首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing specialization for δ-crystallin synthesis is a prominent feature of the differentiation of chick lens epithelial cells into lens fiber cells and can be studied in cultured embryonic lens epithelia. Quantitation of δ-crystallin mRNA by molecular hybridizaton to a [3H]DNA complementary to δ-crystallin mRNA demonstrates that differentiation, both in ovo and in tissue culture, is associated with the accumulation of δ-crystallin mRNA. In the cultures, there is an overall stimulation of protein synthesis, including δ-crystallin mRNA during the first 5 hr in vitro. Between 5 and 24 hr in vitro there is a differential stimulation of δ-crystallin synthesis and an accumulation of δ-crystallin mRNA that can quantitatively account for this stimulation.  相似文献   

2.
Dissociated cells of neural retinas of 3.5-day-old chick embryos differentiated into “lentoid bodies” within about 10–12 days when cultured in vitro. Protein synthesis of these cultured cells was studied with the use of SDS-polyacrylamide gel electrophoresis, affinity chromatography, and autoradiography combined with immunological techniques. Incorporation of [14C]leucine into total proteins, α-crystallin, and δ-crystallin was estimated after increasing times of culture up to about 30 days. Isotope incorporation into δ-crystallin was detected at 9 days, and it increased sevenfold after another 17 days. α-Crystallin was also first detected at 9 days, but its relative content reached a maximum at 12 days and then decreased gradually. The ratio of δ-crystallin synthesis to total protein synthesis increased up to 40% at 26 days, while that of α-crystallin synthesis remained 3% throughout the culture period. These results show that lens differentiation from neural retinal cells is associated with the preferential synthesis of lens crystallins, particularly of δ-crystallin.  相似文献   

3.
δ-Crystallin is the principal protein synthesized in the embryonic chicken lens. After hatching δ-crystallin synthesis decreases and eventually ceases. We have determined when the δ-crystallin messenger RNA (mRNA) disappears from the lens fiber cells during the first year of age by cell-free translation of lens RNA in a reticulocyte lysate, RNA blot (Northern) hybridization, and in situ hybridization. The hybridization was performed with a nick-translated, cloned δ-crystallin cDNA (pδCr2). δ-Crystallin mRNA was present in the lens until 3 months of age and disappeared between the third and fifth month after hatching. The in situ hybridization experiments indicated that the δ-crystallin mRNA was present throughout the lens fiber mass until 1 month after hatching and was greatly reduced in the cortical fiber cells thereafter. In contrast to earlier stages, then, the cortical fiber cells differentiating at the lens equator after about 1 month of age do not accumulate δ-crystallin mRNA. The data also indicate that the maximal half-life of functional δ-crystallin mRNA in the posthatched chicken lens is about 2 months.  相似文献   

4.
We have shown previously that the synthesis of the lower molecular weight polypeptides of δ-crystallin is differentially reduced and the intracellular Na+K+ ratio is markedly increased in the 15-day-old embryonic chick lens cultured for 3 hr without the vitreous body or in the presence of ouabain. Here we demonstrate that neither δ-crystallin synthesis nor cation concentration is affected in the cultured, vitreous-free 6-day-old embryonic chick lens unless it is treated with ouabain. These results show that the alteration in δ-crystallin synthesis promoted by removing the vitreous body of the embryonic cultured lens is a stage-specific phenomenon, and are consistent with our previous correlation between the ratio of synthesis of the δ-crystallin polypeptides and the intracellular concentration of electrolytes.  相似文献   

5.
Previous studies have shown that freshly explanted 6-day-old embryonic chick lens epithelial cells elongate, differentially increase their synthesis of δ-crystallin, and accumulate δ-crystallin mRNA when cultured with fetal calf serum; in contrast, precultured serum-starved 6-day-old and freshly explanted 19-day-old embryonic epithelial cells divide when treated with fetal calf serum. We have explored whether the stimulation of δ-crystallin gene expression (as measured by δ-crystallin synthesis and δ-crystallin mRNA accumulation) is affected by inhibiting lens cell elongation with colchicine, and whether δ-crystallin gene expression is increased in lens epithelial cells stimulated to divide by treatment with fetal calf serum, as it is in those stimulated to elongate by treatment with serum. Three new findings were made in this study. First, the stimulation of δ-crystallin gene expression does not require elongation of the cultured lens cells. Second, a decreased proportion of δ-crystallin synthesis is observed in lens epithelial cells during normal development and during serum starvation; in neither case is this decrease associated with a reduction in the number of δ-crystallin mRNA sequences per cell. Finally, serum stimulation of lens cell division does not increase the proportion of δ-crystallin synthesis, but can promote the accumulation of δ-crystallin mRNA. Thus, the relative proportion of δ-crystallin synthesized during chick lens development is not solely a function of the number of δ-crystallin mRNA sequences in the lens cells.  相似文献   

6.
Dissociated cells of neural retinas of 3.5-day-old chick embryos (stages 20–21) were cultured as a monolayer in order to examine their differentiation in vitro. These cells started to grow actively soon after inoculation and formed a confluent sheet within which neuroblast-like cells with long cytoplasmic processes were differentiated by 8 days. At about 16 days the differentiation of both lentoid bodies and foci of pigment cells was observed, while neuronal structure disappeared. The numbers of lentoid bodies and foci of pigmented cells continued to increase up to 30 days, when primary cultures were terminated. The increase in δ-crystallin content, as measured by quantitative immunoelectrophoresis assay using rabbit antiserum against δ-crystallin, was consistent with the increase in the number of lentoid bodies in cultures. The amount of α-crystallin per culture, estimated by the same technique as above, reached a maximum at 16 days and decreased slightly during further culture. The differentiation of both lentoid bodies and pigment cells was observed also in cultures of the second generation. The results demonstrate that cells of the undifferentiated neuroepithelium of 3.5-day-old embryonic retinas can achieve at least three differentiations, neuronal, lens, and pigment cells, in vitro. We discuss several differences between the present results and the previous ones from in vitro cultures of 8- to 9-day-old embryonic neural retinas.  相似文献   

7.
Urea-washed membranes from embryonic chick lenses (15 days old) and from the cortical and nuclear regions of adult chicken lenses (1 year) have been prepared by repeated centrifugation through discontinuous density gradients. The protein components of the isolated membranes have been examined by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate and urea. Proteins with molecular weights of 75 000, 56 000, 54 000, 48 000, 34 000, 32 000, 25 000, and 22 000 were present in all the membrane preparations, although their proportions changed during development. One additional protein, molecular weight 70 000, was seen only in the embryonic lens membranes. The greatest developmental change was the increase in 25 000 molecular weight protein from 12% in the embryonic lens to about 45% in the adult lens. Since it has been suggested that this protein is associated with gap junctions, its increase during development may reflect a corresponding increase in the number of gap junctions in the lens.The 50 000 molecular weight protein of embryonic lens membranes and membranes of adult nuclear lens fibers consisted at least partly of δ-crystallin, since δ-crystallin peptides could be identified in tryptic pepetide maps of the isolated protein after in vitro radioiodination. Peptide maps of the 50 000 molecular weight protein of cortical lens fiber membranes contained no identifiable δ-crystallin peptides, although it is possible that modified δ-crystallin peptides may be present. The level of cytoplasmic contamination of the membrane fraction was estimated by preparing lens membranes in the presence of added δ-[35S]crystallin. The results indicated that cytoplasmic contamination contributes significantly to the presence of δ-crystallin in lens membrane preparations.  相似文献   

8.
Limb bud cells of chick embryos (stages 23–24) were dissociated into single cells, reaggregated, and cultured in vitro for about a week. δ-Crystallin, generally thought to be a lens-specific protein in the chick, was detected in the aggregates by indirect immunofluorescent staining, double immunodiffusion test, and immunoelectrophoresis with specific antiserum against δ-crystallin. Cells containing δ-crystallin were distributed in epidermal cell clusters and also in mesenchymal tissues surrounding cartilage nodules in the aggregates. Those cells in mesenchymal tissues were shown to have originated from the mesoderm of the limb bud, and those in epidermal cell clusters probably originated from the ectoderm. The possible cellular origin of this appearance of δ-crystallin was discussed.  相似文献   

9.
Summary Lens induction is a classic example of the tissue interactions that lead to cell specialization during early vertebrate development. Previous studies have shown that a large region of head ectoderm, but not trunk ectoderm, of 36 h (stage 10) chicken embryos retains the potential to form lenses and synthesize the protein δ-crystallin under some conditions. We have used polyacrylamide gel electrophoresis and fluorography to examine protein and glycoprotein synthesis in presumptive lens ectoderm and presumptive dorsal (trunk) epidermis to look for differentiation markers for these two regions prior to the appearance of δ-crystallin at 50 h. Although nearly all of the proteins incorporating3H-leucine were shared by presumptive lens ectoderm and trunk ectoderm, these two regions showed more dramatic differences in the incorporation of3H-sugars into glycoproteins. when non-lens head ectoderm that has a capacity for lens formation in vitro was labeled, a hybrid pattern of glycoprotein synthesis was discovered: glycoproteins found in either presumptive lens ectoderm or trunk ectoderm were oftentimes also found in other head ectoderm. Therefore, molecular markers have been identified for three regions of ectoderm committed to different fates (lens and skin), well before features of terminal differentiation begin to appear in the lens.  相似文献   

10.
Corneal epithelial differentiation (primary stroma production) is dependent on the underlying extracellular matrix (ECM), for if the developing epithelium is enzymatically removed from the embryo, it fails to produce stroma in vitro unless it is cultured on collagenous ECM. We have previously shown that the stimulatory effect is mediated across Nucleopore filters in direct proportion to the surface area created by epithelial cell processes traversing the filter to contact ECM. Since collagenous ECM is insoluble under physiological conditions, transfilter stimulation of stroma production is probably due to an interaction of the epithelial cell surface with “inducer” ECM (killed lens capsule or purified collagen). We grew 5-day-old corneal epithelia on Nucleopore filters atop [3H]proline-labeled lens capsules and used both autoradiography and scintillation counting to show that radioactive collagen does not enter the epithelial cells in detectable amounts. We also show here that the stimulatory effect of collagen on collagen synthesis is not dependent on trapping of serum or binding of conditioned medium factors by ECM. Finally, we demonstrate that the stimulatory effect is reduced by removal of transfilter ECM after 6–12 hr in vitro. By 18–24 hr, however, cultured epithelium is less dependent on the substratum, probably because it has produced its own ECM. We conclude that: (1) the contact mediated collagen-cell surface interaction under study here requires the continuous presence of collagen in vivo and in vitro for maintenance of “stimulated” epithelial stroma synthesis; (2) the collagenous “inducer” interacts directly with epithelium rather than indirectly via trapped intermediates; (3) collagen acts at the epithelial cell surface without entering the cells.  相似文献   

11.
12.
Human γ-crystallins are long-lived, unusually stable proteins of the eye lens exhibiting duplicated, double Greek key domains. The lens also contains high concentrations of the small heat shock chaperone α-crystallin, which suppresses aggregation of model substrates in vitro. Mature-onset cataract is believed to represent an aggregated state of partially unfolded and covalently damaged crystallins. Nonetheless, the lack of cell or tissue culture for anucleate lens fibers and the insoluble state of cataract proteins have made it difficult to identify the conformation of the human γ-crystallin substrate species recognized by human α-crystallin. The three major human lens monomeric γ-crystallins, γD, γC, and γS, all refold in vitro in the absence of chaperones, on dilution from denaturant into buffer. However, off-pathway aggregation of the partially folded intermediates competes with productive refolding. Incubation with human αB-crystallin chaperone during refolding suppressed the aggregation pathways of the three human γ-crystallin proteins. The chaperone did not dissociate or refold the aggregated chains under these conditions. The αB-crystallin oligomers formed long-lived stable complexes with their γD-crystallin substrates. Using α-crystallin chaperone variants lacking tryptophans, we obtained fluorescence spectra of the chaperone-substrate complex. Binding of substrate γ-crystallins with two or three of the four buried tryptophans replaced by phenylalanines showed that the bound substrate remained in a partially folded state with neither domain native-like. These in vitro results provide support for protein unfolding/protein aggregation models for cataract, with α-crystallin suppressing aggregation of damaged or unfolded proteins through early adulthood but becoming saturated with advancing age.  相似文献   

13.
Isolated fully grown mouse oocytes, arrested in dictyate of the first meiotic prophase, synthesize a protein with an apparent molecular weight of 28,000 which is localized in the germinal vesicle of the oocyte (germinal vesicle-associated protein; GVAP). Analyses of the distribution of GVAP have been carried out on SDS-polyacrylamide gels using oocytes cultured in vitro in the presence of [35S]methionine or [3H]lysine and germinal vesicles isolated individually from these cultured oocytes. The results of such analyses show that GVAP contains only about 2% of the total radiolabel incorporated into mouse oocyte proteins, but as much as 40% of the total radiolabel incorporated into proteins associated with isolated germinal vesicles. These measurements indicate that GVAP is at least 1000-fold more concentrated in the germinal vesicle than in the cytoplasm of the oocyte. Furthermore, the synthesis and phosphorylation of GVAP are apparently terminated at a time which coincides with germinal vesicle breakdown during spontaneous meiotic maturation of mouse oocytes in vitro. Although the exact nature of GVAP is not known as yet, it appears to be an example of a protein that is selectively sequestered in the germinal vesicle of the oocyte during oogenesis and whose synthesis and modification are dependent upon the presence of an intact germinal vesicle.  相似文献   

14.
The primary stroma of the cornea of the chick embryo consists of orthogonally arranged collagen fibrils embedded in glycosaminoglycan (GAG) produced by the epithelium under the early inductive influence of the lens. The experiments reported here were designed to test whether or not the collagen of the lens basement lamina is capable of stimulating corneal epithelium to produce primary stroma. Enzymatically isolated 5-day-old corneal epithelia were grown for 24 hr in vitro in the presence of 35SO4 or proline-3H on various substrata. Epithelia cultured on lens capsule synthesized 2.5 times as much GAG (as measured by incorporation of label into CPC precipitable material) and almost 3 times as much collagen (assayed by hot TCA extraction or collagenase sensitivity) as when cultured on Millipore filter or other noncollagenous substrata. A similar stimulatory response was observed when epithelium was combined with chemically pure chondrosarcoma collagen, NaOH-extracted lens capsule, vitreous humor, frozen-killed corneal stroma or cartilage, or tendon collagen gels; in the latter case, the magnitude of the effect can be shown to be related to concentration of the collagen in the gel. All of the collagenous substrata stimulate not only extracellular matrix production, but also polymerization of corneal-type matrix, as judged by ultrastructural criteria and by the association of more radioactivity with the tissue than the medium. Since purified chondrosarcoma collagen is as effective as lens capsule, the stimulatory effect on collagen and GAG synthesis by corneal epithelium is not specific for basal lamina (lens capsule) collagen.  相似文献   

15.
Synthesis of sulfated glycosaminoglycans by embryonic corneal epithelium   总被引:11,自引:0,他引:11  
The primary corneal stroma is produced by the overlying epithelium. The endothelium appears between 4 and 5 days, fibroblasts at 6 days, and at 12 days the epithelium stratifies. We investigated the synthesis of glycosaminoglycan (GAG) by the epithelium during this developmentally significant period. The sulfated GAG synthesized by isolated 4–6-day-old corneal epithelia during the first 24 hr in vitro are entirely accountable for as chondroitin sulfates and heparan sulfates. Nearly 50% of the total sulfated GAG synthesized by epithelia on Millipore filters is lost to the medium, but only 30–40% is lost when frozen killed lens capsule or stroma is the substratum. Retention of isotope by the tissue is correlated with visible matrix polymerization. The relative amount of heparan sulfate synthesized by the developing epithelium 24 hr in vitro decreases from about 50% of the total sulfated GAG for 4-day-old epithelium to 12% for 12-day-old epithelium. A similar decrease in heparan sulfate synthesis occurs with time in culture. The relative amount of GAG identified as chondroitin sulfate and heparan sulfate is the same when 3H-glucosamine is used to label GAG as when 35SO4 is used. We conclude that the corneal epithelium produces only sulfated polysaccharides. Since hyaluronate is synthesized by whole 5-day-old corneas, it must be the product of the endothelium.  相似文献   

16.
The aggregation of crystallins in lenses is associated with cataract formation. We previously reported that mutant crystallins are associated with an increased abundance of histones in knock-in and knockout mouse models. However, very little is known about the specific interactions between lens crystallins and histones. Here, we performed in vitro analyses to determine whether α-crystallin interacts with histones directly. Isothermal titration calorimetry revealed a strong histone–α-crystallin binding with a Kd of 4 × 10?7 M, and the thermodynamic parameters suggested that the interaction was both entropy and enthalpy driven. Size-exclusion chromatography further showed that histone–α-crystallin complexes are water soluble but become water insoluble as the concentration of histones is increased. Right-angle light scattering measurements of the water-soluble fractions of histone–α-crystallin mixtures showed a decrease in the oligomeric molecular weight of α-crystallin, indicating that histones alter the oligomerization of α-crystallin. Taken together, these findings reveal for the first time that histones interact with and affect the solubility and aggregation of α-crystallin, indicating that the interaction between α-crystallin and histones in the lens is functionally important.  相似文献   

17.
18.
Essentially normal development of early embryonic pancreatic epithelium occurs only in the presence of mesenchymal tissues (Golosow and Grobstein, 1962), or a particulate fraction (MF) obtained from extracts of chicken embryos (Rutter et al., 1964). We have shown that this fraction also stimulates the incorporation of thymidine-3H into DNA. This stimulatory activity was detected in particulate fractions from homogenates of several mesodermal tissues from rat and chick embryos, as well as in fibroblasts cultured from these tissues, but not in embryonic epithelial tissues. This activity may thus be related to the mesodermal tissue requirement for pancreatic development. MF was solubilized and partially purified from homogenates of chick embryos. It is stable to collagenase, hyaluronidase, and neuraminidase. Activity is lost by heating and by treatment with trypsin. It is presumed, therefore, that the factor is associated with a protein that is not collagen.The effects of the MF upon macromolecular synthesis were tested in pancreatic tissues from 12-day rat embryos. When isolated epithelia were cultured in the absence of mesoderm or MF, the rate of thymidine-3H incorporation into DNA decreased to low levels. The specific activities of DNA polymerase and deoxycytidylate deaminase in epithelial extracts also declined. In contrast, the rate of thymidine-3H incorporation into DNA increased 5- to 8-fold over the initial rates in epithelia cultured with MF. Concurrently DNA polymerase activity in tissue extracts increased by 2- to 3-fold; deoxycytidylate deaminase activity declined slightly.MF also affected RNA and protein synthesis. The rate of leucine-3H incorporation into protein and uridine-14C incorporation into RNA in isolated pancreatic epithelia was comparable to that of intact rudiments. Cultures in the presence of MF increased these rates severalfold after 20 hr. These results suggest that MF, and by implication, mesoderm, may supply a growth factor for epithelial tissue and thus serves a permissive rather than a determining role in the differentiation process in pancreatic development.  相似文献   

19.
Ecdysterone added in vitro to wing tissue from diapausing Antheraea polyphemus pupae induced the synthesis of several epidermal cell proteins. This is one of few instances in which any steroid hormone in physiological concentrations has been able to induce specific protein synthesis in target tissue in vitro soon after hormone stimulation. Hormone-treated tissue was incubated with 3H-leucine while control tissue was incubated with 14C-leucine. Polyacrylamide gel electrophoretic distribution of labelled wing tissue proteins after ecdysterone stimulation in vitro for various periods of time was determined. The 3H14C ratio emphasized the areas of increased protein synthesis due to ecdysterone. These areas of increased protein synthesis were reproducible with several ecdysterone concentrations and with different incubation times. Induction of protein synthesis occurs at an earlier time period when the hormone dosage is higher, i.e. the lower the dosage, the longer it is necessary for exposure of tissue to hormone. α-Ecdysone, known to initiate the moulting process in vitro in some insect species, also induced protein synthesis. Cortisol, a mammalian steroid hormone, produced no hormone specific protein synthesis. Therefore, the results seen with ecdysterone and α-ecdysone are not the result of non-specific steroid stimulation. When no hormone was added to the incubation medium (control), only one area of the polyacrylamide gel demonstrated protein synthesis. Therefore, there are a few proteins being synthesized in vitro in wing tissue, removed from diapausing animals without hormone stimulation, which may be related to the ‘injury phenomenon’. Protein banding patterns were also determined and compared with the radioactivity profile. The study of such early biochemical and physiological responses of target tissue to hormones will aid in our understanding of a hormone's mechanism of action, since the earlier an event occurs, the more likely that it is the primary result of hormone stimulation.  相似文献   

20.
Creatine kinase (CK) is an energy storage enzyme that plays an important role in energy metabolism. CK/phosphocreatine functions as an energy buffer and links ATP production sites with ATP utilization sites. Several key mutations in the αA-crystallin (cryaa) and αB-crystallin (cryab) genes have been linked with autosomal-dominant, hereditary human cataracts. The cryaa-R49C mutation was identified in a four-generation Caucasian family. We previously identified an increase in the quantity of CK complexed with α-crystallin in the lenses of knock-in mice expressing the cryaa-R49C mutation using proteomic analyses. Increased levels of CK in postnatal cataractous lenses may indicate increased ATP requirements during early cataract development. To gain a further understanding of the relationship between CK and α-crystallin, we investigated whether α-crystallin interacts with and forms complexes with CK, in vitro. Isothermal titration calorimetry (ITC) showed that each CK dimer bound to 28 α-crystallin subunits, with a Kd of 3.3 × 10?7 M, and that the interaction between α-crystallin and CK was endothermic, thermodynamically favorable, and entropy-driven. High-salt concentrations did not affect the interaction between CK and α-crystallin, suggesting that the interaction between CK and α-crystallin is primarily hydrophobic. Gel permeation chromatography (GPC) detected water-soluble α-crystallin and CK complexes, as determined by increased light scattering after complex formation. In addition, CK and α-crystallin formed partially-water-insoluble, high-molecular-mass complexes. Enzyme-linked immunosorbent assay (ELISA)-based enzymatic activity analyses of lens homogenates showed a 17-fold increase in CK activity in the postnatal lenses of cryaa-R49C knock-in mice. These studies indicate that the interaction between α-crystallin and CK is functionally important and that increased CK levels may be necessary to meet the increased ATP demands of ATP-dependent functions in cataractous lenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号