首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
hESC (human embryonic stem cells), when differentiated into pancreatic β ILC (islet‐like clusters), have enormous potential for the cell transplantation therapy for Type 1 diabetes. We have developed a five‐step protocol in which the EBs (embryoid bodies) were first differentiated into definitive endoderm and subsequently into pancreatic lineage followed by formation of functional endocrine β islets, which were finally matured efficiently under 3D conditions. The conventional cytokines activin A and RA (retinoic acid) were used initially to obtain definitive endoderm. In the last step, ILC were further matured under 3D conditions using amino acid rich media (CMRL media) supplemented with anti‐hyperglycaemic hormone‐Glp1 (glucagon‐like peptide 1) analogue Liraglutide with prolonged t½ and Exendin 4. The differentiated islet‐like 3D clusters expressed bonafide mature and functional β‐cell markers‐PDX1 (pancreatic and duodenal homoeobox‐1), C‐peptide, insulin and MafA. Insulin synthesis de novo was confirmed by C‐peptide ELISA of culture supernatant in response to varying concentrations of glucose as well as agonist and antagonist of functional 3D β islet cells in vitro. Our results indicate the presence of almost 65% of insulin producing cells in 3D clusters. The cells were also found to ameliorate hyperglycaemia in STZ (streptozotocin) induced diabetic NOD/SCID (non‐obese diabetic/severe combined immunodeficiency) mouse up to 96 days of transplantation. This protocol provides a basis for 3D in vitro generation of long‐term in vivo functionally viable islets from hESC.  相似文献   

2.

Background aims

Adipose tissue–derived mesenchymal stromal cells (AT-MSCs), widely known as multipotent progenitors, release several cytokines that support cell survival and repair. There are in vitro and in vivo studies reporting the regenerative role of AT-MSCs possibly mediated by their protective effects on functional islet cells as well as their capacity to differentiate into insulin-producing cells (IPCs).

Methods

On such a basis, our goal in the present study was to use three different models including direct and indirect co-cultures and islet-derived conditioned medium (CM) to differentiate AT-MSCs into IPCs and to illuminate the molecular mechanisms of the beneficial impact of AT-MSCs on pancreatic islet functionality. Furthermore, we combined in vitro co-culture of islets and AT-MSCs with in vivo assessment of islet graft function to assess whether co-transplantation of islets with AT-MSCs can reduce marginal mass required for successful islet transplantation and prolong graft function in a diabetic rat model.

Results

Our findings demonstrated that AT-MSCs are suitable for creating a microenvironment favorable for the repair and longevity of the pancreas β cells through the improvement of islet survival and maintenance of cell morphology and insulin secretion due to their potent properties in differentiation. Most importantly, hybrid transplantation of islets with AT-MSCs significantly promoted survival, engraftment and insulin-producing function of the graft and reduced the islet mass required for reversal of diabetes.

Conclusions

This strategy might be of therapeutic potential solving the problem of donor islet material loss that currently limits the application of allogeneic islet transplantation as a more widespread therapy for type 1 diabetes.  相似文献   

3.
Background aimsWe recently showed that co-transplantation of mesenchymal stromal cells (MSCs) improves islet function and revascularization in vivo. Pre-transplant islet culture is associated with the loss of islet cells. MSCs may enhance islet cell survival or function by direct cell contact mechanisms and soluble mediators. We investigated the capacity of MSCs to improve islet cell survival or β-cell function in vitro using direct and indirect contact islet-MSC configurations. We also investigated whether pre-culturing islets with MSCs improves islet transplantation outcome.MethodsThe effect of pre-culturing islets with MSCs on islet function in vitro was investigated by measuring glucose-stimulated insulin secretion. The endothelial cell density of fresh islets and islets cultured with or without MSCs was determined by immunohistochemistry. The efficacy of transplanted islets was tested in vivo using a syngeneic streptozotocin-diabetic minimal islet mass model. Graft function was investigated by monitoring blood glucose concentrations.ResultsIndirect islet-MSC co-culture configurations did not improve islet function in vitro. Pre-culturing islets using a direct contact MSC monolayer configuration improved glucose-stimulated insulin secretion in vitro, which correlated with superior islet graft function in vivo. MSC pre-culture had no effect on islet endothelial cell number in vitro or in vivo.ConclusionsPre-culturing islets with MSCs using a direct contact configuration maintains functional β-cell mass in vitro and the capacity of cultured islets to reverse hyperglycemia in diabetic mice.  相似文献   

4.
Human islet transplantation could represent an attractive alternative to insulin injections for the treatment of diabetes type 1. However, such an approach requires a better understanding of the molecular and cellular switches controlling β-cell function in general as well as after transplantation into the liver. Although much research has been done into the suitability of stem or progenitor cells to generate a limitless supply of human β-cells, a reproducible and efficient protocol for the differentiation of such cells into stably insulin-secreting β-cells suitable for transplantation has yet to be reported. Fueled by recent findings showing that mature β-cells are able to regenerate, many efforts have been undertaken to expand this cell pool. Unfortunately, also these approaches had problems to yield sufficiently differentiated human islet cells. The aim of this review is to summarize recent findings describing some of the molecular and cellular key players of islet biology. A more complete understanding of their orchestration and the use of new methods such as real time confocal imaging for the assessment of islet quality may yield the necessary advancements for more successful human islet transplantation.  相似文献   

5.
Since the early pioneering work of Ballinger and Reckard demonstrating that transplantation of islets of Langerhans into diabetic rodents could normalize their blood glucose levels, islet transplantation has been proposed to be a potential treatment for type 1 diabetes 1,2. More recently, advances in human islet transplantation have further strengthened this view 1,3. However, two major limitations prevent islet transplantation from being a widespread clinical reality: (a) the requirement for large numbers of islets per patient, which severely reduces the number of potential recipients, and (b) the need for heavy immunosuppression, which significantly affects the pediatric population of patients due to their vulnerability to long-term immunosuppression. Strategies that can overcome these limitations have the potential to enhance the therapeutic utility of islet transplantation.Islet transplantation under the mouse kidney capsule is a widely accepted model to investigate various strategies to improve islet transplantation. This experiment requires the isolation of high quality islets and implantation of islets to the diabetic recipients. Both procedures require surgical steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol. We also briefly discuss different transplantation models: syngeneic, allogeneic, syngeneic autoimmune, and allogeneic autoimmune.  相似文献   

6.
Islet transplantation is a promising potential therapy for patients with type 1 diabetes. The outcome of islet transplantation depends on the transplantation of a sufficient amount of β-cell mass. However, the initial loss of islets after transplantation is problematic. We hypothesized the hyperglycemic status of the recipient may negatively affect graft survival. Therefore, in the present study, we evaluated the effect of insulin treatment on islet transplantation involving a suboptimal amount of islets in Akita mice, which is a diabetes model mouse with an Insulin 2 gene missense mutation. Fifty islets were transplanted under the left kidney capsule of the recipient mouse with or without insulin treatment. For insulin treatment, sustained-release insulin implants were implanted subcutaneously into recipient mice 2 weeks before transplantation and maintained for 4 weeks. Islet transplantation without insulin treatment did not reverse hyperglycemia. In contrast, the group that received transplants in combination with insulin treatment exhibited improved fasting blood glucose levels until 18 weeks after transplantation, even after insulin treatment was discontinued. The group that underwent islet transplantation in combination with insulin treatment had better glucose tolerance than the group that did not undergo insulin treatment. Insulin treatment improved graft survival from the acute phase (i.e., 1 day after transplantation) to the chronic phase (i.e., 18 weeks after transplantation). Islet apoptosis increased with increasing glucose concentration in the medium or blood in both the in vitro culture and in vivo transplantation experiments. Expression profile analysis of grafts indicated that genes related to immune response, chemotaxis, and inflammatory response were specifically upregulated when islets were transplanted into mice with hyperglycemia compared to those with normoglycemia. Thus, the results demonstrate that insulin treatment protects islets from the initial rapid loss that is usually observed after transplantation and positively affects the outcome of islet transplantation in Akita mice.  相似文献   

7.
8.
9.
The only cure available for Type 1 diabetes involves the transplantation of islets of Langerhans isolated from donor organs. However, success rates are relatively low. Disconnection from vasculature upon isolation and insufficient rate of revascularization upon transplantation are thought to be a major cause, as islet survival and function depend on extensive vascularization. Research has thus turned toward the development of pretransplantation culture techniques to enhance revascularization of islets, so far with limited success. With the aim to develop a technique to enhance islet revascularization, this work proposes a method to isolate and culture pancreas-derived blood vessels. Using a mild multistep digestion method, pancreatic blood vessels were retrieved from whole murine pancreata and cultured in collagen Type 1. After 8 days, 50% of tissue explants had formed anastomosed microvessels which extended up to 300 μm from the explant tissue and expressed endothelial cell marker CD31 but not ductal marker CK19. Cocultures with islets of Langerhans revealed survival of both tissues and insulin expression by islets up to 8 days post-embedding. Microvessels were frequently found to encapsulate islets, however no islet penetration could be detected. This study reports for the first time the isolation and culture of pancreatic blood vessels. The methods and results presented in this work provide a novel explant culture model for angiogenesis and tissue engineering research with relevance to islet biology. It opens the door for in vivo validation of the potential of these pancreatic blood vessel explants to improve islet transplantation therapies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2745, 2019.  相似文献   

10.
Increasing individuals diagnosed with type II diabetes pose a strong demand for the development of more effective anti-diabetic drugs. However, expensive, ethically controversial animal-based screening for anti-diabetic compounds is not always predictive of the human response. The use of in vitro cell-based models in research presents obviously ethical and cost advantages over in vivo models. This study was to develop an in vitro three-dimensional (3D) perfused culture model of islets (Islet TF) for maintaining viability and functionality longer for diabetic drug efficacy tests. Briefly fresh isolated rat islets were encapsulated in ultrapure alginate and the encapsulated islets were cultured in TissueFlex®, a multiple, parallel perfused microbioreactor system for 7 days. The encapsulated islets cultured statically in cell culture plates (3D static) and islets cultured in suspension (2D) were used as the comparisons. In this study we demonstrate for the first time that Islet TF model can maintain the in vitro islet viability, and more importantly, the elevated functionality in terms of insulin release and dynamic responses over a 7-day culture period. The Islet TF displays a high sensitivity in responding to drugs and drug dosages over conventional 2D and 3D static models. Actual drug administration in clinics could be simulated using the developed Islet TF model, and the patterns of insulin release response to the tested drugs were in agreement with the data obtained in vivo. Islet TF could be a more predictive in vitro model for routine short- and long-term anti-diabetic drug efficacy testing.  相似文献   

11.
With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.  相似文献   

12.
Environmental factors such as diet, physical activity, drugs, pollution and life style play an important role in the progression and/or precipitation of diseases like diabetes, hypertension, obesity and cardiovascular disorders. Indiscriminate use of antibiotics to combat infectious diseases is one of the commonest forms of misuse of drugs. Antibiotics seem to have a correlation with diabetes and pancreatic function. There are controversial reports about the effect of antibiotics on the pancreatic islets; some suggesting their harmless action, some depicting a beneficial role and others indicating deleterious effect. Moreover, use of antibiotics is mandatory during islet isolation and cultivation to reduce incidences of microbial contamination. It is likely that antibiotic treatment may adversely affect islet viability and its functioning leading to failure of islet transplantation. The presentin vitro study was undertaken to examine the effect of commonly used antibiotics such as gentamycin, penicillin, streptomycin, tetracycline, neomycin, erythromycin and chloramphenicol on islet viability, its functioning and induction of oxidative stress if any. The viability and insulin production data showed that none of the antibiotics used in the present study affect the viability and the functioning of the islets at their pharmacological concentrations. Free radical levels measured in terms of melonyldialdehyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) reveal that except for a marginal increase in lipid peroxidation with tetracycline and slight increase in NO levels with streptomycin, none of these antibiotics affect the oxidative status of the cells. Antioxidant enzymes such as superoxide dismutase and catalase remain unaffected after this treatment. Our results reveal the innocuous nature of the antibiotics used at pharmacological concentrations, suggesting their safety whenever prescribed to combat infections and also during islet isolation procedures.  相似文献   

13.
Dispersed rat islet cells embedded in a matrix of collagen I are known to form aggregatesin vitroreminiscent of native islets. Furthermore, it appears that islet function and survival are better maintainedin vitrowhen cells are grown in the presence of extracellular matrix. These studies suggest an important role of cell–matrix interactions in the formation and maintenance of islet structure and function. The molecular basis of these interactions is mostly unknown. In the present study, we confirm the presence of β1 integrins on primary and transformed (RIN-2A line) rat islet cells. Perturbation studiesin vitroshow that β1 integrins play a role in islet cell attachment and spreading on bovine extracellular matrix and on the matrix produced by A-431 cells. The α3 integrin subunit is coimmunoprecipitated with β1 from extracts of both primary and transformed islet cells, and immunodepletion studies suggest that α3β1 represents nearly half of the total β1 integrins expressed on primary islet cells.In situ,α3 and β1 are expressed on the surface of all islet cell types, as shown by indirect immunocytochemistry on paraformaldehyde-fixed sections of rat pancreas. In conclusion, the study demonstrates the presence of α3β1 on primary and transformed rat islet cells, and an important role of β1 integrins in islet cell attachment and spreadingin vitro.  相似文献   

14.
15.

Background aims

Mesenchymal stromal cells (MSCs) enhance islet function both in vitro and in vivo, at least in part by secreting ligands that activate islet G-protein coupled receptors (GPCRs). We assessed whether pre-treatment with a defined “cocktail” of MSC-secreted GPCR ligands enhances islet functional survival in vitro and improves the outcomes of islet transplantation in an experimental model of diabetes.

Methods

Isolated islets were cultured for 48 h with ANXA1, SDF-1 or C3a, alone or in combination. Glucose-stimulated insulin secretion (GSIS) and cytokine-induced apoptosis were measured immediately after the 48 h culture period and at 24 h or 72 h following removal of the ligands from the culture media. Islets were syngeneically transplanted underneath the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice and blood glucose levels monitored for 28 days.

Results

Pre-culturing islets with a cocktail of ANXA1/SDF-1/C3a potentiated GSIS and protected islet cells from cytokine-induced apoptosis in vitro. These effects were maintained for up to 72 h after the removal of the factors from the culture medium, suggesting a sustained protection of islet graft functional survival during the immediate post-transplantation period. Islets pre-treated with the cocktail of MSC secretory factors were more effective in reducing blood glucose in diabetic mice, consistent with their improved functional survival in vivo.

Discussion

Pre-culturing islets with a cocktail of MSC secretory products offers a well-defined, cell-free approach to improve clinical islet transplantation outcomes while avoiding many of the safety, regulatory and logistical hurdles of incorporating MSCs into transplantation protocols.  相似文献   

16.
Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three‐dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100–150 μm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose‐responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re‐associated human islet cells showed an a‐typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C‐peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell–cell interactions between insuloma and/or primary islet cells.  相似文献   

17.

Objective

The first Phase I study of autologous tolerogenic dendritic cells (Tol-DCs) in Type 1 diabetes (T1D) patients was recently completed. Pancreatic islet transplantation is an effective therapy for T1D, and infusion of Tol-DCs can control diabetes development while promoting graft survival. In this study, we aim to systematically review islet allograft survival following infusion of Tol-DCs induced by different methods, to better understand the mechanisms that mediate this process.

Methods

We searched PubMed and Embase (from inception to February 29th, 2012) for relevant publications. Data were extracted and quality was assessed by two independent reviewers. We semiquantitatively analyzed the effects of Tol-DCs on islet allograft survival using mixed leukocyte reaction, Th1/Th2 differentiation, Treg induction, and cytotoxic T lymphocyte activity as mechanisms related-outcomes. We discussed the results with respect to possible mechanisms that promote survival.

Results

Thirteen articles were included. The effects of Tol-DCs induced by five methods on allograft survival were different. Survival by each method was prolonged as follows: allopeptide-pulsed Tol-DCs (42.14±44 days), drug intervention (39 days), mesenchymal stem cell induction (23 days), genetic modification (8.99±4.75 days), and other derivation (2.61±6.98 days). The results indicate that Tol-DC dose and injection influenced graft survival. Single-dose injections of 104 Tol-DCs were the most effective for allograft survival, and multiple injections were not superior. Tol-DCs were also synergistic with immunosuppressive drugs or costimulation inhibitors. Possible mechanisms include donor specific T cell hyporesponsiveness, Th2 differentiation, Treg induction, cytotoxicity against allograft reduction, and chimerism induction.

Conclusions

Tol-DCs induced by five methods prolong MHC mismatched islet allograft survival to different degrees, but allopeptide-pulsed host DCs perform the best. Immunosuppressive or costimulatory blockade are synergistic with Tol-DC on graft survival. Multiple injections are not superior to single injection. Yet more rigorously designed studies with larger sample sizes are still needed in future.  相似文献   

18.
Background aimsCo-transplantation of islets with mesenchymal stem cells (MSCs) has been shown to improve graft outcome in mice, which has been partially attributed to the effects of MSCs on revascularization and preservation of islet morphology. Microencapsulation of islets provides an isolated-graft model of islet transplantation that is non-vascularized and prevents islet aggregation to preserve islet morphology. The aim of this study was to investigate whether MSCs could improve graft outcome in a microencapsulated/isolated-graft model of islet transplantation.MethodsMouse islets and kidney MSCs were co-encapsulated in alginate, and their function was assessed in vitro. A minimal mass of 350 syngeneic islets encapsulated alone or co-encapsulated with MSCs (islet+MSC) were transplanted intraperitoneally into diabetic mice, and blood glucose concentrations were monitored. Capsules were recovered 6 weeks after transplantation, and islet function was assessed.ResultsIslets co-encapsulated with MSCs in vitro had increased glucose-stimulated insulin secretion and content. The average blood glucose concentration of transplanted mice was significantly lower by 3 weeks in the islet+MSC group. By week 6, 71% of the co-encapsulated group were cured compared with 16% of the islet-alone group. Capsules recovered at 6 weeks had greater glucose-stimulated insulin secretion and insulin content in the islet+MSC group.ConclusionsMSCs improved the efficacy of microencapsulated islet transplantation. Using an isolated-graft model, we were able to eliminate the impact of MSC-mediated enhancement of revascularization and preservation of islet morphology and demonstrate that the improvement in insulin secretion and content is sustained in vivo and can significantly improve graft outcome.  相似文献   

19.
Around 400 million people worldwide suffer from diabetes mellitus.The major pathological event for Type 1 diabetes and advanced Type 2 diabetes is loss or impairment of insulin-secreting β cells of the pancreas.For the past 100 years,daily insulin injection has served as a life-saving treatment for these patients.However,insulin injection often cannot achieve full glucose control,and over time poor glucose control leads to severe complications and mortality.As an alternative treatment,islet transplantation has been demonstrated to effectively maintain glucose homeostasis in diabetic patients,but its wide application is limited by the scarcity of donated islets.Therefore,it is important to define new strategies to obtain functional human β cells for transplantation therapies.Here,we summarize recent progress towards the production of β cells in vitro from pluripotent stem cells or somatic cell types including a cells,pancreatic exocrine cells,gastrointestinal stem cells,fibroblasts and hepatocytes.We also discuss novel methods for optimizing β cell transplantation and maintenance in vivo.From our perspective,the future of βcell replacement therapy is very promising although it is still challenging to control differentiation of β cells in vitro and to protect these cells from autoimmune attack in Type 1 diabetic patients.Overall,tremendous progress has been made in understanding βcell differentiation and producing functional β cells with different methods.In the coming years,we believe more clinical trials will be launched to move these technologies towards treatments to benefit diabetic patients.  相似文献   

20.
Conservation In vitro of threatened plants—Progress in the past decade   总被引:1,自引:0,他引:1  
Summary In vitro techniques have found increasing use in the conservation of threatened plants in recent years and this trend is likely to continue as more species face risk of extinction. The Micropropagation Unit at Royal Botanic Gardens, Kew, UK (RBG Kew) has an extensive collection of in vitro plants including many threatened species from throughout the world. The long history of the unit and the range of plants cultured have enabled considerable expertise to be amassed in identifying the problems and developing experimental strategies for propagation and conservation of threatened plants. While a large body of knowledge is available on the in vitro culture of plants, there are limited publications relating to threatened plant conservation. This review highlights the progress in in vitro culture and conservation of threatened plants in the past decade (1995–2005) and suggests future research directions. Works on non-threatened plants are also included wherever methods have applications in rare plant conservation. Recalcitrant plant materials collected from the wild or ex situ collections are difficult to grow in culture. Different methods of sterilization and other treatments to establish clean material for culture initiation are reviewed. Application of different culture methods for multiplication, and use of unconventional materials for rooting and transplantation are reviewed. As the available plant material for culture initiation is scarce and in many cases associated with inherent problems such as low viability and endogenous contamination, reliable protocols on multiplication, rooting, and storage methods are very important. In this context, photoautotrophic micropropagation has the potential for development as a routine method for the in vitro conservation of endangered plants. Long-term storage of material in culture is challenging and the potential applications of cryopreservation are significant in this area. Future conservation biotechnology research and its applications must be aimed at conserving highly threatened, mainly endemic, plants from conservation hotspots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号