首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of mode of life and habitat characteristics on the evolution of body size in isopods was investigated in a comparative analysis based on data from 746 free-living and parasitic species. The phylogeny of isopods allowed 24 independent comparisons to be made between higher taxa (families or superfamilies), each corresponding to a separate branching event. The evolution of parasitism was consistently associated with reductions in body size. On the contrary, invasion of freshwater habitats was consistently coupled with increases in body size. Lineages moving to higher latitudes were significantly more likely to evolve larger body sizes than those shifting toward the equator. In addition, colonizing deeper water resulted in a weak tendency to evolve larger body size. The analysis suggests that the large size of some isopod groups parasitic on fish (e.g. Cymothoidae) may have been inherited from a free-living ancestor and is not the product of directional selection toward large size and greater fecundity.  相似文献   

2.
Predictions associated with opposing selection generating minimum variance in basal metabolic rate (BMR) in mammals at a constrained body mass (CBM; 358 g) were tested. The CBM is presumed to be associated with energetic constraints linked to predation and variable resources at intermediate sizes on a logarithmic mass scale. Opposing selection is thought to occur in response to energetic constraints associated with predation and unpredictable resources. As body size approaches and exceeds the CBM, mammals face increasing risks of predation and daily energy requirements. Fast running speeds may require high BMRs, but unpredictable and low resources may select for low BMRs, which also reduce foraging time and distances and thus predation risks. If these two selection forces oppose each other persistently, minimum BMR variance may result. However, extreme BMR outliers at and close to the CBM should be indicative of unbalanced selection and predator avoidance alternatives (escapers vs. defenders), and may therefore provide indirect support for opposing selection. It was confirmed that body armor in defenders evolves at and above the CBM, and armored mammals had significantly lower BMRs than their nonarmored counterparts. However, analyses comparing the BMR of escapers--the fastest nonarmored runners (Lagomorpha)--with similar-sized counterparts were inconclusive and were confounded by limb morphology associated with speed optimization. These analyses suggest that the risks and costs of predation and the speed limitations of the plantigrade foot may constrain the evolution of large body sizes in plantigrade mammals.  相似文献   

3.
We have analysed the relationship between primate mating system, size and size dimorphism by utilizing several phylogenetically based methods. An independent contrast analysis of male and female size (log weight) showed that these are tightly correlated and that size dimorphism is not a simple allometric function of size. We found no relationship between mating system and sexual dimorphism in strepsirhines but a strong relationship in haplorhines. By matched-pairs analysis, where sister groups were matched according to whether the mating system predicted higher or lower intrasexual selection for male size, haplorhine species in more polygynous clades (with a predicted higher sexual selection) were significantly more dimorphic, had larger males, and also, but to a lesser degree, larger females. Both independent contrast and matched-pairs analyses are non-directional and correlational. By using a directional test we investigated how a transition in mating system affects size and dimorphism. Here, each observation is the sum of changes in dimorphism or size in a clade that is defined by a common origin of a mating system. Generally, dimorphism, as well as male and female size, increased after an expected increase in sexual selection, and decreased after an expected decrease in sexual selection. The pattern was, however, not significant for all of the alternative character reconstructions. In clades with an expected increase in sexual selection, male size increased more than female size. This pattern was significant for all character reconstructions. The directional investigation indicates that the magnitude of change in haplorhine dimorphism is larger after an increase in sexual selection than after a decrease, and, for some reconstructions, that the magnitude of size increase is larger than the magnitude of size decrease for both sexes. Possible reasons for these patterns are discussed, as well as their implications as being one possible mechanism behind Cope's rule, i.e. general size increase in many phylogenetic lineages.  相似文献   

4.
Change in body mass with time has been considered for many clades, often with reference to Cope's rule, which predicts a tendency to increase in body size. A more general rule, namely increase in the range of body mass with time, is analyzed here for vertebrates. The log range of log vertebrate body mass is shown to increase linearly and highly significantly with the log of duration of clade existence. The resulting regression equations are used to predict the origin age, initial body mass, and subsequent dynamics of body mass range for primate clades such as the New World monkeys (Platyrrhini, 32 million years ago, initial mass of 1.7 kg) and the Anthropoidea (57 million years ago, initial mass of 0.12 kg), tested against the primate fossil record. Using these methods, other major primate clades such as Lemuriformes and Adapoidea are also estimated to have originated in the Tertiary (63 and 64 million years ago, respectively), with only the Plesiadapiformes originating in the Cretaceous (83 million years ago). Similarities of body mass range between primate and other vertebrate sister groups are discussed. Linear relationships of log range and log duration are considered with respect to Brownian processes, with the expected regression coefficients from the latter explored through simulations. The observed data produce regression coefficients that overlap with or are higher than those under Brownian processes. Overall, the analyses suggest the dynamics of vertebrate body mass range in morphologically disparate clades are highly predictable over many tens of million years and that the dynamics of phenotypic characteristics can assist molecular clock and fossil models in dating evolutionary events.  相似文献   

5.
The behavior of the maximum body size (body length) in an evolving clade is exemplified by the evolutionary histories of Bivalvia, Cetacea, and Camerata (Crinoidea). Changes of the maximum size with time track closely diversification history: when a clade diversifies exponentially, the maximum size also increases exponentially, and when the number of species changes irregularly (at varying rates), the maximum size also changes in that manner. However, within any given clade, the maximum body size changes at lower rates than diversity does. The observed shifts in maximum body size approximate the rate of diversification per unit of time to the power of about 0.5.  相似文献   

6.
Geographic gradients in body size: a clarification of Bergmann's rule   总被引:8,自引:0,他引:8  
1997 marked the sesquicentenary of the publication by Carl Bergmann of the observation that, in general, large-bodied animal species tend to live further north than their small-bodied relatives. This has been dubbed Bergmann's rule in his honour. However, more than 150 years on, we appear to be little closer to a general understanding of the rule, or even to any consensus as to whether it exists. This is due in large part to confusion about the taxonomic level at which the rule is considered to operate, and to the conflation of pattern and mechanism. In this paper, we attempt to resolve this confusion by highlighting its sources, and by providing a definition of Bergmann's rule that is practical and useful, yet that retains the essential features of its original formulation. We conclude by briefly reviewing the mechanisms proposed to explain Bergmann's rule as we define it.  相似文献   

7.
In order to identify key factors in the evolution of life history traits in Ascothoracida and Rhizocephala (two groups of crustacean parastes of invertebrates), comparative analyses were performed using phylogenetically independent contrasts. Among 59 ascothoracidan species, latitude correlated positively with body size, whereas there was no relationship between water depth and body size. Body size also correlated strongly with egg size; however, once corrected for body size, egg size was not related to either latitude or water depth. Among 91 rhizocephalan species, neither latitude nor water depth correlated with body size. However, host species of larger sizes harboured larger species of rhizocephalan parasites. Egg size of rhizocephalans did not correlate with body size, and was not influenced by either latitude or water depth. The patterns observed in this study show both differences from an similarities to those reported for other groups of crustacean parasites, and suggest that adaptations to similar selective pressures are not always identical among distantly-related taxa.  相似文献   

8.
Cope's rule is the tendency for body size to increase over time along a lineage. A set of 65 phylogenetically independent comparisons, between earlier and later genera, show that Cope's rule applied in dinosaurs: later genera were on average about 25% longer than the related earlier genera to which they were compared. The tendency for size to increase was not restricted to a particular clade within the group, nor to a particular time within its history. Small lineages were more likely to increase in size, and large lineages more likely to decrease: this pattern may indicate an intermediate optimum body size, but can also be explained as an artefact of data error. The rate of size increase estimated from the phylogenetic comparisons is significantly higher than the rate seen across the fauna as a whole. This difference could indicate that within-lineage selection for larger size was opposed by clade selection favouring smaller size, but data limitations mean that alternative explanations (which we discuss) cannot be excluded. We discuss ways of unlocking the full potential usefulness of phylogenies for studying the dynamics of evolutionary trends.  相似文献   

9.
The ecological and physiological significance of body size is well recognized. However, key macroevolutionary questions regarding the dependency of body size trends on the taxonomic scale of analysis and the role of environment in controlling long-term evolution of body size are largely unknown. Here, we evaluate these issues for decapod crustaceans, a group that diversified in the Mesozoic. A compilation of body size data for 792 brachyuran crab and lobster species reveals that their maximum, mean and median body size increased, but no increase in minimum size was observed. This increase is not expressed within lineages, but is rather a product of the appearance and/or diversification of new clades of larger, primarily burrowing to shelter-seeking decapods. This argues against directional selective pressures within lineages. Rather, the trend is a macroevolutionary consequence of species sorting: preferential origination of new decapod clades with intrinsically larger body sizes. Furthermore, body size evolution appears to have been habitat-controlled. In the Cretaceous, reef-associated crabs became markedly smaller than those in other habitats, a pattern that persists today. The long-term increase in body size of crabs and lobsters, coupled with their increased diversity and abundance, suggests that their ecological impact may have increased over evolutionary time.  相似文献   

10.
Rain-pools differ from oceanic islands, essentially, in being ephemeral. Ability to disperse and reproduce is therefore a special priority among inhabitants.
Pupal exuviae of a principal inhabitant, Chironomus imicola , were collected from pools in tropical Africa. Length of pupal skin is positively related both to flight duration and ovule number in adult chironomids. Hence length of pupal skin can be related to fitness in this temporary pool dweller.
Predictably, therefore, remote pools are inhabited by large individuals while those in clusters have more small forms.
That duration of the habitat also influences body size is demonstrated by Polypedilum vanderplanki. These larvae are able to survive dry periods and therefore experience the habitat as permanent. In contrast to C. imicola, P. vanderplanki responds to isolation with a disproportionate number of small flies.
In addition to these differences in average size, variance in body size is affected by isolation of the habitat. Comparison with progeny of a single female shows increased variability to be determined not only by habitat location but also to be an inherent characteristic of animals perceiving the habitats as ephemeral.  相似文献   

11.
12.
Titanosauriformes is a conspicuous and diverse group of sauropod dinosaurs that inhabited almost all land masses during Cretaceous times. Besides the diversity of forms, the clade comprises one of the largest land animals found so far, Argentinosaurus, as well as some of the smallest sauropods known to date, Europasaurus and Magyarosaurus. They are therefore good candidates for studies on body size trends such as the Cope's rule, the tendency towards an increase in body size in an evolutionary lineage. We used statistical methods to assess body size changes under both phylogenetic and nonphylogenetic approaches to identify body size trends in Titanosauriformes. Femoral lengths were collected (or estimated from humeral length) from 46 titanosauriform species and used as a proxy for body size. Our findings show that there is no increase or decrease in titanosauriform body size with age along the Cretaceous and that negative changes in body size are more common than positive ones (although not statistically significant) for most of the titanosauriform subclades (e.g. Saltasaridae, Lithostrotia, Titanosauria and Somphospondyli). Therefore, Cope's rule is not supported in titanosauriform evolution. Finally, we also found a trend towards a decrease of titanosauriform mean body size coupled with an increase in body size standard deviation, both supporting an increase in body size variation towards the end of Cretaceous.  相似文献   

13.
Latitudinal shifts in body size of Enallagma cyathigerum (Odonata)   总被引:1,自引:0,他引:1  
Aim Survey of the latitudinal body size pattern for populations of Enallagma cyathigerum (Odonata) across a south‐north transect. Location A transect covering the whole distribution range from south to north across Europe was sampled. Methods Newly emerged adults were collected from five major sites across Europe and one to four localities were sampled within each site. In total 253 adults were collected from fourteen localities. Body size was measured using thorax length, length of right front wing and length of right hind tibia. These body size estimates were thereafter related to latitude and mean temperature in January and July. Results Body size showed a U‐shaped pattern with latitude, being large at low and high latitudes and small at intermediate latitudes. The same U‐shaped pattern was found for mean January and July temperature, with large animals at low and high temperatures. Conclusion The U‐shaped relationship between body size and latitude is suggested to be a combination of two effects: (1) the length of the season favourable for growth and development, and (2) variation in life cycle length with latitude.  相似文献   

14.
Conspicuous coloration is often used in combination with chemical defenses to deter predators from attacking. Experimental studies have shown that the avoidance inducing effect of conspicuous prey coloration increases with increasing size of pattern elements and with increasing body size. Here we use a comparative approach to test the prediction from these findings, namely that conspicuous coloration will evolve in tandem with body size. In our analysis, we use a previously published mitochondrial DNA-based phylogeny and comparative analysis of independent contrasts to examine if evolutionary shifts in color pattern have been associated with evolutionary changes in body size in aposematic poison frogs (Anura: Dendrobatidae). Information on body size (snout to vent length) and coloration were obtained from the literature. Two different measures of conspicuousness were used, one based on rankings by human observers and the other based on computer analysis of digitized photographs. The results from comparative analyses using either measure of coloration indicated that avoidance inducing coloration and body size have evolved in concert in poison frogs. Results from reconstruction of character change further indicate that the correlated evolution of size and coloration has involved changes in both directions within each of the different clades of the phylogenetic tree. This finding is consistent with the hypothesis that selection imposed by visually guided predators has promoted the evolution of larger body size in species with conspicuous coloration, or enhanced evolution of conspicuous coloration in larger species.  相似文献   

15.
The geographic distribution of mammal body size in Europe   总被引:6,自引:2,他引:4  
Aims  To describe the pattern of mean body size of native mammals in Europe, and to investigate its relationships with environmental predictors related to four hypotheses: (1) dispersal; (2) heat conservation; (3) heat dissipation; and (4) resource availability.
Location  Continental western Europe and Great Britain.
Methods  We used range maps to estimate the mean body size (average log mass) of mammals in 386 cells of 12,100 km2 each. Environmental conditions in each cell were quantified using nine historical, climatic and primary production variables. We attempted to tease apart the effects of these variables using correlation, multiple regression and spatial autocorrelation analyses.
Results  In the part of the continent covered by ice during the Pleistocene, body mass decreases southwards, and annual average temperature explains 73% of the variance in body size, consistent with the heat-conservation hypothesis. However, in warmer, non-glaciated areas the best predictor is an estimate of seasonality in plant production, but it explains only 18% of the variance. Carnivores, omnivores and herbivores show similar relationships, but the pattern for herbivores is substantially weaker than for the other groups.
Main conclusions  Overall, the relationship between mean body size and temperature is non-linear, being strong in cold environments but virtually disappearing above a temperature threshold.  相似文献   

16.
As in many invertebrates, female oxyurids are larger than male. Sexual size dimorphism (SSD) of oxyurid nematodes (the hosts of which are both invertebrate and vertebrate), is investigated regarding body size of both host and parasite. SSD of parasites appeared to be weakly, but not significandy, correlated with invertebrate and vertebrate host body size. However, this study reveals a different pattern for SSD with respect to either type of host. SSD does not increase in tandem with body size in vertebrate parasites either at the level of species or genus. SSD is much more pronounced in Syphaciidae than in Heteroxynematidae, two families of vertebrate parasites exhibiting different modes of transmission (members of the Syphaciidae are transmitted through perianal contamination). SSD is investigated in one monophyletic group of parasites of primates, for which a phylogeny is known. Independent comparisons method is used and we find that the body size of female parasite is strongly correlated with that of the male. The hypoallometry (slope<1) of the relationship suggests that the SSD is not linked to an increase of parasite body size. Moreover, there is no influence of host body size on parasite SSD. The pattern in parasites of invertebrates is different. First, SSD has been found to increase with parasite body size in two groups of invertebrate parasites: the oxyurids of Dictyoptera and Coleoptera. Second, female body size of invertebrate parasites is not correlated with male body size either at genus or species level. Finally, the evolution of SSD is discussed in relation to the demographic patterns of invertebrate parasites and the haplodiploid mode of reproduction of these parasitic nematodes.  相似文献   

17.
Size variation of body and skull of five species of Australian mammals (echidna, Tachyglossus aculeatus ; brush-tail possum, Trichosurus vulpecula ; eastern grey kangaroo, Macropus giganteus ; western grey kangaroo, M. fuliginosus ; red kangaroo, M. rufus ), is related to climatic factors. All five species show trends in body size that conform with Bergmann's rule, individuals from colder environments being larger than those from warmer areas. The western and eastern grey kangaroos also conform with Allen's rule, the relative size of their extremities being large in warmer areas. In four of the five species (not the red kangaroo) body size is also correlated with indices of biomass productivity. However, since biomass productivity and ambient temperature are related to some extent, it is difficult to separate the effects of these factors.  相似文献   

18.
The hypothesis that evolution of body size in birds was a random process coupled with an absolute lower boundary on body mass was tested using data on 6217 species of extant birds. The test was based on the fact that subclades within birds that have body masses much larger than this minimum should not have skewed log body mass distributions, while clades close to this boundary should. Bird species were classified into 23 orders suggested by Sibley and Monroe (1988). Thirteen orders that had average log body masses greater than the average for all birds had significantly skewed log body mass distributions. This is inconsistent with the hypothesis that evolution of body size in birds is random, but is constrained only at the smallest body masses. Most orders of birds cannot be considered random samples from the parental distribution of all birds. When the pattern of body mass evolution in birds is reconstructed using an estimate of the phylogenetic relationships among orders, there are many more instances where a large taxon putatively originated from a smaller one than vice versa. The non-random nature of body mass evolution in birds is consistent with models that postulate that evolution is constrained by the ability of individuals to turn resources into offspring.  相似文献   

19.
Changes in morphology are often thought to be linked to changes in species diversification, which is expected to leave a signal of early burst (EB) in phenotypic traits. However, such signal is rarely recovered in empirical phylogenies, even for groups with well‐known adaptive radiation. Using a comprehensive phylogenetic approach in Dytiscidae, which harbours ~4,300 species with as much as 50‐fold variation in body size among them, we ask whether pattern of species diversification correlates with morphological evolution. Additionally, we test whether the large variation in body size is linked to habitat preference and whether the latter influences species turnover. We found, in sharp contrast to most animal groups, that Dytiscidae body size evolution follows an early‐burst model with subsequent high phylogenetic conservatism. However, we found no evidence for associated shifts in species diversification, which point to an uncoupled evolution of morphology and species diversification. We recovered the ancestral habitat of Dytiscidae as lentic (standing water), with many transitions to lotic habitat (running water) that are concomitant to a decrease in body size. Finally, we found no evidence for difference in net diversification rates between habitats nor difference in turnover in lentic and lotic species. This result, together with recent findings in dragonflies, contrasts with some theoretical expectations of the habitat stability hypothesis. Thus, a thorough reassessment of the impact of dispersal, gene flow and range size on the speciation process is needed to fully encompass the evolutionary consequences of the lentic–lotic divide for freshwater fauna.  相似文献   

20.
The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24–18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short‐term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号