首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The inner core of neisserial lipooligosaccharide (LOS) contains heptose residues that can be decorated by phosphoethanolamine (PEA). PEA modification of heptose II (HepII) can occur at the 3, 6, or 7 position(s). We used a genomic DNA sequence of lpt3, derived from Neisseria meningitidis MC58, to search the genomic sequence of N. gonorrhoeae FA1090 and identified a homolog of lpt3 in N. gonorrhoeae. A PCR amplicon containing lpt3 was amplified from F62DeltaLgtA, cloned, mutagenized, and inserted into the chromosome of N. gonorrhoeae strain F62DeltaLgtA, producing strain F62DeltaLgtAlpt3::Tn5. LOS isolated from this strain lost the ability to bind monoclonal antibody (MAb) 2-1-L8. Complementation of this mutation by genetic removal of the transposon insertion restored MAb 2-1-L8 binding. Mass spectrometry analysis of LOS isolated from the F62DeltaLgtA indicated that this strain contained two PEA modifications on its LOS. F62DeltaLgtAlpt3::Tn5 lacked a PEA modification on its LOS, a finding consistent with the hypothesis that lpt3 encodes a protein mediating PEA addition onto gonococcal LOS. The DNA encoding lpt3 was cloned into an expression vector and Lpt3 was purified. Purified Lpt3 was able to mediate the addition of PEA to LOS isolated from F62DeltaLgtAlpt3::Tn5.  相似文献   

3.
Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH) to fH-binding protein (fHbp) is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a ∼17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA), a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep) I chain of lipooligosaccharide (LOS), or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6–7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components.  相似文献   

4.
Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains.  相似文献   

5.
O-Acetylation is a common decoration on endotoxins derived from many Gram-negative bacterial species, and it has been shown to be instrumental (e.g. in Salmonella typhimurium) in determining the final tertiary structure of the endotoxin and the immunogenicity of the molecule. Structural heterogeneity of endotoxins produced by mucosal pathogens such as Neisseria meningitidis is determined by decorations on the heptose inner core, including O-acetylation of the terminal N-acetylglucosamine (GlcNAc) attached to HepII. In this report, we show that O-acetylation of the meningococcal lipooligosaccharide (LOS) inner core has an important role in determining inner core assembly and immunotype expression. The gene encoding the LOS O-acetyltransferase, lot3, was identified by homology to NodX from Rhizobium leguminosarum. Inactivation of lot3 in strain NMB resulted in the loss of the O-acetyl group located at the C-3 position of the terminal GlcNAc of the LOS inner core. Inactivation of either lot3 or lgtG, which encodes the HepII glucosyltransferase, did not result in the appearance of the O-3-linked phosphoethanolamine (PEA) groups on the LOS inner core. Construction of a double mutant in which both lot3 and lgtG were inactivated resulted in the appearance of O-3-linked PEA groups on the LOS inner core. In conclusion, O-acetylation status of the terminal GlcNAc of the gamma-chain of the meningococcal LOS inner core is an important determinant for the appearance or exclusion of the O-3-linked PEA group on the LOS inner core and contributes to LOS structural diversity. O-Acetylation also likely influences resistance to complement-mediated lysis and may be important in LOS conjugate vaccine design.  相似文献   

6.
Neisseria meningitidis expresses a heterogeneous populationof lipooligosaccharide (LOS) inner cores variously substitutedwith 1-3-linked glucose and O-3, O-6, and O-7 linked phosphoethanolamine(PEA), as well as glycine, attached to HepII. Combinations ofthese attachments to the LOS inner core represent immunodominantepitopes that are being exploited as future vaccine candidates.Historically, each LOS immunotype was structurally assessedand prescribed a certain unique inner core epitope. We reportthat a single isolate, strain NMB, possesses the capacity toproduce all of the known neisserial LOS inner core immunotypestructures. Analysis of the inner cores from parental LOS revealedthe presence or absence of 1,3-linked glucose, O-6 and/or O-7linked PEA, in addition to glycine attached at the 7 positionof the HepII inner core. Identification and inactivation oflpt-6 in strain NMB resulted in the loss of both O-6 and O-7linked PEA groups from the LOS inner core, suggesting that Lpt-6of strain NMB may have bifunctional transferase activities orthat the O-6 linked PEA groups once attached to the inner coreundergo nonenzymatic transfer to the O-7 position of HepII.Although O-3 linked PEA was not detected in parental LOS innercores devoid of 1-3-linked glucose residues, LOS glycoformsbearing O-3 PEA groups accumulated in a truncated mutant, NMBlgtK(Hep2Kdo2-lipid A). Because these structures disappeared uponinactivation of the lpt-3 locus, strain NMB expresses a functionalO-3 PEA transferase. The LOS glycoforms expressed by NMBlgtKwere also devoid of glycine attachments, indicating that glycinewas added to the inner core after the completion of the -chainby LgtK. In conclusion, strain NMB has the capability to expressall known inner core structures, but in in vitro culture L2and L4 immunotype structures are predominantly expressed.  相似文献   

7.
Haemophilus influenzae expresses heterogeneous populations of short-chain lipopolysaccharide (LPS) which exhibit extensive antigenic diversity among multiple oligosaccharide epitopes. These LPS oligosaccharide epitopes can carry phosphocholine (PCho) substituents, the expression of which is subject to high frequency phase variation mediated by genes in the lic1 genetic locus. The location and site of attachment of PCho substituents were determined by structural analysis of LPS from two type b H. influenzae strains, Eagan and RM7004. The lic2 locus is involved in phase variation of oligosaccharide expression. LPS obtained from the parent strains, from mutants generated by insertion of antibiotic resistance cassettes in the lic2 genetic locus, and from phase-variants showing high levels of PCho expression was characterized by electrospray ionization-mass spectrometry (ESI-MS) and 1H NMR spectroscopy of derived O-deacylated samples. ESI-MS of O-deacylated LPS from wild-type strains revealed mixtures of related glycoform structures differing in the number of hexose residues. Analysis of LPS from PCho-expressing phase-variants revealed similar mixtures of glycoforms, each containing a single PCho substituent. O-Deacylated LPS preparations from the lic2 mutants were much less complex than their respective parent strains, consisting only of Hex3 and/or Hex2 glycoforms, were examined in detail by high-field NMR techniques. It was found that the LPS samples contain the phosphoethanolamine (PEtn) substituted inner-core element, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1--> 3)-L-alpha-D-He pp-(1-->5)-alpha-Kdo in which the major glycoforms carry a beta-D-Glcp or beta-D-Glcp-(1-->4)-beta-D-Glcp at the O-4 position of the 3-substituted heptose (HepI) and a beta-D-Galp at the O-2 position of the terminal heptose (HepIII). LPS from the lic2 mutants of both type b strains were found to carry PCho groups at the O-6 position of the terminal beta-D-Galp residue attached to HepIII. In the parent strains, the central heptose (HepII) of the LPS inner-core element is also substituted by hexose containing oligosaccharides. The expression of the galabiose epitope in LPS of H. influenzae type b strains has previously been linked to genes comprising the lic2 locus. The present study provides definitive evidence for the role of lic2 genes in initiating chain extension from HepII. From the analysis of core oligosaccharide samples, LPS from the lic2 mutant strain of RM7004 was also found to carry O-acetyl substituents. Mono-, di-, and tri-O-acetylated LPS oligosaccharides were identified. The major O-acetylated glycoforms were found to be substituted at the O-3 position of HepIII. A di-O-acetylated species was characterized which was also substituted at the O-6 postion of the terminal beta-D-Glc in the Hex3 glycoform. This is the first report pointing to the occurrence of O-acetyl groups in the inner-core region of H. influenzae LPS. We have previously shown that in H. influenzae strain Rd, a capsule-deficient type d strain, PCho groups are expressed in a different molecular environment, being attached at the O-6 position of a beta-D-Glcp, which is in turn attached to HepI.  相似文献   

8.
Pyocin resistance in a strain of Neisseria gonorrhoeae has been found to be associated with structural differences in the oligosaccharide moieties of the gonococcal outer membrane lipooligosaccharides (LOS). N. gonorrhoeae strain 1291 had been treated with several pyocins, usually lethal bacteriocins produced by Pseudomonas aeruginosa, and a series of surviving mutants were selected. The LOS of these pyocin-resistant mutants had altered electrophoretic mobilities in sodium dodecyl sulfate-polyacrylamide gels (Dudas, K. C., and Apicella, M. A. (1988) Infect. Immun. 56, 499-504). Structural analyses of the oligosaccharide portions of the wild-type (1291 wt) and five pyocin-resistant strains (1291a-e) by liquid secondary ion mass spectrometry, tandem mass spectrometry, and methylation analysis revealed that four of the mutant strains make oligosaccharides that differ from the wild-type LOS by successive saccharide deletions (1291a,c-e) and, in the oligosaccharide of 1291b, by the addition of a terminal Gal to the 1291c structure. The composition, sequence, and linkages of the terminal tetrasaccharide of the wild-type LOS are the same as the lacto-N-neotetraose terminus of the human paragloboside (Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc-ceramide), and both glycolipids bound the same monoclonal antibodies O6B4/3F11 that recognize this terminal epitope. None of the pyocin-resistant mutants bound this antibody. The 1291b LOS bound a monoclonal antibody that is specific for Gal alpha 1----4Gal beta 1----4Glc-ceramide (Pk glycosphingolipid) and shared a common composition, sequence, and linkages with this latter glycosphingolipid. Organisms that bound the anti-Pk monoclone occurred at the rate of approximately 1/750 among the wild-type parent strain. This structural information supports the conclusion that treatment with pyocin selects for mutants with truncated LOS structures and suggests that the oligosaccharides contained in the LOS of the wild-type strain and 1291b mimic those of human glycosphingolipids.  相似文献   

9.
Neisseria gonorrhoeae and Neisseria meningitidis both express the lacto-N-neotetraose (LNT) lipooligosaccharide (LOS) molecule that can be sialylated. Although gonococcal LNT LOS sialylation enhances binding of the alternative pathway complement inhibitor factor H and renders otherwise serum-sensitive bacteria resistant to complement-dependent killing, the role of LOS sialylation in meningococcal serum resistance is less clear. We show that only gonococcal, but not meningococcal, LNT LOS sialylation enhanced factor H binding. Replacing the porin (Por) B molecule of a meningococcal strain (LOS sialylated) that did not bind factor H with gonococcal Por1B augmented factor H binding. Capsule expression did not alter factor H binding to meningococci that express gonococcal Por. Conversely, replacing gonococcal Por1B with meningococcal PorB abrogated factor H binding despite LNT LOS sialylation. Gonococcal Por1B introduced in the background of an unsialylated meningococcus itself bound small amounts of factor H, suggesting a direct factor H-Por1B interaction. Factor H binding to unsialylated meningococci transfected with gonococcal Por1B was similar to the sialylated counterpart only in the presence of higher (20 microg/ml) concentrations of factor H and decreased in a dose-responsive manner by approximately 80% at 1.25 microg/ml. Factor H binding to the sialylated strain remained unchanged over this factor H concentration range however, suggesting that LOS sialylation facilitated optimal factor H-Por1B interactions. The functional counterpart of factor H binding showed that sialylated meningococcal mutants that possessed gonococcal Por1B were resistant to complement-mediated killing by normal human serum. Our data highlight the different mechanisms used by these two related species to evade complement.  相似文献   

10.
We report the novel pattern of lipopolysaccharide (LPS) expressed by two disease-associated nontypeable Haemophilus influenzae strains, 1268 and 1200. The strains express the common structural motifs of H. influenzae; globotetraose [beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and its truncated versions globoside [alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and lactose [beta-d-Galp-(1-->4)-beta-d-Glcp] linked to the terminal heptose (HepIII) and the corresponding structures with an alpha-d-Glcp as the reducing sugar linked to the middle heptose (HepII) in the same LPS molecule. Previously these motifs had been found linked only to either the proximal heptose (HepI) or HepIII of the triheptosyl inner-core moiety l-alpha-d-Hepp-(1-->2)-[PEtn-->6]-l-alpha-d-Hepp-(1-->3)-l-alpha-d-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-lipid A. This novel finding was obtained by structural studies of LPS using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material, as well as electrospray ionization-multiple-step tandem mass spectrometry on permethylated dephosphorylated oligosaccharide material. A lpsA mutant of strain 1268 expressed LPS of reduced complexity that facilitated unambiguous structural determination. Using capillary electrophoresis-ESI-MS/MS we identified sialylated glycoforms that included sialyllactose as an extension from HepII, this is a further novel finding for H. influenzae LPS. In addition, each LPS was found to carry phosphocholine and O-linked glycine. Nontypeable H. influenzae strain 1200 expressed identical LPS structures to 1268 with the difference that strain 1200 LPS had acetates substituting HepIII, whereas strain 1268 LPS has glycine at the same position.  相似文献   

11.
Galectins are a family of beta-galactoside binding proteins that have been proposed as host receptors for bacteria because beta-galactoside carbohydrates are common in bacterial membrane glycolipid lipooligosaccharides (LOS) and lipopolysaccharides. We investigated the interaction of galectin-3 with gonococcal LOS that make lactosyl (Lc2 or Lac), paraglobosyl (nLc4; LNnT; lacto-N-neotetraose), gangliosyl (IV3GalNAcnLc4), and neolactohexaosyl (nLc6, lactonorhexaosyl) oligosaccharides. All but gangliosyl LOS terminate in beta-galactoside. Galectin-3 had the highest affinity for the nLc6 LOS, which is made by a strain that is highly infectious for the male urethra, but also bound nLc4 LOS and to a Lac LOS. The lacto-N-neotetraose tetrasaccharide was a more potent inhibitor of galectin-3 binding to LOS than either lactose or N-acetyllactosamine. The relative affinity of galectin-3 for gonococci mirrored its affinity for purified LOS. Western blot analysis revealed expression of galectin-3 by human endometrial adenocarcinoma and prostatic epithelial cells that can be invaded by gonococci. Immunohistochemistry of human fallopian tube epithelium showed localized expression of galectin-3 by non-ciliated cells, the specific cell gonococci invade in this tissue. We conclude that because of its location and affinity for gonococcal LOS galectin-3 could play a role in gonococcal infection.  相似文献   

12.
The inner core structures of the lipooligosaccharides (LOS) of Neisseria meningitidis are potential vaccine candidates because both bactericidal and opsonic antibodies can be generated against these epitopes. In an effort to better understand LOS biosynthesis and the potential immunogenicity of the LOS inner core, we have determined the LOS structure from a meningococcal rfaK mutant CMK1. The rfaK gene encodes the transferase that adds an alpha-N-acetylglucosaminosyl residue to O-2 of the inner core heptose (Hep) II of the LOS. The LOS oligosaccharide from this mutant was previously shown to contain only Hep, 3-deoxy-D-manno-2-octulosonic acid (Kdo), and multiple phosphoethanolamine (PEA) substituents (Kahler et al., 1996a, J. Bacteriol., 178, 1265-1273). The complete structure of the oligosaccharide (OS) component of the LOS from mutant CMK1 was determined using glycosyl composition and linkage analyses, and 1H, 13C, and 31P nuclear magnetic resonance spectroscopy. The CMK1 OS structure contains a PEA group at O-3 of Hep II in place of the usual glucosyl residue found at this position in the completed L2 LOS glycoform from the parent NMB strain. The PEA group at O-6 of Hep II, however, is present in both the CMK1 mutant LOS and parental NMB L2 LOS structures. The structure of the OS from CMK1 suggests that PEA substituents are transferred to both the O-3 and O-6 positions of Hep II prior to: (1) the incorporation of the alpha-GlcNAc on Hep II; (2) the synthesis of the alpha-chain on Hep I; and (3) the substitution of the glycosyl residue at the O-3 Hep II, which distinguishes L2 and L3 immunotypes. The LOS structure of the CMK1 mutant makes it a candidate immunogen that could generate broadly cross-reactive inner-core LOS antibodies.  相似文献   

13.
Functional and structural studies of the activated proteins of the complement system C4b and C3b have led to the identification of cleavage products resulting from the effect of the regulatory proteins, factor I, H, and C4b binding protein (bp). In this paper we report the results of studies that investigated the capacity of plasma or serum from a wide range of phylogenetic species to yield similar cleavage products. Sera and plasma from mammals, reptiles, amphibia, and fishes are capable of cleaving fluid phase human C4b and C3b, generating apparently the same fragments as observed using normal human serum: alpha 2, alpha 3, alpha 4 from the alpha' chain of C4b: and alpha-68, alpha-46, alpha-43, and alpha-30 from the alpha' chain of C3b. When C3b bound to a cell membrane is used C3c and C3dg are generated. The generation of these fragments from C3bi is a dose-dependent reaction. There is no correlation between the evolution of the species and the quantitative capability to degrade the substrates. Birds possess only a limited capability to degrade the alpha' chain of C4b and have no cleaving activity for C3b, whereas sera from more primitive vertebrate species (chondrichthyes and agnatha) fail to participate in the reaction. Contrary to other species, the proteins in fish serum or plasma responsible for the degradation of C4b and C3b show a unique requirement for Ca2+ ions. Magnesium and barium are less effective, and in their presence a 65,000 dalton intermediate product is observed. These results demonstrate that protein(s) displaying proteolytic activity for products of complement activation, probably related to I, H, and C4bp, are present in plasma of species whose evolution have preceded humans by 300 million years. Moreover, the recognition of human substrates and the generation of fragments identical to those produced by human serum suggests that human C4b and C3b share structural characteristics with their evolutionary ancestors in the serum or plasma of the species studied.  相似文献   

14.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   

15.
We report here that complement receptor type one (CR1) binds to a region of C3b that is contained within the NH2 terminus of the alpha' chain. In an enzyme-linked immunosorbent assay, CR1 bound to C3b, iC3b, and C3c but not to C3d, and this binding was inhibited by soluble C3b and C3c. Further attempts to generate a small C3 fragment capable of binding CR1 were unsuccessful. However, elastase degradation of C3 generated four species of C3c (C3c I-IV), two of which bound CR1. NH2-terminal sequence analysis and sodium dodecyl sulfate-gel electrophoresis of the C3cs indicated that the beta chains and the 40,000-dalton COOH-terminal alpha' chain fragments were identical; the NH2-terminal alpha' chain fragments of C3c I-IV varied from 21,000 to 27,000 daltons and accounted for the differential binding to CR1. C3c-I and II, which do not bind CR1, were missing 8 and 9 residues from the NH2 terminus of the alpha' chain when compared with the intact alpha' chain of C3b. C3c-III and IV, which bind CR1, had NH2 termini identical to the intact NH2-terminal alpha' chain of C3b. Using iodinated concanavalin A and endoglycosidase H, we showed that the NH2-terminal alpha' chains of C3c-I and III were glycosylated, while C3c-II and IV were not. Therefore, these data indicated that the amino terminus of the NH2-terminal alpha' chain fragment of C3c was responsible for binding CR1 while the COOH terminus of this fragment was not involved since the presence or absence of this region in C3c did not affect CR1 binding to C3c. Subsequently, two peptides were synthesized from the NH2-terminal alpha' chain fragment of C3c: X42, 42 residues in length from the NH2 terminus and C30, 30 residues in length from the COOH terminus. X42 inhibited binding of CR1 to C3b, and this effect was also observed with antipeptide antibodies against the X42 peptide. The C30 and other C3-derived peptides and antipeptide antibodies had no effect on the binding of CR1 to C3b.  相似文献   

16.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   

17.
Human mannose-binding lectin (MBL) provides a first line of defense against microorganisms by complement activation and/or opsonization in the absence of specific Ab. This serum collectin has been shown to activate complement when bound to repeating sugar moieties on several microorganisms, including encapsulated serogroup B and C meningococci, which leads to increased bacterial killing. In the present study, we sought to identify the meningococcal cell surface components to which MBL bound and to characterize such binding. Outer membrane complex containing both lipooligosaccharide (LOS) and proteins and LOS from Neisseria meningitidis were examined for MBL binding by dot blot and ELISA. MBL bound outer membrane complex but not LOS. The binding to bacteria by whole-cell ELISA did not require calcium and was not inhibited by N-acetyl-glucosamine or mannose. With the use of SDS-PAGE, immunoblot analysis, and mAbs specific for meningococcal opacity (Opa) proteins and porin proteins, we determined that MBL bound to Opa and porin protein B (porB). The N-terminal amino acid sequences of the two MBL binding proteins confirmed Opa and PorB. Purified PorB inhibited the binding of MBL to meningococci. Escherichia coli with surface-expressed gonococcal Opa bound significantly more MBL than did the control strain. The binding of human factor H to purified PorB was markedly inhibited by MBL in a dose-dependent manner. Meningococci incubated with human serum bound MBL as detected by ELISA. We conclude that MBL binds to meningococci by a novel target recognition of two nonglycosylated outer membrane proteins, Opa and PorB.  相似文献   

18.
C5 convertase of the classical complement pathway is a trimolecular protein complex consisting of C4b, C2a, and C3b. In the complex there is an ester bond between C3b and C4b. We analyzed the C5 convertase formed on erythrocytes and localized the covalent binding site of C3b to a small region on C4b. The covalently linked C4b.C3b complex was purified from a detergent extract of the erythrocytes and digested with lysyl endopeptidase. An Mr 17,000 fragment containing the ester linkage between C4b and C3b was purified and its amino-terminal sequence was examined. Two amino acids were obtained at each cycle and identified with those in the sequences of C3 and C4. The sequence derived from C3 corresponded to the thioester region. The sequence derived from C4 started at Ala-1186. Alkali treatment of the fragment yielded an Mr 7,000 peptide derived from C4, which thus appeared to span the region of C4 from Ala-1186 to Lys-1259. Therefore, the covalent C3b-binding site on C4b is located within a 74-residue region of the primary structure. This finding supports the notion that after cleavage of C3 by the C4b2a complex, the covalent binding of metastable C3b to C4b is a specific reaction to form a trimolecular complex with a defined quaternary structure.  相似文献   

19.
We examined complement activation by Neisseria gonorrhoeae via the mannan-binding lectin (MBL) pathway in normal human serum. Maximal binding of MBL complexed with MBL-associated serine proteases (MASPs) to N. gonorrhoeae was achieved at a concentration of 0.3 microg/ml. Preopsonization with MBL-MASP at concentrations as low as 0.03 microg/ml resulted in approximately 60% killing of otherwise fully serum-resistant gonococci. However, MBL-depleted serum (MBLdS) reconstituted with MBL-MASP before incubation with organisms (postopsonization) failed to kill at a 100-fold higher concentration. Preopsonized organisms showed a 1.5-fold increase in C4, a 2.5-fold increase in C3b, and an approximately 25-fold increase in factor Bb binding; enhanced C3b and factor Bb binding was classical pathway dependent. Preopsonization of bacteria with a mixture of pure C1-inhibitor and/or alpha(2)-macroglobulin added together with MBL-MASP, all at physiologic concentrations before adding MBLdS, totally reversed killing in 10% reconstituted serum. Reconstitution of MBLdS with supraphysiologic (24 microg/ml) concentrations of MBL-MASP partially overcame the effects of inhibitors (57% killing in 10% reconstituted serum). We also examined the effect of sialylation of gonococcal lipooligosaccharide (LOS) on MBL function. Partial sialylation of LOS did not decrease MBL or C4 binding but did decrease C3b binding by 50% and resulted in 80% survival in 10% serum (lacking bacteria-specific Abs) even when sialylated organisms were preopsonized with MBL. Full sialylation of LOS abolished MBL, C4, and C3b binding, resulting in 100% survival. Our studies indicate that MBL does not participate in complement activation on N. gonorrhoeae in the presence of "complete" serum that contains C1-inhibitor and alpha(2)-macroglobulin.  相似文献   

20.
We here report the lipopolysaccharide (LPS) structures expressed by nontypeable Haemophilus influenzae R2846, a strain whose complete genome sequence has recently been obtained. Results were obtained by using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material (OS) as well as ESI-MS (n) on permethylated dephosphorylated OS. A beta- d-Glc p-(1-->4)- d-alpha- d-Hep p-(1-->6)-beta- d-Glc p-(1-->4) unit was found linked to the proximal heptose (HepI) of the conserved triheptosyl inner-core moiety, l-alpha- d-Hep p-(1-->2)-[ PEtn-->6]- l-alpha- d-Hep p-(1-->3)- l-alpha- d-Hep p-(1-->5)-[ PPEtn-->4]-alpha-Kdo-(2-->6)-lipid A. The beta- d-Glc p (GlcI) linked to HepI was also branched with oligosaccharide extensions from O-4 and O-6. O-4 of GlcI was substituted with sialyllacto- N-neotetraose [alpha-Neu5Ac-(2-->3)-beta- d-Gal p-(1-->4)-beta- d-Glc pNAc-(1-->3)-beta- d-Gal p-(1-->4)-beta- d-Glc p-(1-->] and the related structure [( PEtn-->6)-alpha- d-Gal pNAc-(1-->6)-beta- d-Gal p-(1-->4)-beta- d-Glc pNAc-(1-->3)-beta- d-Gal p-(1-->4)-beta- d-Glc p-(1-->]. The distal heptose (HepIII) was substituted at O-2 by beta- d-Gal. Phosphate, phosphoethanolamine, phosphocholine, acetate, and glycine were found to substitute the core oligosaccharide. Two heptosyltransferase genes, losB1 and losB2, have been identified from the R2846 genome sequence and are candidates to add the noncore heptose to the LPS. Mutant strain R2846 losB1 did not show dd-heptose in the extension from HepI but still contained minor quantities of ld-heptose at the same position, indicating that the losB1 gene is required to add dd-heptose to GlcI. The LPS from strain R2846 losB1/ losB2 expressed no noncore heptose, consistent with losB2 directing the addition of ld-heptose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号