine leptin.  相似文献   

5.
Objective: To test in humans the hypothesis that part of the association of adiponectin with insulin sensitivity is independent of lipid availability. Research Methods and Procedures: We studied relationships among plasma adiponectin, insulin sensitivity (by hyperinsulinemic‐euglycemic clamp), total adiposity (by DXA), visceral adiposity (VAT; by magnetic resonance imaging), and indices of lipid available to muscle, including circulating and intramyocellular lipid (IMCL; by 1H‐magnetic resonance spectroscopy). Our cohort included normal weight to obese men (n = 36). Results: Plasma adiponectin was directly associated with insulin sensitivity and high‐density lipoprotein‐cholesterol and inversely with plasma triglycerides but not IMCL. These findings are consistent with adiponectin promoting lipid uptake and subsequent oxidation in muscle and inhibiting TG synthesis in the liver. In multiple regression models that also included visceral and total fat, free fatty acids, TGs, and IMCL, either alone or in combination, adiponectin independently predicted insulin sensitivity, consistent with some of its insulin‐sensitizing effects being mediated through mechanisms other than modulation of lipid metabolism. Because VAT directly correlated with total fat and all three indices of local lipid availability, free fatty acids, and IMCL, an efficient regression model of insulin sensitivity (R2 = 0.69, p < 0.0001) contained only VAT (part R2 = 0.12, p < 0.002) and adiponectin (part R2 = 0.41, p < 0.0001) as independent variables. Discussion: Given the broad range of total adiposity and body fat distribution in our cohort, we suggest that insulin sensitivity is robustly associated with adiponectin and VAT.  相似文献   

6.
Regional fat distribution rather than overall fat volume has been considered to be important to understanding the link between obesity and metabolic disorders. We aimed to evaluate the independent associations of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with metabolic risk factors in apparently healthy middle‐aged Japanese. Participants were 1,119 men and 854 women aged 38–60 years who were not taking medications for diabetes, hypertension, or dyslipidemia. VAT and SAT were measured by use of computed tomography (CT) scanning. VAT and SAT were significantly and positively correlated with each other in men (r = 0.531, P < 0.001) and women (r = 0.589, P < 0.001). In multiple regression analyses, either measure of abdominal adiposity (VAT or SAT) was positively associated with blood pressure, fasting plasma glucose, and log triglyceride (P < 0.001) and inversely with high‐density lipoprotein (HDL)‐cholesterol (P < 0.001). When VAT and SAT were simultaneously included in the model, the association of VAT with triglycerides was maintained (P < 0.001) but that of SAT was lost. The same was true for HDL‐cholesterol in women. For fasting plasma glucose, the association with VAT was strong (P < 0.001) and the borderline association with SAT was maintained (P = 0.060 in men and P = 0.020 in women). Both VAT and SAT were independently associated with blood pressure (P < 0.001). Further adjustment for anthropometric indices resulted in the independent association only with VAT for all risk factors. In conclusion, impacts of VAT and SAT differed among risk factors. VAT showed dominant impacts on triglyceride concentrations in both genders and on HDL‐cholesterol in women, while SAT also had an independent association with blood pressure.  相似文献   

7.
Visceral adipose tissue (VAT) is associated with increased risk for cardiovascular disease, and therefore, accurate methods to estimate VAT have been investigated. Computerized tomography (CT) is the gold standard measure of VAT, but its use is limited. We therefore compared waist measures and two dual‐energy X‐ray absorptiometry (DXA) methods (Ley and Lunar) that quantify abdominal regions of interest (ROIs) to CT‐derived VAT in 166 black and 143 white South African women. Anthropometry, DXA ROI, and VAT (CT at L4–L5) were measured. Black women were younger (P < 0.001), shorter (P < 0.001), and had higher body fat (P < 0.05) than white women. There were no ethnic differences in waist (89.7 ± 18.2 cm vs. 90.1 ± 15.6 cm), waist:height ratio (WHtR, 0.56 ± 0.12 vs. 0.54 ± 0.09), or DXA ROI (Ley: 2.2 ± 1.5 vs. 2.1 ± 1.4; Lunar: 2.3 ± 1.4 vs. 2.3 ± 1.5), but black women had less VAT, after adjusting for age, height, weight, and fat mass (76 ± 34 cm2 vs. 98 ± 35 cm2; P < 0.001). Ley ROI and Lunar ROI were correlated in black (r = 0.983) and white (r = 0.988) women. VAT correlated with DXA ROI (Ley: r = 0.729 and r = 0.838, P < 0.01; Lunar: r = 0.739 and r = 0.847, P < 0.01) in black and white women, but with increasing ROI android fatness, black women had less VAT. Similarly, VAT was associated with waist (r = 0.732 and r = 0.836, P < 0.01) and WHtR (r = 0.721 and r = 0.824, P < 0.01) in black and white women. In conclusion, although DXA‐derived ROIs correlate well with VAT as measured by CT, they are no better than waist or WHtR. Neither DXA nor anthropometric measures are able to accurately distinguish between high and low levels of VAT between population groups.  相似文献   

8.
Our objective was to examine omental and subcutaneous adipocyte adiponectin release in women. We tested the hypothesis that adiponectin release would be reduced to a greater extent in omental than in subcutaneous adipocytes of women with visceral obesity. Omental and subcutaneous adipose tissue samples were obtained from 52 women undergoing abdominal hysterectomies (age: 47.1 ± 4.8 years; BMI: 26.7 ± 4.7 kg/m2). Adipocytes were isolated and their adiponectin release in the medium was measured over 2 h. Measures of body fat accumulation and distribution were obtained using dual‐energy X‐ray absorptiometry and computed tomography, respectively. Adiponectin release by omental and subcutaneous adipocytes was similar in lean individuals; however, in subsamples of obese or visceral obese women, adiponectin release by omental adipocytes was significantly reduced while that of subcutaneous adipocytes was not affected. Omental adipocyte adiponectin release was significantly and negatively correlated with total body fat mass (r = ?0.47, P < 0.01), visceral adipose tissue area (r = ?0.50, P < 0.01), omental adipocyte diameter (r = ?0.43, P < 0.01), triglyceride levels (r = ?0.32, P ≤ 0.05), cholesterol/high‐density lipoprotein (HDL)‐cholesterol (r = ?0.31, P ≤ 0.05), fasting glucose (r = ?0.39, P ≤ 0.01), fasting insulin (r = ?0.36, P ≤ 0.05), homeostasis model assessment index (r = ?0.39, P ≤ 0.01), and positively associated with HDL‐cholesterol concentrations (r = 0.33, P ≤ 0.05). Adiponectin release from subcutaneous cells was not associated with any measure of adiposity, lipid profile, or glucose homeostasis. In conclusion, compared to subcutaneous adipocyte adiponectin release, omental adipocyte adiponectin release is reduced to a greater extent in visceral obese women and better predicts obesity‐associated metabolic abnormalities.  相似文献   

9.
Rapid infant weight gain is associated with increased abdominal adiposity, but there is no published report of the relationship of early infant growth to differences in specific adipose tissue depots in the abdomen, including visceral adipose tissue (VAT). In this study, we tested the associations of birth weight, infant weight gain, and other early life traits with VAT, abdominal subcutaneous adipose tissue (ASAT), and other body composition measures using magnetic resonance imaging (MRI) and dual‐energy X‐ray absorptiometry in middle adulthood (mean age = 46.5 years). The sample included 233 appropriate for gestational age singleton white children (114 males) enrolled in the Fels Longitudinal Study. Multivariate‐adjusted general linear models were used to test the association of infant weight gain (from 0 to 2 years), maternal BMI, gestational age, parity, maternal age, and other covariates with adulthood body composition. Compared to infants with slow weight gain, rapid weight gain was associated with elevated risk of obesity (adjusted odds ratio = 4.1, 95% confidence interval = 1.4, 11.1), higher total body fat (+7 kg, P = 0.0002), percent body fat (+5%, P = 0.0006), logVAT mass (+0.43 kg, P = 0.02), logASAT mass (+0.47 kg, P = 0.001), and percent abdominal fat (+5%, P = 0.03). There was no evidence that the increased abdominal adipose tissue was due to a preferential deposition of VAT. In conclusion, rapid infant weight gain is associated with increases in both VAT and ASAT, as well as total adiposity and the risk of obesity in middle adulthood.  相似文献   

10.

Objective:

The liver is an insulin‐responsive organ that contributes significantly to both whole body insulin sensitivity and availability of sex steroids through the production of sex hormone binding globulin (SHBG). Our objective was to explore whether lower SHBG was associated with ectopic liver fat and mediated its effect on insulin resistance in The Study of Women's Health Across the Nation (SWAN).

Design and Methods:

A subset of midlife African American and Caucasian women from SWAN (n = 208; 50.9 ± 0.18 yrs; 71% Caucasian) had computed tomography scans to quantify visceral, subcutaneous and liver fat. Blood samples were collected and assayed for hormonal and metabolic markers.

Results:

The cohort, while overweight, was generally healthy, and both liver fat and SHBG were unaffected by menopausal stage or race. Both higher liver fat and lower SHBG levels were significantly associated with higher insulin concentrations after adjustment for adiposity (r = ?0.25, P < 0.001 and r = ?0.18, P = 0.01). SHBG and liver fat had additive effects on insulin concentrations such that women with the lowest SHBG and the highest fat levels had the highest values (interaction P = 0.09). The association between SHBG and insulin was more apparent among women with fattier livers. SHBG and liver fat appear to have independent effects on insulin levels as adjustment for each other did not diminish the strength of either association (P = 0.023 and 0.001 respectively).

Conclusion:

These results confirmed the strong independent associations between increased liver fat and decreased SHBG with increased metabolic risk in midlife women. Further these data underscore the need for additional research into the role of liver fat in modifying SHBG's influence on insulin levels.
  相似文献   

11.
Objective: We tested the hypothesis that visceral adiposity, compared with general adiposity, would explain more of the variance in cardiovascular disease (CVD) risk factors. Research Method and Procedures: Subjects were 464 adolescents (238 black and 205 girls). Adiposity measures included visceral adipose tissue (VAT; magnetic resonance imaging), percent body fat (%BF; DXA), BMI, and waist girth (anthropometry). CVD risk factors were fasting insulin, fibrinogen, total to high‐density lipoprotein‐cholesterol ratio, triglycerides (TGs), systolic blood pressure, and left ventricular mass indexed to height2.7. Results: After adjustment for age, race, and sex, all adiposity indices explained significant proportions of the variance in all of the CVD risk factors; %BF tended to explain more variance than VAT. Regression models that included both %BF and VAT found that both indices explained independent proportions of the variance only for total to high‐density lipoprotein‐cholesterol ratio. For TGs, the model that included both %BF and VAT found that only VAT was significant. For systolic blood pressure and left ventricular mass indexed to height2.7, anthropometric measures explained more of the variance than VAT and %BF. Discussion: The hypothesis that visceral adiposity would explain more variance in CVD risk than general adiposity was not supported in this relatively large sample of black and white adolescents. Only for TGs did it seem that VAT was more influential than %BF. Perhaps the deleterious effect of visceral adiposity becomes greater later in life as it increases in proportion to general adiposity.  相似文献   

12.
Abdominal fat, and in particular, visceral adipose tissue (VAT), is the critical fat depot associated with metabolic aberrations. At present, VAT can only be accurately measured by computed tomography or magnetic resonance imaging (MRI). This study was designed to compare a new abdominal bioelectrical impedance (BIA) device against total abdominal adipose tissue (TAAT) and VAT area measurements made from an abdominal MRI scan, and to assess its reliability and accuracy. One‐hundred twenty participants were recruited, stratified by gender and BMI. Participants had triplicate measures of abdominal fat and waist circumference (WC) with the AB‐140 (Tanita, Tokyo, Japan) and WC measurements using a manual tape measure. A single abdominal MRI scan was performed as the reference method. Triplicate measures with the AB‐140 showed excellent precision for “visceral fat level,” trunk fat %, and WC. AB‐140 “visceral fat level” showed significantly stronger correlations with MRI TAAT area than with MRI VAT area (r = 0.94 vs. 0.65 in men and 0.92 vs. 0.64 in women). AB‐140 WC showed good correlation with manual WC measurements (r = 0.95 in men and 0.90 in women). AB‐140 and manual WCs showed comparable correlations with MRI TAAT area (r = 0.92 and 0.96 in men and 0.88 and 0.88 in women). AB‐140 is a simple, quick, and precise technique to measure abdominal fat and WC in healthy adults. It provides a useful proxy for TAAT measured by MRI, comparable to the correlation obtained with manual WC measurements. Neither the AB‐140 abdominal fat measures nor WC measurement appear to provide a useful proxy measure of VAT.  相似文献   

13.
Objective: To compare the prediction of percentage body fat using BMI and visceral adipose tissue (VAT) using waist circumference (WC) in individuals of Chinese, European, and South Asian origin. Research Methods and Procedures: Healthy men and women of Chinese, European, and South Asian origin (n = 627) between the ages of 30 and 65 years were recruited to ensure equal distribution of gender and representation across BMI ranges (18.5 to 24.9, 25 to 29.9, and ≥30 kg/m2). Participants were assessed for demographics, anthropometry, lifestyle, and regional adiposity. Percentage body fat and VAT were measured by DXA and computer tomography scan, respectively. Results: BMI and WC were highly correlated with total and regional measures of adiposity in each ethnic group. At any BMI, the percentage body fat of Chinese participants was similar to that of Europeans, but that of South Asians was greater by 3.9% (p < 0.001). Above a WC of 71.0 cm, the Chinese participants had an increasingly greater amount of VAT than the Europeans (p = 0.017 for interaction). South Asians had significantly more VAT than the Europeans at all but the most extreme WC (above 105 cm) (p < 0.05). Discussion: Compared with Europeans, percentage body fat was higher for a given BMI in South Asians, whereas VAT was higher for a given WC in both Chinese and South Asian men and women. These findings support the use of ethnic‐specific anthropometric targets.  相似文献   

14.
It is not known whether there are mechanisms linking adipose tissue mass and increased oxidative stress in obesity. This study investigated associations between decreasing general and abdominal fat depots and oxidative stress during weight loss. Subjects were severely obese women who were measured serially at baseline and at 1, 6 (n = 30), and 24 months (n = 18) after bariatric surgery. Total fat mass (FAT) and volumes of visceral (VAT) and subcutaneous abdominal adipose tissue (SAT) were related to plasma concentrations of derivatives of reactive oxidative metabolites (dROMS), a measure of lipid peroxides and oxidative stress. After intervention, BMI significantly decreased, from 47.7 ± 0.8 kg/m2 to 43.3 ± 0.8 kg/m2 (1 month), 35.2 ± 0.8 kg/m2 (6 months), and 30.2 ± 1.2 kg/m2 (24 months). Plasma dROMS also significantly deceased over time. At baseline, VAT (r = 0.46), FAT (r = 0.42), and BMI (r = 0.37) correlated with 6‐month decreases in dROMS. Similarly, at 1 month, VAT (r = 0.43) and FAT (r = 0.41) correlated with 6‐month decreases in dROMS. Multiple regression analysis showed that relationships between VAT and dROMS were significant after adjusting for FAT mass. Increased plasma dROMS at baseline were correlated with decreased concentrations of high‐density lipoprotein (HDL) at 1 and 6 months after surgery (r = ?0.38 and ?0.42). This study found longitudinal associations between general, and more specifically intra‐abdominal adiposity, and systemic lipid peroxides, suggesting that adipose tissue mass contributes to oxidative stress.  相似文献   

15.
We investigated candidate genomic regions associated with computed tomography (CT)–derived measures of adiposity in Hispanics from the Insulin Resistance Atherosclerosis Study Family Study (IRASFS). In 1,190 Hispanic individuals from 92 families 3 from the San Luis Valley, Colorado and San Antonio, Texas, we measured CT‐derived visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and visceral:subcutaneous ratio (VSR). A genome‐wide association study (GWAS) was completed using the Illumina HumanHap 300 BeadChip (~317K single‐nucleotide polymorphisms (SNPs)) in 229 individuals from the San Antonio site (stage 1). In total, 297 SNPs with evidence for association with VAT, SAT, or VSR, adjusting for age and sex (P < 0.001), were genotyped in the remaining 961 Hispanic samples. The entire Hispanic cohort (n = 1,190) was then tested for association, adjusting for age, sex, site of recruitment, and admixture estimates (stage 2). In stage 3, additional SNPs were genotyped in four genic regions showing evidence of association in stage 2. Several SNPs were associated in the GWAS (P < 1 × 10?5) and were confirmed to be significantly associated in the entire Hispanic cohort (P < 0.01), including: rs7543757 for VAT, rs4754373 and rs11212913 for SAT, and rs4541696 and rs4134351 for VSR. Numerous SNPs were associated with multiple adiposity phenotypes. Targeted analysis of four genes whose SNPs were significant in stage 2 suggests candidate genes for influencing the distribution (RGS6) and amount of adiposity (NGEF). Several candidate loci, including RGS6 and NGEF, are associated with CT‐derived adipose fat measures in Hispanic Americans in a three‐stage genetic association study.  相似文献   

16.
Endothelial dysfunction and increased intima–media thickness (IMT) have been found in obese patients. Both regional fat distribution and liver steatosis may influence these markers of subclinical atherosclerosis. We sought to determine the interrelationships of endothelial function, carotid IMT, visceral and subcutaneous adipose tissue accumulation, and liver steatosis in severely obese subjects. In 64 severely obese patients (BMI 42.3 ± 4.3 kg/m²), we determined (i) endothelial function as flow‐mediated dilation (FMD) of the brachial artery, (ii) carotid IMT, (iii) visceral fat diameter, and (iv) degree of liver steatosis using ultrasound. FMD was associated inversely with visceral fat diameter and degree of steatosis (r = ?0.577, P < 0.0001 and r = ?0.523, P < 0.0001, respectively). Carotid IMT correlated with visceral fat mass (r = 0.343, P = 0.007) but not with liver steatosis. After adjustment for conventional cardiovascular risk factors, FMD was predicted independently by the visceral fat diameter, age, and sex (r2 = 0.48, P < 0.0001), but not by the degree of liver steatosis or plasma adiponectin levels. In contrast, age and sex were the only predictors of IMT (r2 = 0.33, P < 0.001). In obese patients, visceral fat diameter is a major determinant of endothelial dysfunction, independent of traditional risk factors or the degree of liver steatosis and plasma adiponectin. Measurement of visceral fat diameter by ultrasound is a novel and simple method to identify subjects with an increased risk for atherosclerosis within an obese population.  相似文献   

17.
Objective: To determine the effects of weight loss (WL) alone and combined with aerobic exercise on visceral adipose tissue (VAT), intramuscular fat, insulin‐stimulated glucose uptake, and the rate of decline in free fatty acid (FFA) concentrations during hyperinsulinemia. Research Methods and Procedures: We studied 33 sedentary, obese (BMI = 32 ± 1 kg/m2) postmenopausal women who completed a 6‐month (three times per week) program of either WL alone (n = 16) or WL + aerobic exercise (AEX) (n = 17). Glucose utilization (M) was measured during a 3‐hour hyperinsulinemic‐euglycemic clamp (40 mU/m2 per minute). M/I, the amount of glucose metabolized per unit of plasma insulin (I), was used as an index of insulin sensitivity. Results: Body weight, total fat mass, and percentage fat decreased similarly in both groups (p < 0.01). VAT, subcutaneous abdominal adipose tissue, mid‐thigh subcutaneous fat, and intramuscular fat decreased to a similar extent in both groups and between 14% and 27% after WL and WL+AEX (p < 0.05). WL alone did not change M or M/I; however, M and M/I increased 15% and 21% after WL+AEX (p < 0.05). Fasting concentrations and rate of decline of FFA did not change in either group. In stepwise regression models to determine the independent predictors of changes in M and M/I, the change in VAT was the single independent predictor of M (r2 = 0.30) and M/I (r2 = 0.33). Discussion: Intramuscular fat decreases similarly with 6 months of moderate WL alone or with aerobic exercise in postmenopausal women. In contrast, only WL combined with exercise results in increased glucose utilization and insulin sensitivity. These findings should be validated in a larger population.  相似文献   

18.
Severely obese subjects with the metabolic syndrome (MS) have higher dipeptidyl peptidase‐4 (DPP4) expression in their visceral adipose tissue (VAT) compared to obese individuals without MS. We tested the hypothesis that methylation level of CpG sites in the DPP4 promoter CpG island in VAT was genotype‐dependent and associated with DPP4 mRNA abundance and MS‐related phenotypes. The VAT DNA was extracted in 92 severely obese premenopausal women undergoing biliopancreatic derivation for the treatment of obesity. Women were nondiabetic and none of them used medication to treat MS features. Cytosine methylation rates (%) of 102 CpG sites in the DPP4 CpG island were assessed by pyrosequencing of sodium bisulfite‐treated DNA. Methylation rates were >10% for CpG sites 94–102. Their mean methylation rate (%Meth94–102) was different between genotypes for DPP4 polymorphisms rs13015258 (P = 0.001), rs17848915 (P = 0.0004), and c.1926 G>A (P = 0.001). The %Meth94–102 correlated negatively with DPP4 mRNA abundance (r = ?0.25, P < 0.05) and positively with plasma high‐density lipoprotein (HDL) cholesterol concentrations (r = 0.22, P < 0.05), whereas DPP4 mRNA abundance correlated positively with plasma total‐/HDL‐cholesterol ratio (r = 0.25; P < 0.05). In the VAT of nondiabetic severely obese women, genotype‐dependent methylation levels of specific CpG sites in the DPP4 promoter CpG island were associated with DPP4 gene expression and variability in the plasma lipid profile. Higher DPP4 gene expression in VAT and its relationship with the plasma lipid profile may be explained by actually unknown DPP4 biological effect or, to another extent, may also be a marker of VAT inflammation known to be associated with metabolic disturbances.  相似文献   

19.
The objective of this study was to examine whether lifestyle factors were associated with 5‐year change in abdominal fat measured by computed tomography (CT) in the Insulin Resistance and Atherosclerosis (IRAS) Family Study. We obtained abdominal CT scans at baseline and at 5 years, from African Americans (AA) (N = 339) and Hispanic Americans (N = 775), aged 18–81 years. Visceral (VAT) and subcutaneous (SAT) adipose tissue was measured at the L4/L5 vertebral level. Physical activity was documented by self‐report of vigorous activity and a 1‐year recall instrument. Dietary intake was assessed at follow‐up using a semi‐quantitative food frequency questionnaire referencing the previous year. Generalized linear models, accounting for family structure, were used to assess the associations between percent change in fat accumulation and smoking, physical activity, total calories, polyunsaturated, monounsaturated, protein, and saturated fat intake, percent of calories from sweets, and soluble and insoluble fiber. Soluble fiber intake and participation in vigorous activity were inversely related to change in VAT, independent of change in BMI. For each 10 g increase in soluble fiber, rate of VAT accumulation decreased by 3.7% (P = 0.01). Soluble fiber was not associated with change in SAT (0.2%, P = 0.82). Moderately active participants had a 7.4% decrease in rate of VAT accumulation and a 3.6% decrease in rate of SAT accumulation versus less active participants (P = 0.003 and P = 0.01, respectively). Total energy expenditure was also inversely associated with accumulation of VAT. Soluble fiber intake and increased physical activity were related to decreased VAT accumulation over 5 years.  相似文献   

20.
Objective: To examine whether childbearing is associated with increased visceral adiposity and whether the increase is proportionally larger than other depots. Methods and Procedures: This prospective study examined changes in adiposity assessed via computed tomography (CT) and dual‐energy X‐ray absorptiometry among 122 premenopausal women (50 black, 72 white) examined in 1995–1996 and again in 2000–2001. During the 5‐year interval, 14 women had one interim birth and 108 had no interim births. Multiple linear regression models estimated mean (95% confidence interval (CI)) 5‐year changes in anthropometric and adiposity measures by interim births adjusted for age, race, and changes in total and subcutaneous adiposity. Results: We found no significant differences between one interim birth and no interim births for 5‐year changes in weight, BMI, total body fat, subcutaneous adipose tissue, or total abdominal adipose tissue. Visceral adipose tissue increased by 40 and 14% above initial levels for 1 birth and 0 birth groups, respectively. Having 1 birth vs. 0 births was associated with a greater increase in visceral adipose tissue of 18.0 cm2 (4.8, 31.2), P < 0.01; gain of 27.1 cm2 (14.5, 39.7) vs. 9.2 cm2 (4.8, 13.6), and a borderline greater increase in waist girth of 2.3 cm (0, 4.5), P = 0.05; gain of 6.3 cm (4.1, 8.5) vs. 4.0 cm (3.2, 4.8), controlling for gain in total body fat and covariates. Discussion: Pregnancy may be associated with preferential accumulation of adipose tissue in the visceral compartment for similar gains in total body fat. Further investigation is needed to confirm these findings and determine whether excess visceral fat deposition with pregnancy adversely affects metabolic risk profiles among women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号