共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid Mus musculus × Mus caroli embryos were produced by inseminating M. musculus (C57BL/Ola Ws) females with M. caroli sperm. Control M. caroli embryos developed more rapidly than did control M. musculus embryos and implanted approximately 1 day earlier. At 1 1/2 days, both the hybrid embryos and those of the maternal species (M. musculus) had cleaved to the 2-cell stage. By 2 1/2 days some of the hybrids were retarded compared to M. musculus, and by 3½ days most were lagging behind. This is consistent with the idea that the rate of development of hybrid embryos declines once it becomes dependent on embryo-coded gene products. We have used this difference in rate of preim-plantation development, between hybrid and M. musculus embryos, to try to determine whether the activation of embryonic Gpi-1s genes, that encode glucose phosphate isomerase (GPI-1), is age-related or stage-related. In control M. musculus embryos (both mated and Al groups), the GPI-1AB and GPI-1A allozyme, indicative of paternal gene expression, were detected in 7 of 9 samples of 3 1/2-day compacted morula stage embryos and were seen in all 19 samples of 31/2-day blastocysts. In hybrid embryos, these allozymes were detected 1 day later. They were not detected in any 31/2-day samples (12 samples of compacted morulae) but were consistently detected at 4½ days (4 samples of blastocysts and 2 samples of uncompacted morulae). Our interpretation of the results is that gene activation in hybrid embryos is stage-specific, rather than age-specific, and probably begins around the 8-cell stage, with detectable levels of enzyme accumulating later. Analysis of GPI-1 elec-trophoresis indicated that both the paternal (M. caroli) and maternal (M. musculus) Gpi-1s alleles were equally expressed in hybrid embryos and that the paternally derived allele was not activated before the maternally derived allele. © 1992 Wiley-Liss, Inc. 相似文献
2.
Hybrid Mus musculus x Mus caroli embryos were produced by inseminating M. musculus (C57BL/OlaWs) females with M. caroli sperm. Control M. caroli embryos developed more rapidly than did control M. musculus embryos and implanted approximately 1 day earlier. At 1 1/2 days, both the hybrid embryos and those of the maternal species (M. musculus) had cleaved to the 2-cell stage. By 2 1/2 days some of the hybrids were retarded compared to M. musculus, and by 3 1/2 days most were lagging behind. This is consistent with the idea that the rate of development of hybrid embryos declines once it becomes dependent on embryo-coded gene products. We have used this difference in rate of preimplantation development, between hybrid and M. musculus embryos, to try to determine whether the activation of embryonic Gpi-1s genes, that encode glucose phosphate isomerase (GPI-1), is age-related or stage-related. In control M. musculus embryos (both mated and Al groups), the GPI-1AB and GPI-1A allozyme, indicative of paternal gene expression, were detected in 7 of 9 samples of 3 1/2-day compacted morula stage embryos and were seen in all 19 samples of 3 1/2-day blastocysts. In hybrid embryos, these allozymes were detected 1 day later. They were not detected in any 3 1/2-day samples (12 samples of compacted morulae) but were consistently detected at 4 1/2 days (4 samples of blastocysts and 2 samples of uncompacted morulae). Our interpretation of the results is that gene activation in hybrid embryos is stage-specific, rather than age-specific, and probably begins around the 8-cell stage, with detectable levels of enzyme accumulating later. Analysis of GPI-1 electrophoresis indicated that both the paternal (M. caroli) and maternal (M. musculus) Gpi-1s alleles were equally expressed in hybrid embryos and that the paternally derived allele was not activated before the maternally derived allele. 相似文献
3.
Considerable amounts of molecular and genetic data indicate that interspecific hybridisation may not be rare among natural strains of Saccharomyces sensu stricto. Although a post-zygotic barrier operating during meiosis usually prevents the production of viable spores, stable hybrids can arise which can even evolve into distinct species. This study was aimed to analyse the genome of a fertile Saccharomyces cerevisiae x S. uvarum hybrid and monitor its changes over four filial generations of viable spores. The molecular genetic analysis demonstrated that the two species did not contribute equally to the formation and stabilisation of the hybrid genome. S. cerevisiae provided the mitochondrial DNA and the more stable part of the nuclear genome. The S. uvarum part of the hybrid nuclear genome became progressively smaller by loosing complete chromosomes and genetic markers in the course of successive meiotic divisions. Certain S. uvarum chromosomes were eliminated and/or underwent rearrangements in interactions with S. cerevisiae chromosomes. Numerous S. uvarum chromosomes acquired S. cerevisiae telomere sequences. The gradual elimination of large parts of the S. uvarum genome was associated with a progressive increase of sporulation efficiency. We hypothesise that this sort of genomic alterations may contribute to speciation in Saccharomyces sensu stricto. 相似文献
4.
We report a case of interspecific hybridization induced amplification of Chromosome 10 on double minutes (dm) in the karyotype of a hybrid Mus embryo. Stable, non-mosaic dm were previously found in tissues of a 16.5-day Mus Musculus x Mus Caroli hybrid (Graves, 1984). Dm in tissues of the hybrid was of interest to us because of previous reports of genomic instability in interspecific hybrids (O'Neill et al., 1998) and thus we decided to characterize the dm in the hybrid karyotypes. Whole chromosome painting of the hybrid cell lines showed amplification of Chromosome 10 sequences. Southern analysis with a probe for the candidate gene Mdm2 showed amplification of the paternal allele of this oncogene. Overexpression of Mdm2 was confirmed by a western analysis that also showed an associated inactivation of the tumor suppressor, Trp53. Evidence indicates that the event leading to the instability observed was an early adaptive response to stress on the genome, i.e. interspecific hybridization. 相似文献
5.
Glyceryl monooleate was used to induce heterokaryon formation between mouse LS fibroblasts and hen erythrocytes during 15 min incubation at 37 °C. Many of the heterokaryons that were formed contained haemoglobin since cell fusion occurred without complete haemolysis of the hen erythrocytes. Following fusion, the plasma membranes of the heterokaryons and their subcellular organelles were apparently intact and relatively undamaged. Although the results of individual experiments were variable, clones of viable hybrid cells were obtained on treatment of mouse 3T3 TK- fibroblasts and chinese hamster wg 3 IMP- fibroblasts with glyceryl monooleate up to 32 times more frequently than in untreated, control cultures. Karyogram analyses confirmed the presence of both sets of parental chromosomes in all hybrid cells studied. Clones of hybrid cells were isolated and subcultured successfully for several months in HAT medium. 相似文献
6.
Interspecific somatic cell hybrids were constructed between a Chinese hamster lung cell line deficient in hypoxanthine phosphoribosyltransferase and two lymphoblastoid cultures (GM 4025 and GM 3200) from unrelated males affected with the fragile (X) syndrome. Thirteen independent colonies survived selection in hypoxanthine-azaserine, while only one colony survived selection in hypoxanthine-aminopterin-thymidine. One hybrid formed from GM 4025 was found to contain a human X chromosome as the only detectable human chromosome in the majority of cells analyzed. Induction of fragile (X) expression in this hybrid at frequencies up to 20% was achieved by treatments with 5-fluoro-2'-deoxyuridine (5 X 10(-8) M or 1 X 10(-7) M) or methotrexate (5 X 10(-6) or 1 X 10(-5) for 12 h. Use of the somatic cell hybrid system may allow study of the fragile (X) from different patients on a homogeneous xenogeneic background and may provide a better system for characterization of the fragile (X) at the biochemical and molecular level. 相似文献
7.
Mapping of Abll within a conserved linkage group on distal mouse chromosome 1 syntenic with human chromosome 1 using an interspecific cross 总被引:3,自引:0,他引:3
A human Abelson related gene (ABLL) cDNA clone was used to detect restriction fragment length polymorphisms (RFLPs) on mouse Southern blots. Abll was mapped to mouse chromosome 1 by analysis of segregation with other distal chromosome 1 genetic polymorphisms by using a panel of DNAs from [(C3H/HeJ-gld/gld x Mus spretus) F1 x C3H/HeJ-gld/gld] interspecific backcross mice. The data indicate the following gene order: (centromere)-CD45-6.5 cM-Lamb-2-1 cM-Abll-2 cM-At-3. The results extend the analysis of a large conserved linkage group spanning nearly 30 cM on distal mouse chromosome 1 syntenic with human chromosome 1q21-32. Within this linkage group similar relative positions have been characterized in both species for C4BP, REN, CD45, LAMB2, ABLL, AT3, APOA2, and SPTA. 相似文献
8.
The distribution of sister chromatid exchanges has been examined in the chromosomes of a hybrid male wallaby (Macropus rufogriseus x Wallabia bicolor ), and in the X chromosomes of M. parryi and M. rufus. Comparisons were made of SCE frequency between the two genomes of the hybrid, only one of which has an appreciable amount of constitutive heterochromatin, and between the euchromatic and heterochromatic regions of the M. rufogriseus genome. The frequency of SCEs is closely correlated with the DNA content of the individual chromosomes. The distribution of the SCEs between the euchromatin and heterochromatin in the M. rufogriseus genome showed a deficiency of SCEs observed in the heterochromatin compared with the euchromatin. —A substantial excess of SCEs occurred at the nucleolar organiser region of the M. rufogriseus X chromosome. This excess was absent from the nucleolar organiser region of the X chromosome of the two other macropodine species studied and is accounted for by the presence of an adjacent euchromatin-heterochromatin junction. 相似文献
9.
O-alkylation in DNA does not correlate with the formation of chromosome breakage events in D. melanogaster 总被引:1,自引:0,他引:1
E W Vogel 《Mutation research》1986,162(2):201-213
Postmeiotic cell stages of repair-proficient ring-X (RX) males were treated with methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), diethylnitrosamine (DEN) or ethylnitrosourea (ENU) and then mated to either repair-defective (mei-9L1) or to repair-competent females (mei-9+). Absence of the mei-9+ function resulted in a hypermutability effect to all alkylating agents (AAs) when they were assayed for their ability to induce chromosomal aberrations (chromosome loss; CL), irrespective of marked differences in distribution of DNA adducts brought about by these AAs. This picture is different from that described previously for the induction of point mutations (Vogel et al., 1985a). There, evidence was presented indicating that reduction in DNA excision repair does not affect point mutation induction (recessive lethals) by those AAs most efficient in ring-oxygen alkylation such as ENU, DEN, N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), and isopropyl methanesulfonate (iPMS): the order of hypermutability of AAs with mei-9L relative to mei-9+ was MMS greater than MNU greater than DMN = EMS greater than iPMS = ENU = DEN = ENNG. When the percentage of lethal mutations induced in mei-9L1 females were plotted against those determined for mei-9+ females, straight lines of following slopes were obtained: MMS = 7.6, MNU = 5.4, DMN = 2.4, EMS = 2.4, and iPMS = ENU = DEN = ENNG = 1. Those findings, together with the recent observation that AAs do not split into two groups when assayed for their ability to cause CL, point to the involvement of different DNA alkylation products in ENU- and DEN-induced chromosome loss vs. that of point mutations. It is concluded that with ENU and DEN chromosomal loss results from N-alkylation products whereas point mutations (SLRL) are the consequence of interactions with oxygen-sites in DNA. Thus, as a consequence of a very dominating role of O-ethylguanine (and possibly O4-alkylation of thymine), N-alkylation in DNA does not contribute measurably to mutation induction in the case of ENU-type mutagens while O-alkylation, very clearly, does not show a positive correlation with the formation of chromosome breakage events in Drosophila. Conversely, it appeared that with MMS-type mutagens (MMS; dimethyl sulfate, DMS; trimethyl phosphate, TMP), alkylation products such as 7-methylguanine and 3-methyladenine, if unrepaired or misrepaired, are potentially mutagenic lesions causing both mutations and chromosomal aberrations. 相似文献
10.
Clifton M. Ramsdell Elizabeth L. Thames Julie L. Weston Michael J. Dewey 《Mammalian genome》2006,17(1):37-48
A 5000-rad whole-genome radiation hybrid cell panel (BW5000) was developed for mapping the deer mouse (Peromyscus maniculatus bairdii) genome. The panel consists of 103 cell lines and has an estimated marker retention frequency of 63.9% (range, 28%–88%) based
on PCR typing of 30 Type I (coding gene) and 25 Type II (microsatellite) markers. Using the composite Mus map, Type I markers were selected from six Mus chromosomes, 22 of which are on Mus Chr 11. Fifteen of the Mus Chr 11 markers were simultaneously mapped on an interspecific (P. maniculatus × P. polionotus) backcross panel to test the utility of the radiation hybrid panel, create a framework map, and help establish gene order.
The radiation hybrids have effectively detected linkage in the deer mouse genome between markers as far apart as 6.7 cM and
resolved markers that are, in the Mus genome, as close as 0.2 Mb. Combined results from both panels have indicated a high degree of gene order conservation of
the telomeric 64 cM of Mus Chr 11 in the deer mouse genome. The remaining centromeric portion also shows gene order conservation with the deer mouse
but as a separate linkage group. This indicates a translocation of that portion of Mus Chr 11 in P. maniculatus and is consistent with rearrangement breakpoints observed between Mus and other mammalian genomes, including rat and human. Furthermore, this separate linkage group is likely to reside in a chromosomal
region of inversion polymorphism between P. maniculatus and P. polionotus. 相似文献
11.
BRET A. PAYSEUR MICHAEL W. NACHMAN 《Biological journal of the Linnean Society. Linnean Society of London》2005,84(3):523-534
Understanding the genetic details of reproductive isolation is a key goal in the study of speciation. Hybrid zones, geographical regions where two species meet and exchange genes, can provide insight into the genetic basis of reproductive isolation. This is especially true in species with mapped molecular markers because patterns of gene flow can be compared among different genomic regions. Even greater insight can be obtained in species with complete genome sequences because gene identity, gene number and other features of interest can be assessed for genomic regions with different patterns of introgression. Here, we review recent studies on the well-characterized hybrid zone between Mus domesticus and M. musculus , including a detailed survey of patterns of introgression for 13 markers on the X chromosome. We then compare levels of introgression for these 13 regions to a number of genomic attributes inferred from the complete sequence of the X chromosome, with two purposes. First, we identify candidate genes for reproductive isolation by finding genes that map to an X-linked region of reduced introgression and that are only expressed in the male germ line or that show high rates of protein evolution in comparison with rat. Second, we ask whether patterns of gene flow are correlated with recombination rate, gene density, base composition, CpG island density, mutation rate and the rate of protein evolution, as might be expected if many genes contribute to reproductive isolation. We identify seven candidate genes for reproductive isolation between M. domesticus and M. musculus , and our analyses reveal no general correlations between levels of introgression and other measured sequence characteristics. These results underline the utility of the house mouse as a model system for the study of speciation. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 523–534. 相似文献
12.
Hemberger M Kurz H Orth A Otto S Lüttges A Elliott R Nagy A Tan SS Tam P Zechner U Fundele RH 《Genetics》2001,157(1):341-348
It has been shown previously that abnormal placental growth, i.e., hyper- and hypoplasia, occurs in crosses and backcrosses between different mouse (Mus) species. A locus that contributes to this abnormal development has been mapped to the X chromosome. Unexpectedly, an influence of fetal sex on placental development has been observed, in that placentas attached to male fetuses tended to exhibit a more pronounced phenotype than placentas attached to females. Here, we have analyzed this sex dependence in more detail. Our results show that differences between male and female placental weights are characteristic of interspecific matings and are not observed in intraspecific Mus musculus matings. The effect is retained in congenic lines that contain differing lengths of M. spretus-derived X chromosome. Expression of the X-linked gene Pgk1 from the maternal allele only and lack of overall activity of two paternally inherited X-linked transgenes indicate that reactivation or lack of inactivation of the paternal X chromosome in trophoblasts of interspecific hybrids is not a frequent occurrence. Thus, the difference between male and female placentas seems not to be caused by faulty preferential X-inactivation. Therefore, these data suggest that the sex difference of placental weights in interspecific hybrids is caused by interactions with the Y chromosome. 相似文献
13.
Change in chromosome number associated with a double deletion in the Neurospora crassa mitochondrial chromosome 总被引:3,自引:1,他引:2
The mitochondrial genome of Neurospora is usually found in a single covalently closed circular 62-kbp DNA molecule. We report here that the mitochondrial genome of a phenotypic revertant of a stopper mutant (stp-ruv) is contained primarily in two separate, nonoverlapping, autonomously replicating circular chromosomes. The circles, one about 21 kbp and the other somewhat less than 36 kbp are derived from the most frequent classes of recombinant chromosomes (21 and 41 kbp) in the chromosomal population of mitochondria in the original stopper mutant. The new, more stable chromosomal configuration, is associated with the deletion of two sequences (1 kbp and 4 kbp) at the splice junctions of the two circles. The data suggest that both deletions are likely to have originated from a single recombinational event involved in generating the 36-kbp circle. Secondary, spontaneously arising derivatives of stp-ruv have been found to yield, at high copy number, short sections of the 21-kbp circle in covalently closed supercoiled circles varying from unit length to very high multimers. The amplified segments span a common segment likely to contain the replication origin of the 21-kbp chromosome. 相似文献
14.
P Boursot T Jacquart F Bonhomme J Britton-Davidian L Thaler 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1985,301(5):161-166
Analysis of mitochondrial DNA variability of the Mouse M. spretus over its whole living area reveals genetic isolation and phylogenetic independence of two geographical groups. The recent history of the species is discussed in the light of these data. 相似文献
15.
Location of genes coding for 18S and 28S ribosomal RNA within the genome of Mus musculus 总被引:3,自引:0,他引:3
Cytological detection of cistrons coding for 18S and 28S ribosomal RNA (rRNA) within the genome of Mus musculus inbred strain SEC/1ReJ was accomplished using the technique of in situ hybridization. Metaphase chromosome spreads prepared from cultured fetal mouse cells were stained with quinacrine-HCl and photographed. After destaining, they were hybridized to Xenopus laevis tritiated 18S and 28S rRNA, specific activity 7.5 X 10(6) dpm/mug. Silver grains clustered over specific chromosomes were readily apparent after 4 months of autoradiographic exposure. The identity of the labelled chromosomes was established by comparing the autoradiographs to quinacrine photographs showing characteristic fluorescent banding of the chromosomes in each metaphase spread. The 18S and 28S rRNA was found to hybridize to chromosomes 12, 18, and 16. Statistical analysis of the grain distribution over 26 spreads revealed that the three chromosomes were significantly labelled. Grains over these chromosomes were concentrated in an area immediately distal to the centromere, a region which in chromosomes 12 and 18 in this particular strain is the site of a secondary constriction. The relative size of the secondary constrictions, long and thus prominent on chromosome 12, obvious but shorter on 18, and indistinguishable on chromosome 16, correlated with the average number of grains observed over the centromeric region of these chromosomes, 2.5, 1.0, and 0.78, respectively. 相似文献
16.
Miguel Carneiro Stuart J. E. Baird Sandra Afonso Esther Ramirez Pedro Tarroso Henrique Teotónio Rafael Villafuerte Michael W. Nachman Nuno Ferrand 《Molecular ecology》2013,22(9):2511-2525
Maintenance of genetic distinction in the face of gene flow is an important aspect of the speciation process. Here, we provide a detailed spatial and genetic characterization of a hybrid zone between two subspecies of the European rabbit. We examined patterns of allele frequency change for 22 markers located on the autosomes, X‐chromosome, Y‐chromosome and mtDNA in 1078 individuals sampled across the hybrid zone. While some loci revealed extremely wide clines (w ≥ 300 km) relative to an estimated dispersal of 1.95–4.22 km/generation, others showed abrupt transitions (w ≈ 10 km), indicating localized genomic regions of strong selection against introgression. The subset of loci showing steep clines had largely coincident centers and stepped changes in allele frequency that did not co‐localize with any physical barrier or ecotone, suggesting that the rabbit hybrid zone is a tension zone. The steepest clines were for X‐ and Y‐chromosome markers. Our results are consistent with previous inference based on DNA sequence variation of individuals sampled in allopatry in suggesting that a large proportion of each genome has escaped the overall barrier to gene flow in the middle of the hybrid zone. These results imply an old history of hybridization and high effective gene flow and anticipate that isolation factors should often localize to small genomic regions. 相似文献
17.
18.
19.
S. Heppich H. G. Tunner J. Greilhuber 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1982,61(2):101-104
Summary Gamete production in the hybridogenetic species hybrid Rana esculenta (Rana ridibunda X Rana lessonae) is preceded by a premeiotic elimination of the R. lessonae genome and subsequent duplication of the remaining R. ridibunda genome, so that only ridibunda chromosomes enter a quasi normal meiosis, and only ridibunda gametes are formed. This is demonstrated by differences in genome specific centromere fluorescence and electrophoretic patterns between somatic and gonadal tissue. 相似文献
20.
A high resolution analysis of G-band pattern of normal and aberrant chromosome 1 bearing two linked insertions of homogeneously staining regions (HSRs) in the house mouse (Mus musculus musculus) reveals an inverted pattern of the euchromatic region between the HSRs. On the basis of this analysis, a hypothesis on the causes for appearance of the aberrant chromosome was put forward: the double insertion is a result of inversion of the chromosome 1 of Mus musculus domesticus bearing a single long insertion. The proximal breakpoint is localized inside the HSR and the distal one--between subbands E3 and E4. From the point of view of these data, new symbols for the aberrations are proposed: Ls (HSR, 1C5) 1Icg--for the proximal insertion, Is(HSR, 1D)21cg--for the distal one, In (1) 1Icg--for the inverted region, including the bands D, E1-E3 and the insertion Is(HSR 1D)21cg. 相似文献