首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano‐ and micro‐technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell‐matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano‐ and micro‐technologies. In addition, current hydrogel‐based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues.  相似文献   

2.
Tissue engineering promises to be an effective strategy that can overcome the lacuna existing in the current pharmacological and interventional therapies and heart transplantation. Heart failure continues to be a major contributor to the morbidity and mortality across the globe. This may be attributed to the limited regeneration capacity after the adult cardiomyocytes are terminally differentiated or injured. Various strategies involving acellular scaffolds, stem cells, and combinations of stem cells, scaffolds and growth factors have been investigated for effective cardiac tissue regeneration. Recently, injectable hydrogels have emerged as a potential candidate among various categories of biomaterials for cardiac tissue regeneration due to improved patient compliance and facile administration via minimal invasive mode that treats complex infarction. This review discusses in detail on the advances made in the field of injectable materials for cardiac tissue engineering highlighting their merits over their preformed counterparts.  相似文献   

3.
Potential of plant proteins for medical applications   总被引:1,自引:0,他引:1  
Various natural and synthetic polymers are being explored to develop biomaterials for tissue engineering and drug delivery. Although proteins are preferable over carbohydrates and synthetic polymers, biomaterials developed from proteins lack the mechanical properties and/or biocompatibilities required for medical applications. Plant proteins are widely available, have low potential to be immunogenic and can be made into fibers, films, hydrogels and micro- and nano-particles for medical applications. Studies, mostly with zein, have demonstrated the potential of using plant proteins for tissue engineering and drug delivery. Although other plant proteins such as wheat gluten and soyproteins have also shown biocompatibility using in vitro studies, fabricating biomaterials such as nano-fibers and nano-particles from soy and wheat proteins offers considerable challenges.  相似文献   

4.
Periodontal diseases can lead to soft tissue defects. Tissue engineering can provide functional replacements for damaged tissues. Recently, electrospun nanofibers have attracted great interest for tissue engineering and drug delivery applications. This has been revealed that statins exhibit positive impacts on the proliferation and regeneration of periodontal tissues. Electrospun simvastatin loaded poly (lactic-co-glycolic acid) (SIM-PLGA-NF) were prepared using electrospinning technique. Optimal conditions for preparation of SIM-PLGA-NF (PLGA concentration of 30 wt%, voltage of 15 kV, and flow rate of 1.5 ml h−1) were identified using a 23 factorial design. The optimized SIM-PLGA-NFs (diameter of 640.2 ± 32.5 nm and simvastatin entrapment efficacy of 99.6 ± 1.5%) were surface modified with 1% w/v hyaluronic acid solution (1%HA- SIM-PLGA-NF) to improve their compatibility with fibroblasts and potential application as a periodontal tissue engineering scaffold. HA-SIM-PLGA NFs were analyzed using SEM, FTIR, and XRD. 1%HA-SIM-PLGA-NF had uniform, bead-free and interwoven morphology, which is similar to the extracellular matrix. The mechanical performance of SIM-PLGA-NFs and release profile of simvastatin from these nanofibers have been also greatly improved after coating with HA. In vitro cellular tests showed that the proliferation, adhesion, and differentiation of fibroblast cells positively enhanced on the surface of 1%HA- SIM-PLGA-NF. These results demonstrate the potential application of 1%HA-SIM-PLGA-NFs as a scaffold for periodontal tissue engineering.  相似文献   

5.
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.  相似文献   

6.
Xia XX  Xu Q  Hu X  Qin G  Kaplan DL 《Biomacromolecules》2011,12(11):3844-3850
Silk--elastin-like protein polymers (SELPs), consisting of the repeating units of silk and elastin blocks, combine a set of outstanding physical and biological properties of silk and elastin. Because of the unique properties, SELPs have been widely fabricated into various materials for the applications in drug delivery and tissue engineering. However, little is known about the fundamental self-assembly characteristics of these remarkable polymers. Here we propose a two-step self-assembly process of SELPs in aqueous solution for the first time and report the importance of the ratio of silk-to-elastin blocks in a SELP's repeating unit on the assembly of the SELP. Through precise tuning of the ratio of silk to elastin, various structures including nanoparticles, hydrogels, and nanofibers could be generated either reversibly or irreversibly. This assembly process might provide opportunities to generate innovative smart materials for biosensors, tissue engineering, and drug delivery. Furthermore, the newly developed SELPs in this study may be potentially useful as biomaterials for controlled drug delivery and biomedical engineering.  相似文献   

7.
Current therapies have limited or no capacity to restore lost function, slow ongoing neurodegeneration, or promote regeneration following damage to the brain. Biomaterials are playing an increasingly important role in the development of novel, potentially efficacious approaches to brain treatment and repair. Programmable biomaterials enable and augment the targeted delivery of drugs into the brain and allow cell/tissue transplants to be effectively delivered and integrate into the brain, to serve as delivery vehicles for therapeutic proteins, and rebuild damaged circuits. Similarly, biomaterials are being increasingly used to recapitulate specific aspects of brain niches to promote regeneration and/or repair damaged neuronal pathways with stem cell therapies. Many of these approaches are gaining momentum because nanotechnology allows greater control over material-cell interactions that induce specific developmental processes and cellular responses including differentiation, migration, and outgrowth. This review discusses the state of the art and new directions in the convergence of biomaterial science, drug delivery, and stem cell biology in the treatment of degenerative and malignant brain diseases.  相似文献   

8.
Development and therapeutic applications of advanced biomaterials   总被引:2,自引:0,他引:2  
Millions of patients worldwide have benefited from technological innovation from biomaterials. Yet, while life expectancy continues to increase, organ failure and traumatic injury continue to fill hospitals and diminish the quality of life. Advances in understanding disease and tissue regeneration combined with increased accessibility of modern technology have created new opportunities for the use of biomaterials in unprecedented ways. Materials can now be rapidly created and selected to target specific cells, change shape in response to external stimulus, and instruct tissue regeneration. Here we describe a few of these technologies with emphasis on targeted drug delivery vehicles, high-throughput material synthesis, minimally invasive biodegradable shape-memory materials, and development of strategies to enhance tissue regeneration through delivery of instructive materials.  相似文献   

9.
生物活性材料是一类经由材料表面或界面产生特殊生物或化学反应,从而影响组织和材料间的结合、诱发细胞活性或引导组织再生的生物材料。近年来,生物活性材料已广泛应用于牙周组织再生。本文对不同类型生物活性材料的特点及其在牙周组织再生中的作用进行综述,为推动其在牙周组织再生领域中的应用提供参考。  相似文献   

10.
Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years and can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent-processing methods can be used to generate silk biomaterials for a range of applications. In this protocol, we include methods to extract silk from B. mori cocoons to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, as well as for drug delivery.  相似文献   

11.
BackgroundCritical size bone defect and fracture unable to regenerate itself, inspire the origination and technological advancement in the field of bone tissue engineering (BTE). The strategies of bone tissue engineering are often classified into three groups: First, is a direct injection of cells into the tissue of interest; second is grafting of cell-scaffold constructs; and third is scaffold-based signaling molecules, drug delivery or both. Much research was available on the first two categories, still finding the structure and property of scaffold close towards the natural tissue is yet to achieve.Aim of the ReviewThe proposed mini review focus on ceramic biomaterials uses for bone regeneration and drug delivery. It covers the fabrication process of scaffold including conventional and non-conventional i.e. rapid prototyping approach along with it advantage. The use of scaffold for drug delivery and signaling molecules such as growth factor is an emerging field of research in tissue engineering.ConclusionThe biodegradable beads used as a local drug delivery system are ubiquitous in surgery to treat post-operative infections but does not play any role in tissue regeneration. The use of this clinically accepted drug delivery technique in bone regeneration is an alternative way for the treatment on several bone infections (especially osteomyelitis and arthritis associated with tuberculosis). It is predicted to be the future of organ replacement and treatment.  相似文献   

12.
Multiple-protein delivery has been proven to be a critical consideration for promoting tissue regeneration. Many polymeric composite biomaterials have been designed and used for modulating dual-protein delivery to enhance tissue regeneration in vitro or in vivo. However, the fabrication conditions and low water contents within the portions of these composite matrices that determine protein release rates are not optimal for maintaining the stability of encapsulated macromolecular therapeutics. In this proof-of-concept work, we aim to resolve this deficiency by single-step fabrication of affinity hydrogels capable of independently delivering two or more proteins. Selective protein-binding sites were incorporated into poly(ethylene glycol) hydrogels via copolymerization with glycidyl methacrylate-iminodiacetic acid (GMIDA) ligands to modulate release of two model proteins, lysozyme and hexahistidine tagged green fluorescent protein (hisGFP), via two distinct matrix-binding mechanisms, namely electrostatic interaction and metal-ion chelation. Differing from composite matrices for dual-protein delivery, the results reported herein indicate that injectable monolithic affinity hydrogels are capable of rapidly encapsulating multiple therapeutic agents under mild physiological conditions and independently controlling their localized delivery. Most importantly, these affinity hydrogels retain high water permeabilities throughout the entire device, characteristics that are necessary for maintaining the stability and viability of encapsulated proteins and cells.  相似文献   

13.
Natural polymers, because of their biocompatibility, availability, and physico-chemical properties have been the materials of choice for the fabrication of injectable hydrogels for regenerative medicine. In particular, they are appealing materials for delivery systems and provide sustained and controlled release of drugs, proteins, gene, cells, and other active biomolecules immobilized.In this work, the use of hydrogels obtained from natural source polymers as cell delivery systems is discussed. These materials were investigated for the repair of cartilage, bone, adipose tissue, intervertebral disc, neural, and cardiac tissue. Papers from the last ten years were considered, with a particular focus on the advances of the last five years. A critical discussion is centered on new perspectives and challenges in the regeneration of specific tissues, with the aim of highlighting the limits of current systems and possible future advancements.  相似文献   

14.
Radiation-based therapies aided by nanoparticles have been developed for decades, and can be primarily categorized into two main platforms. First, delivery of payload of photo-reactive drugs (photosensitizers) using the conventional nanoparticles, and second, design and development of photo-triggerable nanoparticles (primarily liposomes) to attain light-assisted on-demand drug delivery. The main focus of this review is to provide an update of the history, current status and future applications of photo-triggerable lipid-based nanoparticles (light-sensitive liposomes). We will begin with a brief overview on the applications of liposomes for delivery of photosensitizers, including the choice of photosensitizers for photodynamic therapy, as well as the currently available light sources (lasers) used for these applications. The main segment of this review will encompass the details of strategies used to develop photo-triggerable liposomes for their drug delivery function. The principles underlying the assembly of photoreactive lipids into nanoparticles (liposomes) and photo-triggering mechanisms will be presented. We will also discuss factors that limit the applications of these liposomes for in vivo triggered drug delivery and emerging concepts that may lead to the biologically viable photo-activation strategies. We will conclude with our view point on the future perspectives of light-sensitive liposomes in the clinic.  相似文献   

15.
Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating spinal cord injury a reality. Among the range of strategies under investigation, cell‐based therapies offer the most promising results, due to the multifactorial roles that these cells can fulfil. However, the best cell source is still a matter of debate, as are clinical issues that include the optimal cell dose as well as the timing and route of administration. In this context, the role of biomaterials is gaining importance. These can not only act as vehicles for the administered cells but also, in the case of chronic lesions, can be used to fill the permanent cyst, thus creating a more favourable and conducive environment for axonal regeneration in addition to serving as local delivery systems of therapeutic agents to improve the regenerative milieu. Some of the candidate molecules for the future are discussed in view of the knowledge derived from studying the mechanisms that facilitate the intrinsic regenerative capacity of central nervous system neurons. The future challenge for the multidisciplinary teams working in the field is to translate the knowledge acquired in basic research into effective combinatorial therapies to be applied in the clinic.  相似文献   

16.
Alginate (ALG) is a lineal hydrophilic polysaccharide present in brown algae cell walls, which turns into a gel state when hydrated. Gelation readily produces a series of three dimensional (3D) architectures like fibers, capillaries, and microspheres, used as biosensors and bio‐actuators in a plethora of biomedical applications like drug delivery and wound healing. Hydrogels have made a great impact on regenerative medicine and tissue engineering because they are able to mimic the mechanical properties of natural tissues due to their high water content. Recent advances in neurosciences have led to promising strategies for repairing and/or regenerating the damaged nervous system. Spinal cord injury (SCI) is particularly challenging, owing to its devastating medical, human, and social consequences. Although effective therapies to repair the damaged spinal cord (SC) are still lacking, multiple pharmacological, genetic, and cell‐based therapies are currently under study. In this framework, ALG hydrogels constitute a source of potential tools for the development of implants capable of promoting axonal growth and/or delivering cells or drugs at specific damaged sites, which may result in therapeutic strategies for SCI. In this mini‐review, the current state of the art of ALG applications in neural tissues for repairing the damaged spinal cord is discussed.  相似文献   

17.
Peptide RATEA16 spontaneously self-assembled into higher-order nanofiber hydrogels with extremely high water content (>99.5% (wt/vol)) under physiological condition. The hydrogels could undergo pH-reversible transitions from viscous solution to elastic hydrogel and to precipitate. The supramolecular self-assembly and the three phase transitions are driven by hydrophobic interactions, intermolecular hydrogen bonds, and a combination of attractive or repulsive electrostatic interactions. These hydrogels are rich in beta-sheet nanofibers, as demonstrated by CD and FTIR data. Rheological measurements reveal that the viscoelasticity of the material can be tuned by environmental pH and peptide concentration. The storage modulus of the hydrogels increases with increasing peptide concentration, and the self-assembled hydrogels are able to recover from mechanical breakdowns. AFM images show that the elasticity is attributed to a network nanostructure consisting of fibrous self-assemblies. The hydrogels are promising for a variety of possible biomedical applications, including drug delivery.  相似文献   

18.
The introduction of electrostatic layer-by-layer (LbL) self-assembly has shown broad biomedical applications in thin film coating, micropatterning, nanobioreactors, artificial cells, and drug delivery systems. Multiple assembly polyelectrolytes and proteins are based on electrostatic interaction between oppositely charged layers. The film architecture is precisely designed and can be controlled to 1-nm precision with a range from 5 to 1000 nm. Thin films can be deposited on any surface including many widely used biomaterials. Microencapsulation of micro/nanotemplates with multilayers enabled cell surface modification, controlled drug release, hollow shell formation, and nanobioreactors. Both in vitro and in vivo studies indicate potential applications in biology, pharmaceutics, medicine, and other biomedical areas.  相似文献   

19.
The cementum is the outermost layer of hard tissue covering the dentin within the root portion of the teeth. It is the only hard tissue with a specialized structure and function that forms a part of both the teeth and periodontal tissue. As such, cementum is believed to be critical for periodontal tissue regeneration. In this review, we discuss the function and histological structure of the cementum to promote crystal engineering with a biochemical approach in cementum regenerative medicine. We review the microstructure of enamel and bone while discussing the mechanism underlying apatite crystal formation to infer the morphology of cementum apatite crystals and their complex structure with collagen fibers. Finally, the limitations of the current dental implant treatments in clinical practice are explored from the perspective of periodontal tissue regeneration. We anticipate the possibility of advancing periodontal tissue regenerative medicine via cementum regeneration using a combination of material science and biochemical methods.  相似文献   

20.
Abstract

Radiation-based therapies aided by nanoparticles have been developed for decades, and can be primarily categorized into two main platforms. First, delivery of payload of photo-reactive drugs (photosensitizers) using the conventional nanoparticles, and second, design and development of photo-triggerable nanoparticles (primarily liposomes) to attain light-assisted on-demand drug delivery. The main focus of this review is to provide an update of the history, current status and future applications of photo-triggerable lipid-based nanoparticles (light-sensitive liposomes). We will begin with a brief overview on the applications of liposomes for delivery of photosensitizers, including the choice of photosensitizers for photodynamic therapy, as well as the currently available light sources (lasers) used for these applications. The main segment of this review will encompass the details of strategies used to develop photo-triggerable liposomes for their drug delivery function. The principles underlying the assembly of photoreactive lipids into nanoparticles (liposomes) and photo-triggering mechanisms will be presented. We will also discuss factors that limit the applications of these liposomes for in vivo triggered drug delivery and emerging concepts that may lead to the biologically viable photo-activation strategies. We will conclude with our view point on the future perspectives of light-sensitive liposomes in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号