首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although it is known that Campylobacter jejuni invade the cells that line the human intestinal tract, the bacterial proteins that enable this pathogen to survive within Campylobacter-containing vacuoles (CCV) have not been identified. Here, we describe the identification and characterization of a protein that we termed CiaI for Campylobacter invasion antigen involved in intracellular survival. We show that CiaI harbours an amino-terminal type III secretion sequence and is secreted from C. jejuni through the flagellar type III secretion system. In addition, the ciaI mutant was impaired in intracellular survival when compared with a wild-type strain, as judged by the gentamicin-protection assay. Fluorescence microscopy examination of epithelial cells infected with the C. jejuni ciaI mutant revealed that the CCV were more frequently co-localized with Cathepsin D (a lysosomal marker) than the CCV in cells infected with a C. jejuni wild-type strain. Ectopic expression of CiaI-GFP in epithelial cells yielded a punctate phenotype not observed with the other C. jejuni genes, and this phenotype was abolished by mutation of a dileucine motif located in the carboxy-terminus of the protein. Based on the data, we conclude that CiaI contributes to the ability of C. jejuni to survive within epithelial cells.  相似文献   

2.
Campylobacter jejuni is the leading cause of food-borne illness in the USA and one of the most common causes of diarrhoea worldwide. Central to its pathogenicity is its ability to induce the production of proinflammatory cytokines such as interleukin (IL)-8 in intestinal epithelial cells. Here, we demonstrated that C. jejuni infection of intestinal epithelial cells results in the activation of the ERK and p38 mitogen-activated protein kinases and that the ERK kinase pathway is essential for IL-8 production. We found that MAP kinase stimulation leading to IL-8 secretion requires C. jejuni gene products whose production is stimulated upon contact with epithelial cells. We also found that C. jejuni flagellin is a very poor stimulator of Toll-like receptor (TLR)-5 and therefore does not play a significant role in the stimulation of cytokine production.  相似文献   

3.
Campylobacter jejuni is the foremost cause of bacterial-induced diarrhoeal disease worldwide. Although it is well established that C. jejuni infection of intestinal epithelia triggers host innate immune responses, the mechanism(s) involved remain poorly defined. Innate immunity can be initiated by families of structurally related pattern-recognition receptors (PRRs) that recognize specific microbial signature motifs. Here, we demonstrated maximal induction of epithelial innate responses during infection with live C. jejuni cells. In contrast when intestinal epithelial cells (IECs) were exposed to paraformaldehyde-fixed bacteria, host responses were minimal and a marked reduction in the number of intracellular bacteria was noted in parallel. These findings suggested a role for intracellular host-C. jejuni interactions in eliciting early innate immunity. We therefore investigated the potential involvement of a family of intracellular, cytoplasmic PRRs, the nucleotide-binding oligomerization domain (NOD) proteins in C. jejuni recognition. We identified NOD1, but not NOD2, as a major PRR for C. jejuni in IEC. We also found that targeting intestinal epithelial NOD1 with small interfering RNA resulted in an increase in number of intracellular C. jejuni, thus highlighting a critical role for NOD1-mediated antimicrobial defence mechanism(s) in combating this infection at the gastrointestinal mucosal surface.  相似文献   

4.
Campylobacter jejuni is a highly prevalent food-borne pathogen that causes diarrhoeal disease in humans. A natural zoonotic, it must overcome significant stresses both in vivo and during transmission despite the absence of several traditional stress response genes. Although relatively little is understood about its mechanisms of pathogenesis, its ability to interact with and invade human intestinal epithelial cells closely correlates with virulence. A C. jejuni microarray-based screen revealed that several known virulence genes and several uncharacterized genes, including spoT, were rapidly upregulated during infection of human epithelial cells. spoT and its homologue relA have been shown in other bacteria to regulate the stringent response, an important stress response that to date had not been demonstrated for C. jejuni or any other epsilon-proteobacteria. We have found that C. jejuni mounts a stringent response that is regulated by spoT. Detailed analyses of a C. jejuni delta spoT mutant revealed that the stringent response is required for several specific stress, transmission and antibiotic resistance-related phenotypes. These include stationary phase survival, growth and survival under low CO2/high O2 conditions, and rifampicin resistance. A secondary suppressor strain that specifically rescues the low CO2 growth defect of the delta spoT mutant was also isolated. The stringent response additionally proved to be required for the virulence-related phenotypes of adherence, invasion, and intracellular survival in two human epithelial cell culture models of infection; spoT is the first C. jejuni gene shown to participate in longer term survival in epithelial cells. Microarray analyses comparing wild-type to the delta spoT mutant also revealed a strong correlation between gene expression profiles and phenotype differences observed. Together, these data demonstrate a critical role for the C. jejuni stringent response in multiple aspects of C. jejuni biology and pathogenesis and, further, may lend novel insight into unexplored features of the stringent response in other prokaryotic organisms.  相似文献   

5.
Campylobacter jejuni is a food-borne bacterial pathogen that colonizes the intestinal tract and causes severe gastroenteritis. Interaction with host epithelial cells is thought to enhance severity of disease, and the ability of C. jejuni to modulate its metabolism in different in vivo and environmental niches contributes to its success as a pathogen. A C. jejuni operon comprising two genes that we designated fdhT (CJJ81176_1492) and fdhU (CJJ81176_1493) is conserved in many bacterial species. Deletion of fdhT or fdhU in C. jejuni resulted in apparent defects in adherence and/or invasion of Caco-2 epithelial cells when assessed by CFU enumeration on standard Mueller-Hinton agar. However, fluorescence microscopy indicated that each mutant invaded cells at wild-type levels, instead suggesting roles for FdhTU in either intracellular survival or postinvasion recovery. The loss of fdhU caused reduced mRNA levels of formate dehydrogenase (FDH) genes and a severe defect in FDH activity. Cell infection phenotypes of a mutant deleted for the FdhA subunit of FDH and an ΔfdhU ΔfdhA double mutant were similar to those of a ΔfdhU mutant, which likewise suggested that FdhU and FdhA function in the same pathway. Cell infection assays followed by CFU enumeration on plates supplemented with sodium sulfite abolished the ΔfdhU and ΔfdhA mutant defects and resulted in significantly enhanced recovery of all strains, including wild type, at the invasion and intracellular survival time points. Collectively, our data indicate that FdhTU and FDH are required for optimal recovery following cell infection and suggest that C. jejuni alters its metabolic potential in the intracellular environment.  相似文献   

6.
Many microbial pathogens co‐opt or perturb host membrane trafficking pathways. This review covers recent examples in which microbes interact with host exocytosis, the fusion of intracellular vesicles with the plasma membrane. The bacterial pathogens Listeria monocytogenes and Staphylococcus aureus subvert recycling endosomal pathways of exocytosis in order to induce their entry into human cells. By contrast, entry of the protozoan pathogen Trypanosoma cruzi or the virus adenovirus into host cells involves exploitation of lysosomal exocytosis. Toxins produced by Bacillus anthracis or Vibrio cholerae interfere with exocytosis pathways mediated by the GTPase Rab11 and the exocyst complex. By doing so, anthrax or cholera toxins impair recycling of cadherins to cell–cell junctions and disrupt the barrier properties of endothelial cells or intestinal epithelial cells, respectively. Uropathogenic Escherichia coli (UPEC) is expelled from bladder epithelial cells through two different exocytic routes that involve sensing of bacteria in vacuoles by host Toll‐like receptor 4 (TLR4) or monitoring of the pH of lysosomes harbouring UPEC. The TLR4 pathway is mediated by multiple Rab GTPases and the exocyst, whereas the other pathway involves exocytosis of lysosomes. Expulsion of UPEC through these pathways is thought to benefit the host.  相似文献   

7.
Ji S  Shin JE  Kim YC  Choi Y 《Molecules and cells》2010,30(6):519-526
The role of Fusobacterium nucleatum in oral health and disease is controversial. We have previously shown that F. nucleatum invades gingival epithelial cells. However, the destiny of the internalized F. nucleatum is not clear. In the present study, the intracellular destiny of F. nucleatum and its cytopathic effect on gingival epithelial cells were studied. The ability of F. nucleatum and seven other oral bacterial species to invade immortalized human gingival epithelial (HOK-16B) cells were compared by confocal microscopy and flow cytometry. F. nucleatum had the highest invasive capacity, comparable to that of Porphyromonas gingivalis, a periodontal pathogen. Confocal microscopic examination revealed colocalization of internalized F. nucleatum with endosomes and lysosomes. Examination by transmission electron microscopy revealed that most intracellular F. nucleatum was located within vesicular structures with single enclosed membranes. Furthermore, F. nucleatum could not survive within gingival epithelial cells and had no cytopathic effects on host cells. Interestingly, endosomal maturation played a role in induction of the antimicrobial peptides human beta defensin (HBD)-2 and -3 by F. nucleatum from gingival epithelial cells. F. nucleatum is destined to enter an endocytic degradation pathway after invasion and has no cytopathic effect on gingival epithelial cells, which may cast new light on the role of F. nucleatum in the pathogenesis of periodontitis.  相似文献   

8.
The mechanisms used by Campylobacter jejuni to induce internalization into host intestinal epithelial cells have not been defined. In this study, we obtained evidence that exposure of INT-407 cells to protein kinase inhibitors results in decreased invasion of these cells by C. jejuni in a dose dependent manner. Preincubation of INT-407 cells in the presence of staurosporine, tyrphostin 46 and genistein decreased invasion of these cells by C. jejuni significantly. Moreover, C. jejuni infection of INT-407 cells induced tyrosine phosphorylation of several Triton X-100 soluble proteins with approximate molecular weights of 170, 145, 90, 60 and 55 kDa that were absent or reduced in the presence of genistein in cells after 1 hr of pretreatment. These data suggest that tyrosine protein kinase-linked pathways strongly regulate the internalization of C. jejuni into intestinal epithelial cells.  相似文献   

9.
Few data exist on the interaction of Campylobacter upsaliensis with host cells, and the potential for this emerging enteropathogen to invade epithelial cells has not been explored. We have characterized the ability of C. upsaliensis to invade both cultured epithelial cell lines and primary human small intestinal cells. Epithelial cell lines of intestinal origin appeared to be more susceptible to invasion than non-intestinal-derived cells. Of three bacterial isolates studied, a human clinical isolate, CU1887, entered cells most efficiently. Although there was a trend towards more efficient invasion of Caco-2 cells by C. upsaliensis CU1887 at lower initial inocula, actual numbers of intracellular organisms increased with increasing multiplicity of infection and with prolonged incubation period. Confocal microscopy revealed C. upsaliensis within primary human small intestinal cells. Both Caco-2 and primary cells in non-confluent areas of the infected monolayers were substantially more susceptible to infection than confluent cells. The specific cytoskeletal inhibitors cytochalasin B, cytochalasin D and vinblastine attenuated invasion of Caco-2 cells in a concentration-dependent manner, providing evidence for both microtubule- and microfilament-dependent uptake of C. upsaliensis. Electron microscopy revealed the presence of organisms within Caco-2 cell cytoplasmic vacuoles. C. upsaliensis is capable of invading epithelial cells and appears to interact with host cell cytoskeletal structures in order to gain entry to the intracellular environment. Entry into cultured primary intestinal cells ex vivo provides strong support for the role of host cell invasion during human enteric C. upsaliensis infection.  相似文献   

10.
Upon entry into mammalian cells, the intracellular pathogen Brucella abortus resides within a membrane-bound compartment, the Brucella -containing vacuole (BCV), the maturation of which is controlled by the bacterium to generate a replicative organelle derived from the endoplasmic reticulum (ER). Prior to reaching the ER, Brucella is believed to ensure its intracellular survival by inhibiting fusion of the intermediate BCV with late endosomes and lysosomes, although such BCVs are acidic and accumulate the lysosomal-associated membrane protein (LAMP-1). Here, we have further examined the nature of intermediate BCVs using confocal microscopy and live cell imaging. We show that BCVs rapidly acquire several late endocytic markers, including the guanosine triphosphatase Rab7 and its effector Rab-interacting lysosomal protein (RILP), and are accessible to fluid-phase markers either delivered to the whole endocytic pathway or preloaded to lysosomes, indicating that BCVs interact with late endosomes and lysosomes. Consistently, intermediate BCVs are acidic and display proteolytic activity up to 12 h post-infection. Expression of dominant-negative Rab7 or overexpression of RILP significantly impaired the ability of bacteria to convert their vacuole into an ER-derived organelle and replicate, indicating that BCV maturation requires interactions with functional late endosomal/lysosomal compartments. In cells expressing dominant-negative Rab7[T22N], BCVs remained acidic, yet displayed decreased fusion with lysosomes. Taken together, these results demonstrate that BCVs traffic along the endocytic pathway and fuse with lysosomes, and such fusion events are required for further maturation of BCVs into an ER-derived replicative organelle.  相似文献   

11.
We examined the metabolism and intracellular transport of a fluorescent sphingomyelin analogue, N-(N-[6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]caproyl])- sphingosylphosphorylcholine (C6-NBD-SM), in both normal and Niemann-Pick, type A (NP-A) human skin fibroblast monolayers. C6-NBD-SM was integrated into the plasma membrane bilayer by transfer of C6-NBD-SM monomers from liposomes to cells at 7 degrees C. The cells were washed, and within 3 min of warming to 37 degrees C, both normal and NP-A fibroblasts had internalized C6-NBD-SM from the plasma membrane, resulting in a punctate pattern of intracellular fluorescence. Rates for C6-NBD-SM internalization and transport from intracellular compartments to the plasma membrane (recycling) were similar for normal and NP-A cells. With increasing time at 37 degrees C, internalized C6-NBD-SM accumulated in the lysosomes of NP-A fibroblasts, while normal fibroblasts showed increasing Golgi apparatus fluorescence with no observable lysosomal labeling. Since NP-A fibroblasts lack lysosomal (acid) sphingomyelinase (A-SMase), this result suggested that hydrolysis of C6-NBD-SM prevented its accumulation in the lysosomes of normal fibroblasts during its transport along the degradative pathway. We used the amount of C6-NBD-SM hydrolysis by A-SMase in normal cells as a measure of C6-NBD-SM transported from the cell surface to the lysosomes. After a lag period, C6-NBD-SM was delivered to the lysosomes at a rate of approximately 8%/h. This rate was approximately 18-19 fold slower than the rate of C6-NBD-SM recycling from intracellular compartments to the plasma membrane. Thus, small amounts of C6-NBD-SM were transported along the degradative pathway, while most endocytosed C6-NBD-SM was sorted for transport along the plasma membrane recycling pathway.  相似文献   

12.
Campylobacter jejuni is a major cause of bacterial diarrheal disease. Most enteropathogenic bacteria including C. jejuni can invade cultured eukaryotic cells via an actin- and/or microtubule-dependent and an energy-consuming uptake process. Recently, we identified a novel highly efficient C. jejuni invasion pathway that involves bacterial migration into the subcellular space of non-polarized epithelial cells (termed subvasion) followed by invasion from the cell basis. Here we report cellular requirements of this entry mechanism and the subsequent intracellular trafficking route of C. jejuni in polarized islands of Caco-2 intestinal epithelial cells. Advanced microscopy on infected cells revealed that C. jejuni invades the polarized intestinal cells via the subcellular invasion pathway. Remarkably, invasion was not blocked by the inhibitors of microtubule dynamics colchicine or paclitaxel, and was even enhanced after disruption of host cell actin filaments by cytochalasin D. Invasion also continued after dinitrophenol-induced cellular depletion of ATP, whereas this compound effectively inhibited the uptake of invasive Escherichia coli. Confocal microscopy demonstrated that intracellular C. jejuni resided in membrane-bound CD63-positive cellular compartments for up to 24 h. Establishment of a novel luciferase reporter-based bacterial viability assay, developed to overcome the limitations of the classical bacterial recovery assay, demonstrated that a subset of C. jejuni survived intracellularly for up to 48 h. Taken together, our results indicate that C. jejuni is able to actively invade polarized intestinal epithelial cells via a novel actin- and microtubule-independent mechanism and remains metabolically active in the intracellular niche for up to 48 hours.  相似文献   

13.
Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells. Recent genome-wide association studies have highlighted the autophagy pathway as being associated with CD risk. In the present study we investigated whether defects in autophagy enhance replication of commensal and pathogenic Escherichia coli and CD-associated AIEC. We show that functional autophagy limits intracellular AIEC replication and that a subpopulation of the intracellular bacteria is located within LC3-positive autophagosomes. In IRGM and ATG16L1 deficient cells intracellular AIEC LF82 bacteria have enhanced replication. Surprisingly autophagy deficiency did not interfere with the ability of intracellular bacteria to survive and/or replicate for any other E. coli strains tested, including non-pathogenic, environmental, commensal, or pathogenic strains involved in gastro enteritis. Together these findings demonstrate a central role for autophagy restraining Adherent-Invasive E. coli strains associated with ileal CD. AIEC infection in patients with polymorphisms in autophagy genes may have a significant impact on the outcome of intestinal inflammation.  相似文献   

14.
Campylobacter jejuni isolates obtained from human and animal sources showed different invasion levels into human embryonic intestinal (INT-407) cells. There was no significant relation between the degree of invasion and cytotoxins production. The depolymerization of both microfilaments by cytochalasin-D and microtubules by colchicine, demecolcine and nocodazole or stabilization of microtubules by paclitaxel reduced the invasiveness of C. jejuni, although microfilament depolymerization showed greater inhibition than microtubule depolymerization. Interference with receptor-mediated endocytosis by G-strophanthin and monodansylcadaverine and inhibition of endosome acidification by monensin reduced the number of viable intracellular C. jejuni cells. Furthermore inhibition of only host protein kinases by staurosporine, but not phosphoinositide 3-kinase by wortmannin or protein kinase-C by calphostin-C, significantly reduced invasion of epithelial cells by C. jejuni. These data suggest that the internalization mechanism triggered by C. jejuni is strikingly different from the microfilament-dependent invasion mechanism exhibited by many of the well-studied enteric bacteria such as enteroinvasive strains of Escherichia coli, Salmonella typhimurium, Shigella flexneri, Yersinia enterocolitica and Yersinia pseudotuberculosis.  相似文献   

15.
Salmonella typhimurium, like many other intracellular pathogens, is capable of inducing its own uptake into non-phagocytic cells by a process termed invasion, and residing within a membrane-bound inclusion. During invasion it causes significant rearrangement of the host cytoskeleton, indicating that signals are transduced between the bacterium and the host cell cytoplasm, across the eukaryotic cell membrane. We found that intracellular inositol phosphate concentrations in HeLa cells increased during S. typhimurium entry and returned to normal levels after bacterial internalization. A chelator of intracellular calcium (BAPTA/AM) blocked S. typhimurium uptake into HeLa epithelial cells, but extracellular calcium chelators (BAPTA, EGTA, EDTA) had no effect on bacterial invasion. These results indicate that S. typhimurium may activate host cell phospholipase C activity to form inositol phosphates which in turn stimulate release of intracellular calcium stores to facilitate bacterial uptake.  相似文献   

16.
The spatio-temporal changes of signaling molecules in response to G protein-coupled receptors (GPCR) stimulation is a poorly understood process in intestinal epithelial cells. Here we investigate the dynamic mechanisms associated with GPCR signaling in living rat intestinal epithelial cells by characterizing the intracellular translocation of protein kinase D (PKD), a serine/threonine protein kinase involved in mitogenic signaling in intestinal epithelial cells. Analysis of the intracellular steady-state distribution of green fluorescent protein (GFP)-tagged PKD indicated that in non-stimulated IEC-18 cells, GFP-PKD is predominantly cytoplasmic. However, cell stimulation with the GPCR agonist vasopressin induces a rapid translocation of GFP-PKD from the cytosol to the plasma membrane that is accompanied by its activation via protein kinase C (PKC)-mediated process and posterior plasma membrane dissociation. Subsequently, active PKD is imported into the nuclei where it transiently accumulates before being exported into the cytosol by a mechanism that requires a competent Crm1 nuclear export pathway. These findings provide evidence for a mechanism by which PKC coordinates in intestinal epithelial cells the translocation and activation of PKD in response to vasopressin-induced GPCR activation.  相似文献   

17.
Intestinal epithelial cells are an important site of the host's interaction with enteroinvasive bacteria. Genes in the chromosomally encoded Salmonella pathogenicity island 2 (SPI 2) that encodes a type III secretion system and genes on the virulence plasmid pSDL2 of Salmonella enteritica serovar Dublin (spv genes) are thought to be important for Salmonella dublin survival in host cells. We hypothesized that genes in those loci may be important also for prolonged Salmonella growth and the induction of apoptosis induced by Salmonella in human intestinal epithelial cells. HT-29 human intestinal epithelial cells were infected with wild-type S. dublin or isogenic mutants deficient in the expression of spv genes or with SPI 2 locus mutations. Neither the spv nor the SPI 2 mutations affected bacterial entry into epithelial cells or intracellular proliferation of Salmonella during the initial 8 h after infection. However, at later periods, bacteria with mutations in the SPI 2 locus or in the spv locus compared to wild-type bacteria, manifested a marked decrease in intracellular proliferation and a different distribution pattern of bacteria within infected cells. Epithelial cell apoptosis was markedly increased in response to infection with wild-type, but not the mutant Salmonella. However, apoptosis of epithelial cells infected with wild-type S. dublin was delayed for approximately 28 h after bacterial entry. Apoptosis was preceded by caspase 3 activation, which was also delayed for approximately 24 h after infection. Despite its late onset, the cellular commitment to apoptosis was determined in the early period after infection as inhibition of bacterial protein synthesis during the first 6 h after epithelial cell infection with wild-type S. dublin, but not at later times, inhibited the induction of apoptosis. These studies indicate that genes in the SPI 2 and the spv loci are crucial for prolonged bacterial growth in intestinal epithelial cells. In addition to their influence on intracellular proliferation of Salmonella, genes in those loci determine the ultimate fate of infected epithelial cells with respect to caspase 3 activation and undergoing death by apoptosis.  相似文献   

18.
Mycobacteria have the ability to persist within host phagocytes, and their success as intracellular pathogens is thought to be related to the ability to modify their intracellular environment. After entry into phagocytes, mycobacteria-containing phagosomes acquire markers for the endosomal pathway, but do not fuse with lysosomes. The molecular machinery that is involved in the entry and survival of mycobacteria in host cells is poorly characterized. Here we describe the use of organelle electrophoresis to study the uptake of Mycobacterium bovis bacille Calmette Guerin (BCG) into murine macrophages. We demonstrate that live, but not dead, mycobacteria occupy a phagosome that can be physically separated from endosomal/lysosomal compartments. Biochemical analysis of purified mycobacterial phagosomes revealed the absence of endosomal/lysosomal markers LAMP-1 and β-hexosaminidase. Combining subcellular fractionation with two-dimensional gel electrophoresis, we found that a set of host proteins was present in phagosomes that were absent from endosomal/lysosomal compartments. The residence of mycobacteria in compartments outside the endosomal/lysosomal system may explain their persistence inside host cells and their sequestration from immune recognition. Furthermore, the approach described here may contribute to an improved understanding of the molecular mechanisms that determine the intracellular fate of mycobacteria during infection.  相似文献   

19.
Hölzer SU  Hensel M 《PloS one》2012,7(3):e33220
The molecular mechanisms of virulence of the gastrointestinal pathogen Salmonella enterica are commonly studied using cell culture models of infection. In this work, we performed a direct comparison of the interaction of S. enterica serovar Typhimurium (S. Typhimurium) with the non-polarized epithelial cell line HeLa, the polarized cell lines CaCo2, T84 and MDCK, and macrophage-like RAW264.7 cells. The ability of S. Typhimurium wild-type and previously characterized auxotrophic mutant strains to enter host cells, survive and proliferate within mammalian cells and deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) was quantified. We found that the entry of S. Typhimurium into polarized cells was much more efficient than entry into non-polarized cells or phagocytic uptake. While SPI2-T3SS dependent intracellular proliferation was observed in HeLa and RAW cells, the intracellular replication in polarized cells was highly restricted and not affected by defective SPI2-T3SS. The contribution of aromatic amino acid metabolism and purine biosynthesis to intracellular proliferation was distinct in the various cell lines investigated. These observations indicate that the virulence phenotypes of S. Typhimurium are significantly affected by the cell culture model applied.  相似文献   

20.
Campylobacter jejuni isolates possess multiple adhesive proteins termed adhesins, which promote the organism's attachment to epithelial cells. Based on the proposal that one or more adhesins are shared among C. jejuni isolates, we hypothesized that C. jejuni strains would compete for intestinal and cecal colonization in broiler chicks. To test this hypothesis, we selected two C. jejuni strains with unique SmaI pulsed-field gel electrophoresis macrorestriction profiles and generated one nalidixic acid-resistant strain (the F38011 Nal(r) strain) and one streptomycin-resistant strain (the 02-833L Str(r) strain). In vitro binding assays revealed that the C. jejuni F38011 Nal(r) and 02-833L Str(r) strains adhered to LMH chicken hepatocellular carcinoma epithelial cells and that neither strain influenced the binding potential of the other strain at low inoculation doses. However, an increase in the dose of the C. jejuni 02-833L Str(r) strain relative to that of the C. jejuni F38011 Nal(r) strain competitively inhibited the binding of the C. jejuni F38011 Nal(r) strain to LMH cells in a dose-dependent fashion. Similarly, the C. jejuni 02-833L Str(r) strain was found to significantly reduce the efficiency of intestinal and cecal colonization by the C. jejuni F38011 Nal(r) strain in broiler chickens. Based on the number of bacteria recovered from the ceca, the maximum number of bacteria that can colonize the digestive tracts of chickens may be limited by host constraints. Collectively, these data support the hypothesis that C. jejuni strains compete for colonization in chicks and suggest that it may be possible to design novel intervention strategies for reducing the level at which C. jejuni colonizes the cecum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号