首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysozyme is an antimicrobial compound, which has been used in pharmaceutical and food industries. Chicken egg is the commercial source of lysozyme. However, human lysozyme is more effective and safer than egg-white lysozyme. Human milk is an important source for human lysozyme, but it is not feasible to provide the needed lysozyme commercially. Biofilm reactors provide passive immobilization of cells onto the solid support, which may lead to higher productivity. The aim was to evaluate the fermentation medium composition for enhanced human lysozyme production by Kluyveromyces lactis K7 in biofilm reactor with plastic composite supports. Yeast nitrogen base was selected as the best nitrogen source when compared to the yeast extract and corn steep liquor. Moreover, inhibition effect of NaCl and NH4Cl at the concentrations of 25 and 50 mM was observed. Three factors Box–Behnken response surface design was conducted and the results suggested 16.3% lactose, 1.2% casamino acid, 0.8% yeast nitrogen base as optimum medium composition for maximum human lysozyme production. Overall, the human lysozyme production by K. lactis K7 was increased to 173 U/ml, which is about 23% improvement in biofilm reactor and 57% improvement compared to the suspended-cell fermentation.  相似文献   

2.
Lysozyme [EC 3.2.1.17] was purified from human tears, serum, and urine of acute monocytic leukemia patients, renal disease patients, and residents in cadmium-polluted areas of Tsushima Island using an affinity adsorbent containing lysozyme-lysate of Micrococcus lysodeikticus cell walls as the ligand. By means of this procedure, leukemia lysozyme was purified 100- to 200-fold with an activity recovery of 80%. It was crystallized at pH 10. This purified preparation appeared homogeneous in disc electrophoresis and showed a specific activity 2.5-fold higher than that of crystalline lysozyme from hen egg-white. Tear lysozyme was also purified to a nearly homogeneous state while the enzymes from normal serum and urine of a nephrosis patient and of residents in cadmium-polluted area were still disc electrophoretically heterogeneous and showed low specific activity as compared with purified leukemia lysozyme.  相似文献   

3.
Human lysozyme and hen egg-white lysozyme have antibacterial, antiviral, and antifungal properties with numerous potential commercial applications. Currently, hen egg-white lysozyme dominates low cost applications but the recent high-level expression of human lysozyme in rice could provide an economical source of lysozyme. This work compares human lysozyme and hen egg-white lysozyme adsorption to the cation exchange resin, SP-Sepharose FF, and the effect of rice extract components on lysozyme purification. With one exception, the dynamic binding capacities of human lysozyme were lower than those of hen egg-white at pH 4.5, 6, and 7.5 with ionic strengths ranging from 0 to 100 mM (5-20 mS). Ionic strength and pH had a similar effect on the adsorption capacities, but human lysozyme was more sensitive to these two factors than hen egg-white lysozyme. In the presence of rice extract, the dynamic binding capacities of human and hen egg-white lysozymes were reduced by 20-30% and by 32-39% at pH 6. Hen egg-white lysozyme was used as a benchmark to compare the effectiveness of human lysozyme purification from transgenic rice extract. Process simulation and cost analyses for human lysozyme purification from rice and hen egg-white lysozyme purification from egg-white resulted in similar unit production costs at 1 ton per year scale.  相似文献   

4.
Lysozyme [EC 3.2.1.17] derived from hen egg white stimulated immunoglobulin production by human-human hybridoma, HB4C5 cells producing human lung cancer specific monoclonal IgM. IgM production by HB4C5 cells was enhanced more than 13-fold by the addition of lysozyme at 380 μg/ml in a serum-free medium. The immunoglobulin production stimulating effect of lysozyme was observed immediately after inoculation and maintained for 5 days. Lysozyme enhanced immunoglobulin production by the hybridoma line without growth promotion. This enzyme also accelerated IgM and IgG production of human peripheral blood lymphocytes 5.3-fold and 2.3-fold, respectively. These results suggest that lysozyme stimulates immunoglobuling production of not only specific hybridoma line, but also non-specific immunoglobulin producers. However, although the enzymatic activity of lysozyme was almost lost by heat-treatment at 100 °C for 30 min, the IPSF activity was retained. This fact suggests that IPSF activity of lysozyme does not come from its enzymatic activity or reaction products. All these findings clearly indicate that lysozyme has a novel function as an immunoglobulin production stimulating factor. GAPDH - glyceraldehyde-3-phosphate dehydrogenase; Ig - immunoglobulin; IPSF - immunoglobulin production stimulating factor; PBL - peripheral blood lymphocytes; HPLC - high-performance liquid chromatography. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
1. Lysozyme from eggs of the Dipterous Ceratitis capitata (Wiedeman) has been purified by ion-exchange chromatography and gel filtration and its physicochemical properties have been investigated. This is the first insect lysozyme characterized so far and it exhibits some properties different to those described for other animal lysozymes. 2. Lysozyme from the insect eggs has a molecular weight of about 23200 and a sedimentation coefficient of 2.4 S. Molecular weight determination by sodium dedecylsulphate gel electrophoresis indicates that the molecule consists of a single polypeptide chain. 3. This lysozyme preparation shows notable stability at acidic pH values and lability at alkline pH values. It shows a single optimum pH at about 6.5.4. Chitinase/muramidase specific activity ratio is around 350 times higher for the insect lysozyme than for the hen egg-white enzyme. 5. The amino-acid composition shows the presence of one tryptophan residue per molecule of enzyme. This fact differentiates the lysozyme from insect eggs from other animal and plant lysozymes. From the amino acid composition, the absorption coefficient and the partial specific volume are calculated. 6. Glycine is the N-terminal residue.  相似文献   

6.
Frog Lysozyme has been purified by sequential application of acid extraction, salt fractionation, CM-cellulose chromatography, heat treatment, and gel filtration. Eight isozymes of purified lysozyme were found to be stable during prolonged storage. Isozymes were separated by preparative polyacrylamide gel electrophoresis, Ninety percent of the lytic activity of frog ovarian egg was represented by forms 7 and 8, the most highly charged isozymes. Seventy-eight percent of frog liver lysozyme activity was that of form 4. Forms 7 and 8 differed from form 4 by being larger (apparent molecular weight of 18,000 vs. 16,000), by remaining active in more acidic environment, and by exhibiting a dependency upon NaCl for activity. Antiserum prepared against frog form 4 did not react with frog forms 7 and 8 and antiserum to chicken egg-white lysozyme did not react with any frog lysozymes. All frog lysozymes showed identical reversible binding to deaminated chitin. Apparent size differences and lack of immunological cross-reactivity suggest that at least some of the isozymes are non-allelic.  相似文献   

7.
Bombyx mori lysozyme is 10 amino acids shorter than hen egg-white lysozyme, which is a typical c-type lysozyme. It was expressed by using the methylotrophic yeast Pichia pastoris. The thermal stability and the enzymatic activity of the Bombyx mori lysozyme were estimated and compared with those of human and hen egg-white lysozymes. The denaturation temperature was 17-26°C lower than those of human and hen egg-white lysozymes. Further, the enthalpy change and the heat capacity change for unfolding were smaller than those of human lysozyme. It was also confirmed that the stability against guanidine hydrochloride was lower than those of the other two lysozymes. The enzymatic activity toward a simple synthetic substrate was measured and compared with those of human and hen egg-white lysozymes. The B-F binding mode was obviously dominant, although the A-E binding mode was preferred in human and hen egg-white lysozymes.  相似文献   

8.
9.
The association constants for the binding of various saccharides to hen egg-white lysozyme and human lysozyme have been measured by fluorescence titration. Among these are the oligosaccharides GlcNAc-beta(1 leads to 4)-MurNAc-beta(1 leads to 4)-GlcNAc-beta(1 leads to 4)-GlcNAc, GlcNAc-beta(1 leads to 4)-MurNAc-beta(1 leads to 4)-GlcNAc-beta(1 leads to 4)-N-acetyl-D-xylosamine, and GlcNAc-beta(1 leads to 4-GlcNAc-beta(1 leads to 4)-MurNAc, prepared here for the first time. The binding constants for saccharides which must have N-acetylmuramic acid, N-acetyl-D-glucosamine, or N-acetyl-D-xylosamine bound in subsite D indicate that there is no strain involved in the binding of N-acetyl-D-glycosamine in this site, and that the lactyl group of N-acetylmuramic acid (rather than the hydroxymethyl group) is responsible for the apparent strain previously reported for binding at this subsite. For hen egg-white lysozyme, the dependence of saccharide binding on pH or on a saturating concentration of Gd(III) suggests that the conformation of several of the complexes are different from one another and from that proposed for a productive complex. This is supported by fluorescence difference spectra of the various hen egg-white lysozyme-saccharide complexes. Human lysozyme binds most saccharides studied more weakly than the hen egg-white enzyme, but binds GlcNAc-beta(1 leads to 4)-MurNAc-beta(1leads to 4)-GlcNAc-beta(1 leads to 4)-MurNAc more strongly. It is suggested that subsite C of the human enzyme is "looser" than the equivalent site in the hen egg enzyme, so that the rearrangement of a saccharide in this subsite in response to introduction of an N-acetylmuramic acid residue into subsite D destabilizes the saccharide complexes of human lysozyme less than it does the corresponding hen egg-white lysozyme complexes. This difference and the differences in the fluorescence difference spectra of hen egg-white lysozyme and human lysozyme are ascribed mainly to the replacement of Trp-62 in hen egg-white lysozyme by Tyr-63 in the human enzyme. The implications of our findings for the assumption of superposition and additivity of energies of binding in individual subsites, and for the estimation of the role of strain in lysozyme catalysis, are discussed.  相似文献   

10.
Lysozyme from egg white was modified by covalent attachment of an oleyl group to the free amino groups of lysozyme. The aim of the chemical modification was to develop an effective antimicrobial lysozyme derivative against both gram-negative and gram-positive bacteria. Lysozyme with various degrees of modification was obtained by changing oleoyl chloride/lysozyme mass ratio. Lysozyme derivatives evidently exhibited an antimicrobial effect against Escherichia coli (ATCC 29998). The modification slightly changed the antimicrobial effect of lysozyme derivative against Staphylococcus aureus (ATCC 121002). Since there was a positive correlation between the modification degree and the antimicrobial effect against E. coli, it was concluded that the change in antimicrobial behavior was due to an increase in hydrophobicity of the enzyme molecule enabling it to penetrate through the bacterial membrane of E. coli. It was also shown that oleoyl chloride with an MIC value of 10?mg/mL was effective against both E. coli and S. aureus.  相似文献   

11.
Lysozyme (1,4-β-N-acetylmuramidase) is a lytic enzyme, which degrades the bacterial cell wall. Lysozyme has been of interest in medicine, cosmetics, and food industries because of its anti-bactericidal effect. Kluyveromyces lactis K7 is a genetically modified organism that expresses human lysozyme. There is a need to improve the human lysozyme production by K. lactis K7 to make the human lysozyme more affordable. Biofilm reactor provides high biomass by including a solid support, which microorganisms grow around and within. Therefore, the aim of this study was to produce the human lysozyme in biofilm reactor and optimize the growth conditions of K. lactis K7 for the human lysozyme production in biofilm reactor with plastic composite support (PCS). The PCS, which includes polypropylene, soybean hull, soybean flour, bovine albumin, and salts, was selected based on biofilm formation on PCS (CFU/g), human lysozyme production (U/ml), and absorption of lysozyme inside the support. To find the optimum combination of growth parameters, a three-factor Box–Behnken design of response surface method was used. The results suggested that the optimum conditions for biomass and lysozyme productions were different (27 °C, pH 6, 1.33 vvm for biomass production; 25 °C, pH 4, no aeration for lysozyme production). Then, different pH and aeration shift strategies were tested to increase the biomass at the first step and then secrete the lysozyme after the shift. As a result, the lysozyme production amount (141 U/ml) at 25 °C without pH and aeration control was significantly higher than the lysozyme amount at evaluated pH and aeration shift conditions (p?<?0.05).  相似文献   

12.
Lysozyme is an abundant, cationic antimicrobial protein that plays an important role in host defense. It targets the β (1–4) glycosidic bond between N-acetylglucosamine and N-acetylmuramic residues that make up peptidoglycan, making lysozyme highly active against Gram-positive bacteria. However, lysozyme alone is inactive against Gram-negative bacteria because it cannot reach the peptidoglycan layer. Cecropins are cationic molecules with a wide range of antimicrobial activities. The main target for these peptides is the cytoplasmic membrane. We resume that cecopin may disrupt the outer membrane, giving the enzyme access to the peptidoglycan in cell wall. So in the present study, novel hybrid protein combining Musca domestica cecropin (Mdc) with human lysozyme (Hly) was designed. The DNA sequence encoding recombination fusion protein Mdc–hly was cloned into the pET-32a vector for protein expression in Escherichia coli strain BL21 (DE3). The protein was expressed as a His-tagged fusion protein, and the Mdc–hly was released from the fusion by enterokinase cleavage and separated from the carrier thioredoxin. Antimicrobial activity assays showed that the recombinant fusion protein Mdc–hly has improved in vitro antimicrobial activity and action spectrum compared to Mdc and hly. Mdc–hly may have important potential application as a future safely administered human drug and food additive.  相似文献   

13.
A spin-label assay for lysozyme, which is based on the enzymatic hydrolysis of spin-labeled peptidoglycan, is described. Hydrolysis of this polymer by lysozyme results in sharpening of the esr spectrum. The rate of spectral sharpening is a function of enzyme concentration. When the activities of hen egg-white and human lysozymes are compared by this method, human lysozyme is 3.5 times as active as the hen enzyme. The pH optima for both enzymes are pH 5.0. At this pH, the maximal activity for the hen egg-white lysozyme is observed at an ionic strength of 0.09. This assay is suitable for measuring lysozyme levels in biological fluids. It is a sensitive, continuous assay that measures muramidase activity on a defined substrate.  相似文献   

14.
Lysozyme from egg white was modified by covalent attachment of an oleyl group to the free amino groups of lysozyme. The aim of the chemical modification was to develop an effective antimicrobial lysozyme derivative against both gram-negative and gram-positive bacteria. Lysozyme with various degrees of modification was obtained by changing oleoyl chloride/lysozyme mass ratio. Lysozyme derivatives evidently exhibited an antimicrobial effect against Escherichia coli (ATCC 29998). The modification slightly changed the antimicrobial effect of lysozyme derivative against Staphylococcus aureus (ATCC 121002). Since there was a positive correlation between the modification degree and the antimicrobial effect against E. coli, it was concluded that the change in antimicrobial behavior was due to an increase in hydrophobicity of the enzyme molecule enabling it to penetrate through the bacterial membrane of E. coli. It was also shown that oleoyl chloride with an MIC value of 10 mg/mL was effective against both E. coli and S. aureus.  相似文献   

15.
Lysozyme from lambda bacteriophage (λ lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, λ lysozyme consists of two structural domains connected by a helix, and has its catalytic residues located at the interface between these two domains. An interesting feature of λ lysozyme, when compared to the well-characterised hen egg-white lysozyme, is its lack of disulfide bridges; this makes λ lysozyme an interesting system for studies of protein folding. A comparison of the folding properties of λ lysozyme and hen lysozyme will provide important insights into the role that disulfide bonds play in the refolding pathway of the latter protein. Here we report the 1H, 13C and 15N backbone resonance assignments for λ lysozyme by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for detailed investigation of the refolding pathway using pulse-labelling hydrogen/deuterium exchange experiments monitored by NMR.  相似文献   

16.
Human airway lysozyme, purified from pathological bronchial secretions, is characterized by a specific activity 3-fold higher than that of hen egg-white lysozyme. The amino acid composition of human airway lysozyme is identical to that of other human lysozymes. The laser Raman spectra of human airway lysozyme and hen egg-white lysozyme in phosphate buffer solution (pH 7.2) are recorded in the range 300-1900 cm-1 at 488 nm. Drastic intensity differences are observed between the spectra analyzed in the ranges characteristic of the peptide backbone (e.g., beta-sheet; C alpha-C, C alpha-N), and of the aromatic side-chain vibrations (tyrosine, tryptophan). The deconvolution of the Raman amide I band gives secondary structures of 38% and 39% alpha-helix, 25% and 20% beta-sheet, and 37% and 41% undefined structure for the human and hen lysozymes, respectively.  相似文献   

17.
Lysozyme is an abundant, cationic antimicrobial protein that plays an important role in pulmonary host defense. Increased concentration of lysozyme in the airspaces of transgenic mice enhanced bacterial killing whereas lysozyme deficiency resulted in increased bacterial burden and morbidity. Lysozyme degrades peptidoglycan in the bacterial cell wall leading to rapid killing of Gram-positive organisms; however, this mechanism cannot account for the protective effect of lysozyme against Gram-negative bacteria. The current study was therefore designed to test the hypothesis that the catalytic activity (muramidase activity) of lysozyme is not required for bacterial killing in vivo. Substitution of serine for aspartic acid at position 53 (D53S) in mouse lysozyme M completely ablated muramidase activity. Muramidase-deficient recombinant lysozyme (LysM(D53S)) killed both Gram-positive and Gram-negative bacteria in vitro. Targeted expression of LysM(D53S) in the respiratory epithelium of wild-type (LysM(+/+)/LysM(D53S)) or lysozyme M(null) mice (LysM(-/-)/LysM(D53S)) resulted in significantly elevated lysozyme protein in the airspaces without any increase in muramidase activity. Intratracheal challenge of transgenic mice with Gram-positive or Gram-negative bacteria resulted in a significant increase in bacterial burden in LysM(-/-) mice that was completely reversed by targeted expression of LysM(D53S). These results indicate that the muramidase activity of lysozyme is not required for bacterial killing in vitro or in vivo.  相似文献   

18.
Enzymatic activity is dependent on temperature, although some proteins have evolved to retain activity at low temperatures at the expense of stability. Cold adapted enzymes are present in a variety of organisms and there is ample interest in their structure-function relationships. Lysozyme (E.C. 3.2.1.17) is one of the most studied enzymes due to its antibacterial activity against Gram positive bacteria and is also a cold adapted protein. In this work the characterization of lysozyme from the insect Manduca sexta and its activity at low temperatures is presented. Both M. sexta lysozymes natural and recombinant showed a higher content of alpha-helix secondary structure compared to that of hen egg white lysozyme and a higher specific enzymatic activity in the range of 5-30 degrees C. These results together with measured thermodynamic activation parameters support the designation of M. sexta lysozyme as a cold adapted enzyme. Therefore, the insect recombinant lysozyme is feasible as a model for structure-function studies for cold-adapted proteins.  相似文献   

19.
Lysozyme has been immobilized on chitosan, a polyaminosaccharide, without using any intermediate reagent. The best pH conditions for operating the chitosan columns have been determined and the best eluting agent was found to be a 2% solution of propylamine. The lysozyme activity was determined after reacting lysozyme with the product of glycolchitin and Remazol Brilliant Blue R. The recovery of lysozyme from chicken egg white yields lysozyme with 55% activity.  相似文献   

20.
An expression plasmid for hen egg-white lysozyme in Saccharomyces cerevisiae was constructed by inserting almost full-length cDNA (about 600 base pairs) encoding hen egg-white pre-lysozyme into a yeast expression vector, pAM 82. The hen lysozyme was expressed under the control of the repressible acid phosphatase promoter of pAM 82 in S. cerevisiae. About half of the expressed lysozyme was secreted in the yeast growth medium as a precise mature protein which exhibited specific activity consistent with that of authentic hen egg-white lysozyme. The replacement of Trp 62 of hen egg-white lysozyme with a tyrosine residue was performed by site-directed mutagenesis using a 19-mer oligodeoxyribonucleotide. The mutant lysozyme with Tyr 62 was found to exhibit enhanced bacteriolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号