首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[14C2]Coproporphyrin III, 14C-labelled in the carboxyl carbon atoms of the 2- and 4-propionate substituents, was prepared by stepwise modification of the vinyl groups of protoporphyrin IX. The corresponding porphyrinogen was used as substrate in a specific sensitive assay for coproporphyrinogen oxidase (EC 1.3.3.3) in which the rate of production of 14CO2 is measured. With this method, the Km of the enzyme from rat liver for coproporphyrinogen III is 1.2 micron. Coproporphyrin III is a competitive inhibitor of the enzyme (Ki 7.6 micron). Apparent Km values for other substrates were measured by a mixed-substrate method: that for coproporphyrinogen IV is 0.9 micron and that for harderoporphyrinogen 1.6 micron. Rat liver mitochondria convert pentacarboxylate porphyrinogen III into dehydroisocoproporphyrinogen at a rate similar to that for the formation of protoporphyrinogen IX from coproporphyrinogen III. Mixed-substrate experiments indicate that this reaction is catalysed by coproporphyrinogen oxidase and that the Km for this substrate is 29 micron. It is suggested that the ratio of the concentration of pentacarboxylate porphyrinogen III to coproporphyrinogen III in the hepatocyte determines the relative rates of formation of dehydroisocoproporphyrinogen and protoporphyrinogen IX.  相似文献   

2.
During porphyrin biosynthesis the oxygen-independent coproporphyrinogen III oxidase (HemN) catalyzes the oxidative decarboxylation of the propionate side chains of rings A and B of coproporphyrinogen III to form protoporphyrinogen IX. The enzyme utilizes a 5'-deoxyadenosyl radical to initiate the decarboxylation reaction, and it has been proposed that this occurs by stereo-specific abstraction of the pro-S-hydrogen atom at the beta-position of the propionate side chains leading to a substrate radical. Here we provide EPR-spectroscopic evidence for intermediacy of the latter radical by observation of an organic radical EPR signal in reduced HemN upon addition of S-adenosyl-L-methionine and the substrate coproporphyrinogen III. This signal (g(av) = 2.0029) shows a complex pattern of well resolved hyperfine splittings from at least five different hydrogen atoms. The radical was characterized using regiospecifically labeled (deuterium or 15N) coproporphyrinogen III molecules. They had been generated from a multienzyme mixture and served as efficient substrates. Reaction of HemN with coproporphyrinogen III, perdeuterated except for the methyl groups, led to the complete loss of resolved proton hyperfine splittings. Substrates in which the hydrogens at both alpha- and beta-positions, or only at the beta-positions of the propionate side chains, or those of the methylene bridges, were deuterated showed that there is coupling with hydrogens at the alpha-, beta-, and methylene bridge positions. Deuterium or 15N labeling of the pyrrole nitrogens without labeling the side chains only led to a slight sharpening of the radical signal. Together, these observations clearly identified the radical signal as substrate-derived and indicated that, upon abstraction of the pro-S-hydrogen atom at the beta-position of the propionate side chain by the 5'-deoxyadenosyl radical, a comparatively stable delocalized substrate radical intermediate is formed in the absence of electron acceptors. The observed hyperfine constants and g values show that this coproporphyrinogenyl radical is allylic and encompasses carbon atoms 3', 3, and 4.  相似文献   

3.
J G Straka  J P Kushner 《Biochemistry》1983,22(20):4664-4672
Uroporphyrinogen decarboxylase (EC 4.1.1.37) has been purified to homogeneity from bovine liver by using isoelectric and salt precipitations, followed by chromatography on DEAE-cellulose, phenyl-Sepharose, hydroxylapatite, and Sephacryl S-200. The purified enzyme is a monomer with an Mr approximately 57 000 and an isoelectric point at pH 4.6. Enzyme activity is optimal in buffers having an ionic strength of approximately 0.1 M and a pH of 6.8. The purified enzyme has a specific activity (expressed as the disappearance of uroporphyrinogen I) of 936 nmol X h-1 X (mg of protein)-1. The purified enzyme catalyzes all four decarboxylation reactions in the conversion of uroporphyrinogen I or III to the corresponding coproporphyrinogen. The rate-limiting step in the physiologically significant conversion of uroporphyrinogen III to coproporphyrinogen III is the decarboxylation of heptacarboxylate III. Kinetic data suggest that the enzyme has at least two noninteracting active sites. At least one sulfhydryl group is required for catalytic activity. The enzyme is inhibited by sulfhydryl-specific reagents and by divalent metal ions including Fe2+, Co2+, Cu2+, Zn2+, and Pb2+. The pattern of accumulation of intermediate (hepta-, hexa-, and pentacarboxylate porphyrinogens) and final (coproporphyrinogen) decarboxylation products is affected by the ratio of substrate (uroporphyrinogen I or III) concentration to enzyme concentration. Under physiologic conditions where the uroporphyrinogen to enzyme ratio is low, the substrate is nearly quantitatively decarboxylated, and the major product is coproporphyrinogen. If the ratio of uroporphyrinogen to enzyme is high, intermediates accumulate, and heptacarboxylate porphyrinogen becomes the major decarboxylation product.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
'Radical SAM' enzymes generate catalytic radicals by combining a 4Fe-4S cluster and S-adenosylmethionine (SAM) in close proximity. We present the first crystal structure of a Radical SAM enzyme, that of HemN, the Escherichia coli oxygen-independent coproporphyrinogen III oxidase, at 2.07 A resolution. HemN catalyzes the essential conversion of coproporphyrinogen III to protoporphyrinogen IX during heme biosynthesis. HemN binds a 4Fe-4S cluster through three cysteine residues conserved in all Radical SAM enzymes. A juxtaposed SAM coordinates the fourth Fe ion through its amide nitrogen and carboxylate oxygen. The SAM sulfonium sulfur is near both the Fe (3.5 A) and a neighboring sulfur of the cluster (3.6 A), allowing single electron transfer from the 4Fe-4S cluster to the SAM sulfonium. SAM is cleaved yielding a highly oxidizing 5'-deoxyadenosyl radical. HemN, strikingly, binds a second SAM immediately adjacent to the first. It may thus successively catalyze two propionate decarboxylations. The structure of HemN reveals the cofactor geometry required for Radical SAM catalysis and sets the stage for the development of inhibitors with antibacterial function due to the uniquely bacterial occurrence of the enzyme.  相似文献   

5.
1. The decarboxylations of uroporphyrinogens, hepta-, hexa- and penta-carboxyporphyrinogens I and III by porphyrinogen carboxy-lyase (EC 4.1.1.37) in rat liver supernatant have been compared as functions of substrate concentrations. Although Km and Vmax. (for total porphyrinogens formed) were estimated, prophyrinogens and CO2 produced at 1 microM were considered to be a better indication of real relative rates, owing to substrate/product inhibitions. Uroporphyrinogen III was the best substrate by the criteria of Km/Vmax. and decarboxylation at 1 microM and was converted into coproporphyrinogen more quickly than its series-I isomer. 2. The difference between uroporphyrinogens I and III as substrates was confirmed by using a mixture of [14C8]uroporphyrinogens, the discrimination occurring principally in the first decarboxylation. 3. Porphyrins, especially oxidation products of the substrates, inhibited the enzyme. Heptacarboxyporphyrin III was the most effective inhibitor of both uroporphyrinogen III and heptacarboxyporphyrinogen III conversion into coproporphyrinogen. 4. Rapid analysis of the livers from rats made porphyric with hexachlorobenzene demonstrated that substantial quantities of the tetrapyrroles were present in vivo as the porphyrinogens (21-42%). 5. Enzymic decarboxylation of uroporphyrinogen III in 2H2O-containing buffer gave [2H4]coproporphyrinogen. 6. Rats treated with cycloheximide for 10h showed no decrease in uroporphyrinogen decarboxylase activity/mg of protein, suggesting a relatively slow turnover of the enzyme.  相似文献   

6.
5-Aminolaevulinate synthetase cataylses the condensation of glycine and succinyl-CoA to give 5-aminolaevulinic acid. At least two broad pathways may be considered for the initial C--C bond forming step in the reaction. In pathway A the Schiff base of glycine and enzyme bound pyridoxal phosphate (a) undergoes decarboxylation to give the carbanion (b) which then condenses with succinyl-CoA with the retention of both the original C2 hydrogen atoms of glycine. In pathway B, loss of a C2 hydrogen atom gives another type of carbanion (c) that reacts with succinyl-CoA. Evidence has been presented to show that the initial C--C bond forming event occurs via pathway B which involves the removal of the pro R hydrogen atom of glycine. Subsequent mechanistic and stereochemical events occurring at the carbon atom destined to become C5 of 5-aminolaevulinate have also been delineated.(Carticle) Several mechanistic alternatices for the formation of the two vinyl groups of haem from the propionate residues of the precursor, coproporphyrinogen III, have been examined. (see article). It is shown that during the biosynthesis both the hydrogen atoms resident at the alpha positions of the propionate side chains remain undisturbed thus eliminating mechanisms which predict the involvement of acrylic acid intermediates. Biosynthetic experiments performed with precursors containing stereospecific labels have shown that the two vinyl groups of haem are formed through the loss of pro S hydrogen atoms from the beta-positions of the propionate side chains. In the light of these results, three related mechanisms for the conversion, propionate leads to vinyl, have been considered. In order to study the mechanism of porphyrinogen carboxy-lyase reaction, stereo-specifically deuterated, tritiated-succinate was incorporated into the acetate residues of uroporphyrinogen III which on decarboxylation generated asymmetric methyl groups in coproporphyrinogen III and then in haem. Degradation of the latter yielded chiral acetate deriving from C and D rings of haem. Configurational analysis of this derivate acetate shows that the carboxy-lyase reaction proceeds with a retention of configuration.  相似文献   

7.
Coproporphyrinogen oxidase is an important enzyme in heme biosynthesis and catalyses the sequential oxidative decarboxylation of propionates on the A and B rings of the porphyrinogen ring. The effects of substituents on the C and D rings have not been systematically evaluated for their effects on the kinetic constants, K(m) and V(max). A series of synthetic porphyrinogens have been tested for their ability to affect these kinetic constants for the chicken enzyme. The enzyme exhibited the largest V(max) when incubated with the authentic substrate and was clearly able to distinguish between various substituents on the C and D rings of the macrocycle. When co-incubated with substrate, the authentic product, protoporphyrinogen-IX, appears to inhibit coproporphyrinogen oxidase and this may have an important role in the regulation of this enzyme. Thus the model for the active site of this enzyme should be modified to take these factors into account.  相似文献   

8.
Porphyrinogens with modified propionate side chains bearing methyl substituents were found to be modest substrates for coproporphyrinogen oxidase; the results indicate that alteration of the substituents involved in secondary binding interactions has a comparable affect to modifying the side chain that undergoes degradation at the catalytic site.  相似文献   

9.
The S-adenosylmethionine (AdoMet) radical enzyme oxygen-independent coproporphyrinogen III oxidase HemN catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX during bacterial heme biosynthesis. The recently solved crystal structure of Escherichia coli HemN revealed the presence of an unusually coordinated iron-sulfur cluster and two molecules of AdoMet. EPR spectroscopy of the reduced iron-sulfur center in anaerobically purified HemN in the absence of AdoMet has revealed a [4Fe-4S](1+) cluster in two slightly different conformations. M?ssbauer spectroscopy of anaerobically purified HemN has identified a predominantly [4Fe-4S](2+) cluster in which only three iron atoms were coordinated by cysteine residues (isomer shift of delta = 0.43 (1) mm/s). The fourth non-cysteine-ligated iron exhibited a delta = 0.57 (3) mm/s, which shifted to a delta = 0.68 (3) mm/s upon addition of AdoMet. Substrate binding by HemN did not alter AdoMet coordination to the cluster. Multiple rounds of AdoMet cleavage with the formation of the reaction product methionine indicated AdoMet consumption during catalysis and identified AdoMet as a co-substrate for HemN catalysis. AdoMet cleavage was found to be dependent on the presence of the substrate coproporphyrinogen III. Two molecules of AdoMet were cleaved during one catalytic cycle for the formation of one molecule of protoporphyrinogen IX. Finally, the binding site for the unusual second, non iron-sulfur cluster coordinating AdoMet molecule (AdoMet2) was targeted using site-directed mutagenesis. All AdoMet2 binding site mutants still contained an iron-sulfur cluster and most still exhibited AdoMet cleavage, albeit reduced compared with the wild-type enzyme. However, all mutants lost their overall catalytic ability indicating a functional role for AdoMet2 in HemN catalysis. The reported significant correlation of structural and functional biophysical and biochemical data identifies HemN as a useful model system for the elucidation of general AdoMet radical enzyme features.  相似文献   

10.
Uroporphyrinogen decarboxylase (UROD) and coproporphyrinogen oxidase (copro'gen oxidase) are two of the least well understood enzymes in the heme biosynthetic pathway. In the fifth step of the pathway, UROD converts uroporphyrinogen III to coproporphyrinogen III by the decarboxylation of the four acetic acid side chains. Copro'gen oxidase then converts coproporphyrinogen III to protoporphyrinogen IX via two sequential oxidative decarboxylations. Studies of these two enzymes are important to increase our understanding of their mechanisms. Assay comparisons of UROD and copro'gen oxidase from chicken blood hemolysates (CBH), using a newly developed micro-assay, showed that the specific activity of both enzymes is increased in the micro-assay relative to the large-scale assay. The micro-assay has distinct advantages in terms of cost, labor intensity, amount of enzyme required, and sensitivity.  相似文献   

11.
W Bao  P J Sheldon  C R Hutchinson 《Biochemistry》1999,38(30):9752-9757
Biosynthesis of the polyketide-derived carbon skeleton of daunorubicin (DNR) begins with propionate rather than acetate, which is the starter unit for most other aromatic polyketides. The dpsCgene has been implicated in specifying the unique propionate-starter unit, and it encodes a protein that is very similar to the Escherichia coli beta-ketoacyl:acyl carrier protein (ACP) synthase III (FabH or KS III) enzyme of fatty acid biosynthesis. Purified DpsC was found to use propionyl-coenzyme A as substrate and to be acylated by propionate at the Ser-118 residue. DpsC exhibits KS III activity in catalyzing the condensation of propionyl-CoA and malonyl-ACP, and also functions as an acyltransferase in the transfer of propionate to an ACP. The DpsC enzyme has a high-substrate specificity, utilizing only propionyl-CoA, and not malonyl-CoA, 2-methylmalonyl-CoA or acetyl-CoA, as the starter unit of DNR biosynthesis.  相似文献   

12.
A method for the estimation of hepatic uroporphyrinogen decarboxylase activity employing reverse-phase HPLC is described. Mouse liver homogenate in 0.25 M sucrose was pretreated with a suspension of cellulose phosphate and then centrifuged to remove hemoglobin and debris. The supernatant was used as the enzyme source. Incubations were acidified, oxidized, and centrifuged only before analysis of the porphyrins formed, using a Spherisorb ODS column and a gradient solvent system constructed from methanol/lithium citrate mixtures. Coproporphyrinogen formation by BALB/c mouse liver supernatant was estimated as about 5.0 and 9.1 pmol/min/mg protein from uroporphyrinogens I and III, respectively, at 10 microM substrate concentration and pH 6.8. Decarboxylation of pentacarboxyporphyrinogens (the last step in coproporphyrinogen formation) proved to be easily measured. Coproporphyrinogen formation from pentacarboxyporphyrinogen III abd (20 microM) at pH 6.8 was about 109 pmol/min/mg protein. Pentacarboxyporphyrinogen I was not as good a substrate as III abd but was decarboxylated faster at pH 5.4 than at 6.8, and at the lower pH and at 10 microM concentration of substrate 42 pmol of coproporphyrinogen was formed/min/mg protein. These results compared favorably with those obtained by previously published procedures involving time-consuming extraction and esterification steps.  相似文献   

13.
We previously identified the prpBCDE operon, which encodes catabolic functions required for propionate catabolism in Salmonella typhimurium. Results from (13)C-labeling experiments have identified the route of propionate breakdown and determined the biochemical role of each Prp enzyme in this pathway. The identification of catabolites accumulating in wild-type and mutant strains was consistent with propionate breakdown through the 2-methylcitric acid cycle. Our experiments demonstrate that the alpha-carbon of propionate is oxidized to yield pyruvate. The reactions are catalyzed by propionyl coenzyme A (propionyl-CoA) synthetase (PrpE), 2-methylcitrate synthase (PrpC), 2-methylcitrate dehydratase (probably PrpD), 2-methylisocitrate hydratase (probably PrpD), and 2-methylisocitrate lyase (PrpB). In support of this conclusion, the PrpC enzyme was purified to homogeneity and shown to have 2-methylcitrate synthase activity in vitro. (1)H nuclear magnetic resonance spectroscopy and negative-ion electrospray ionization mass spectrometry identified 2-methylcitrate as the product of the PrpC reaction. Although PrpC could use acetyl-CoA as a substrate to synthesize citrate, kinetic analysis demonstrated that propionyl-CoA is the preferred substrate.  相似文献   

14.
Uroporphyrinogen decarboxylase (EC 4.1.1.37) has been purified 4419-fold to a specific activity of 58.3 nmol of coproporphyrinogen III formed/min per mg of protein (with pentacarboxyporphyrinogen III as substrate) from human erythrocytes by adsorption to DEAE-cellulose, (NH4)2SO4 fractionation, gel filtration, phenyl-Sepharose chromatography and polyacrylamide-gel electrophoresis. Progressive loss of activity towards uroporphyrinogens I and III occurred during purification. Experiments employing immunoprecipitation, immunoelectrophoresis and titration with solid-phase antibody indicated that all the uroporphyrinogen decarboxylase activity of human erythrocytes resides in one protein, and that the substrate specificity of this protein had changed during purification. The purified enzyme had a minimum mol.wt. of 39 500 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Gel filtration gave a mol.wt. of 58 000 for the native enzyme. Isoelectric focusing showed a single band with a pI of 4.60. Reaction with N-ethylmaleimide abolished both catalytic activity and immunoreactivity. Incubation with substrates or porphyrins prevented inactivation by N-ethylmaleimide. An antiserum raised against purified erythrocyte enzyme precipitated more than 90% of the uroporphyrinogen decarboxylase activity from human liver. Quantitative immunoprecipitation and crossed immunoelectrophoresis showed that the erythrocyte and liver enzymes are very similar but not identical. The differences observed may reflect secondary modification of enzyme structure by proteolysis or oxidation of thiol groups, rather than a difference in primary structure.  相似文献   

15.
Coproporphyrinogen oxidase, the sixth enzyme in the biosynthetic heme pathway, catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX. A reversed-phase high pressure liquid chromatography method was developed to measure coproporphyrinogen oxidase enzymatic activity in rat liver. With this method, the separation, identification and quantification of coproporphyrin III (oxidized substrate) and protoporphyrin IX (oxidized product) present in the assays could be carried out with no need of derivatization and in less than 15 min. Rat and human liver coproporphyrinogen oxidase basal activities determined using this method were 0.41+/-0.05 nmol of protoporphyrin IX/h per mg of hepatic protein and 0.87+/-0.06 protoporphyrin IX/h per mg of hepatic protein, respectively. Kinetic studies showed that optimum pH for rat CPGox is 7.3, and that its activity is linear in the range of protein concentrations and incubation times assayed. The present paper describes a sensitive, specific and rapid fluorometric high performance liquid chromatography method to measure coproporphyrinogen oxidase, which could be applied to the diagnosis of human coproporphyria, and which is also suitable for the study of lead and other metal poisoning that produce alterations in this enzymatic activity.  相似文献   

16.
During heme biosynthesis in Escherichia coli two structurally unrelated enzymes, one oxygen-dependent (HemF) and one oxygen-independent (HemN), are able to catalyze the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Oxygen-dependent coproporphyrinogen III oxidase was produced by overexpression of the E. coli hemF in E. coli and purified to apparent homogeneity. The dimeric enzyme showed a Km value of 2.6 microm for coproporphyrinogen III with a kcat value of 0.17 min-1 at its optimal pH of 6. HemF does not utilize protoporphyrinogen IX or coproporphyrin III as substrates and is inhibited by protoporphyrin IX. Molecular oxygen is essential for the enzymatic reaction. Single turnover experiments with oxygen-loaded HemF under anaerobic conditions demonstrated electron acceptor function for oxygen during the oxidative decarboxylation reaction with the concomitant formation of H2O2. Metal chelator treatment inactivated E. coli HemF. Only the addition of manganese fully restored coproporphyrinogen III oxidase activity. Evidence for the involvement of four highly conserved histidine residues (His-96, His-106, His-145, and His-175) in manganese coordination was obtained. One catalytically important tryptophan residue was localized in position 274. None of the tested highly conserved cysteine (Cys-167), tyrosine (Tyr-135, Tyr-160, Tyr-170, Tyr-213, Tyr-240, and Tyr-276), and tryptophan residues (Trp-36, Trp-123, Trp-166, and Trp-298) were found important for HemF activity. Moreover, mutation of a potential nucleotide binding motif (GGGXXTP) did not affect HemF activity. Two alternative routes for HemF-mediated catalysis, one metal-dependent, the other metal-independent, are proposed.  相似文献   

17.
Morollo AA  Petsko GA  Ringe D 《Biochemistry》1999,38(11):3293-3301
The structure of alanine racemase from Bacillus stearothermophilus with the inhibitor propionate bound in the active site was determined by X-ray crystallography to a resolution of 1.9 A. The enzyme is a homodimer in solution and crystallizes with a dimer in the asymmetric unit. Both active sites contain a pyridoxal 5'-phosphate (PLP) molecule in aldimine linkage to Lys39 as a protonated Schiff base, and the pH-independence of UV-visible absorption spectra suggests that the protonated PLP-Lys39 Schiff base is the reactive form of the enzyme. The carboxylate group of propionate bound in the active site makes numerous interactions with active-site residues, defining the substrate binding site of the enzyme. The propionate-bound structure therefore approximates features of the Michaelis complex formed between alanine racemase and its amino acid substrate. The structure also provides evidence for the existence of a carbamate formed on the side-chain amino group of Lys129, stabilized by interactions with one of the residues interacting with the carboxylate group of propionate, Arg136. We propose that this novel interaction influences both substrate binding and catalysis by precisely positioning Arg136 and modulating its charge.  相似文献   

18.
The terminal three steps in haem biosynthesis are the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX, followed by the six-electron oxidation of protoporphyrinogen to protoporphyrin IX, and finally the insertion of ferrous iron to form haem. Interestingly, Nature has evolved distinct enzymic machinery to deal with the antepenultimate (coproporphyrinogen oxidase) and penultimate (protoporphyrinogen oxidase) steps for aerobic compared with anaerobic organisms. The terminal step is catalysed by the enzyme ferrochelatase. This enzyme is clearly conserved with regard to a small set of essential catalytic residues, but varies significantly with regard to size, subunit composition, cellular location and the presence or absence of a [2Fe-2S] cluster. Coproporphyrinogen oxidase and protoporphyrinogen oxidase are reviewed with regard to their enzymic and physical characteristics. Ferrochelatase, which is the best characterized of these three enzymes, will be described with particular emphasis paid to what has been learned from the crystal structure of the Bacillus subtilis and human enzymes.  相似文献   

19.
20.
We describe fluorometric assays for two enzymes of the heme pathway, coproporphyrinogen oxidase and protoporphyrinogen oxidase. Both assays are based on measurement of protoporphyrin IX fluorescence generated from coproporphyrinogen III by the two consecutive reactions catalyzed by coproporphyrinogen oxidase and protoporphyrinogen oxidase. Both enzymatic activities are measured by recording protoporphyrin IX fluorescence increase in air-saturated buffer in the presence of EDTA (to inhibit ferrochelatase that can further metabolize protoporphyrin IX) and in the presence of dithiothreitol (that prevents nonenzymatic oxidation of porphyrinogens to porphyrins). Coproporphyrinogen oxidase (limiting) activity is measured in the presence of a large excess of protoporphyrinogen oxidase provided by yeast mitochondrial membranes isolated from commercial baker's yeast. These membranes are easy to prepare and are stable for at least 1 year when kept at -80 degrees C. Moreover they ensure maximum fluorescence of the generated protoporphyrin (solubilization effect), avoiding use of a detergent in the incubation medium. The fluorometric protoporphyrinogen oxidase two-step assay is closely related to that already described (J.-M. Camadro, D. Urban-Grimal, and P. Labbe, 1982, Biochem. Biophys. Res. Commun. 106, 724-730). Protoporphyrinogen is enzymatically generated from coproporphyrinogen by partially purified yeast coproporphyrinogen oxidase. The protoporphyrinogen oxidase reaction is then initiated by addition of the membrane fraction to be tested. However, when very low amounts of membrane are used, low amounts of Tween 80 (less than 1 mg/ml) have to be added to the incubation mixture to solubilize protoporphyrin IX in order to ensure optimal fluorescence intensity. This detergent has no effect on the rate of the enzymatic reaction when used at concentrations less than 2 mg/ml. Activities ranging from 0.1 to 4-5 nmol protoporphyrin formed per hour per assay are easily and reproducibly measured in less than 30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号