首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Triton X-100 (in concentrations which did not cause a significant solubilization of membrane material) caused aggregation of the intramembrane particles of human erythrocyte ghosts. Ghosts from which the extrinsic proteins had been removed by alkali treatment showed a temperature-induced aggregation of the particles. With virtually no spectrin present, the particles in these stripped ghosts could still be aggregated by manipulations with ionic strength and pH, or by the addition of calcium. Recombinant vesicles were made from a Triton X-100 extract and a mixture of phospholipids with a composition which resembled that of the inner monolayer of erythrocyte membrane. In these recombinants the same manipulations with ionic strength and pH and the addition of calcium caused a rearrangement of the particles, resulting in the appearance of particle-free areas. In recombinants prepared from a Triton X-100 extract and egg phosphatidylcholine the lateral distribution of the particles was not altered by these manipulations. It is concluded that in the erythrocyte membrane the intramembrane particles can be aggregated by effects of external agents on lipid components. In this light the role of spectrin in stabilizing the membrane by interactions with lipids in the inner monolayer is discussed.  相似文献   

2.
We have used freeze-etching and SDS-polyacrylamide gel electrophoresis to study the conditions under which the intramembrane particles of the human erythrocyte ghost may be aggregated. The fibrous membrane protein, spectrin, can be almost entirely removed from erythrocyte ghosts with little or no change in the distribution of the particles. However, after spectrin depletion, particle aggregation in the plane of the membrane may be induced by conditions which cause little aggregation in freshly prepared ghosts. This suggests that the spectrin molecules form a molecular meshwork which limits the translational mobility of the erythrocyte membrane particles.  相似文献   

3.
Physicochemical properties of mixtures of spectrin and actin extracted from human erythrocyte ghosts have been correlated with ultrastructural changes observed in freeze-fractured erythrocyte membranes. (1) Extracted mixtures of spectrin and actin have a very low solubility (less than 30 mug/ml) near their isoelectric point, pH 4.8. These mixtures are also precipitated by low concentrations of Ca2+, Mg2+, polylysine or basic proteins. (2) All conditions which precipitate extracts of spectrin and actin also induce aggregation of the intramembrane particles in spectrin-depleted erythrocyte ghosts. Precipitation of the residual spectrin molecules into small patches on the cytoplasmic surface of the ghost membrane is thought to be the cause of particle aggregations, implying an association between the spectrin molecules and the intramembrane particles. (3) When fresh ghosts are exposed to conditions which precipitate extracts of spectrin and actin, only limited particle aggregation occurs. Instead, the contraction of the intact spectrin meshwork induced by the precipitation conditions compresses the lipid bilayer of the membrane, causing it to bleb off particle-free, protein-free vesicles. (4) The absence of protein in these lipid vesicles implies that all the proteins of the erythrocyte membrane are immobilized by association with either the spectrin meshwork or the intramembrane particles.  相似文献   

4.
We have used freeze-etching, before and after immunoferritin labeling, to visualize spectrin molecules and other surface proteins of the human erythrocyte membrane. After intramembrane particle aggregation was induced, spectrin molecules, identified by labeling with ferritin-conjugated antispectrin, were clustered on the cytoplasmic surface of the membrane in patches directly underlying the particle clusters. This labeling pattern confirms the involvement of spectrin in such particle aggregates, as previously inferred from indirect evidence. Ferritin-conjugated antihapten molecules, directed against external and cytoplasmic surface proteins of the erythrocyte membrane which had been covalently labeled nonspecifically with the hapten p-diazoniumphenyl-beta-D-lactoside, were similarly found in direct association with such intramembrane particle aggregates. This indicates that when spectrin and the intramembrane particles are aggregated, all the major proteins of the erythrocyte membrane are constrained to coaggregate with them. Although giving no direct information concerning the freedom of translational movement of proteins in the unperturbed erythrocyte membrane, these experiments suggest that a close dynamic association may exist between the integral and peripheral protein components of the membrane, such that immobilization of one component can restrict the lateral mobility of others.  相似文献   

5.
We attached paraformaldehyde-fixed human erythrocyte ghosts to coated coverslips and sheared them to expose the cytoskeleton. Quick-freeze, deep-etch, rotary-replication, or tannic acid/osmium fixation and plastic embedding revealed the cytoskeleton as a dense network of intersecting straight filaments. Previous negative stain studies on spread skeletons found 5-6 spectrin tetramers intersecting at each actin oligomer, with an estimated 250 such intersections/microns 2 of membrane. In contrast, we found 3-4 filaments at each intersection and approximately 400 intersections/microns 2 of membrane. Immunogold labeling verified that the filaments were spectrin, but their lengths (29-37 nm) were approximately one-third that of extended spectrin dimers. The length and diameter of the filaments were sufficient to accommodate spectrin dimers, but not spectrin tetramers. Our results suggest that, in situ, spectrin dimers may associate as hexamers and octamers, rather than tetramers. We present several explanations that can reconcile our observations on intact cytoskeletons with previous reports on spread material. Extracting sheared ghosts with solutions of low ionic strength removed the cytoskeleton to reveal projections from the cytoplasmic surface of the membrane. These projections contained band 3, as shown by immunogold labeling, and they aggregated to a similar extent as intramembrane particles (IMP) when the cytoskeleton was removed, suggesting a direct relationship between these structures. Quantification indicated a stoichiometry of 2 IMP for each cytoplasmic projection. Cytoplasmic projections presumably contain other proteins besides band 3 since further treatment with high ionic strength solutions extracts peripheral proteins and reduces the diameter of projections by approximately 3 nm.  相似文献   

6.
Treatment of isolated human erythrocyte membranes at pH 7.4 with 0.1-0.5 mM-sodium periodate specifically cross-linked some of the spectrin polypeptides. Treatment with 2 mM-periodate resulted in complete cross-linking of spectrin and partial cross-linking of other polypeptides. The latter treatment also caused aggregation of the intramembrane particles made visible by freeze-fracturing. When membranes that had been treated with 2 mM-periodate were depleted of spectrin by treatment with 0.1 mM-EDTA, extensive aggregation of the intramembrane particles occurred.  相似文献   

7.
Casein kinase and histone kinase(s) are solubilized from human erythrocyte membranes by buffered ionic solutions (0.1 mM EDTA and subsequent 0.8 M NaCl, pH 8) containing 0.2% Triton X-100. Casein kinase is separated from histone kinase(s) by submitting the crude extracts directly to chromatography on a phosphocellulose column, eluted with a continuous linear gradient of potassium phosphate buffer, pH 7.0, containing 0.2% Triton X-100. Under these conditions, the membrane-bound casein kinase activity is almost completely recovered into a quite stable preparation, free of histone kinase activity. In contrast, it undergoes a dramatic loss of activity when the extraction and the subsequent phosphocellulose chromatography are carried out with buffers which do not contain Triton X-100. Isolated spectrin, the most abundant membrane protein, is phosphorylated, in the presence of [gamma-32P]ATP, only by casein kinase while histone kinase is ineffective. Only the smaller subunit (band II) of isolated spectrin (and not the larger one (band I) is involved in such a phosphorylation process, as in the endogenous phosphorylation occurring in intact erythrocytes.  相似文献   

8.
A web-like reticulum underlying the human erythrocyte membrane was studied at a resolution of 5–10 nm by means of a scanning electron microscope. The network was visualized in isolated membranes (ghosts) torn open to reveal their interior space and in residues derived from ghosts extracted with Triton X-100. It formed a continuous (rather than patchy) cover over the entire cytoplasmic surface, except where lifted off or torn away. Filaments (5–40 nm in diameter), annular figures (40–60 nm in diameter), and nodes (30–100 nm in diameter) were prominent in different networks. The dimensions of the filaments and the interstices in the reticulum varied with conditions, suggesting that the network has elastic properties. This reticulum is probably related to the erythrocyte membrane proteins spectrin and actin.  相似文献   

9.
1. Human erythrocyte ghosts were extracted with individual free and conjugated bile salts and, for comparison, with Triton X-100 under conditions approximating to physiological temperature, pH and tonicity. 2. Treatment with cholate, glycocholate, taurocholate, or with Triton X-100 gave lipid-depleted residues. These could still be seen as ghost-like profiles by phase contrast microscopy. Deopxycholate brought about complete membrane dissolutiom. 3. The cholate residue gave a trilamellar image by electron microscopy and in condensed form gave a smaller membrane repeat than untreated membranes. It had a polypeptide composition representing mainly integral proteins. 4. The Triton X-100 residue had a granular profile in the electron microscope and a polypeptide composition largely representing peripheral proteins.  相似文献   

10.
Rabbit or human erythrocytes lysed with Staphylococcus aureus alpha-toxin were solubilized with Triton X-100, and the toxin was subsequently isolated by gel chromatography, sucrose density gradient centrifugation, and reincorporation into liposomes. In the presence of Triton X-100, the toxin exhibited a sedimentation coefficient of 11S and eluted at a position between those of IgG and alpha 2-macroglobulin in gel chromatography. A single polypeptide subunit of 34,000 mol wt was found in SDS PAGE. In the electron microscope, ring-shaped or cylindrical structures were observed, 8.5-10 nm in diameter, harboring central pits or channels 2-3 nm in diameter. An amphiphilic nature of these structures was evident from their capacity to bind lipid and detergent, aggregation in the absence of detergents, and low elutability from biological and artificial membranes through ionic manipulations. In contrast to the membrane-derived form of alpha-toxin, native toxin was a water-soluble, 34,000 mol wt, 3S molecule, devoid of an annular structure. Because studies on the release of radioactive markers from resealed erythrocyte ghosts indicated the presence of circumscribed lesions of approximately 3-nm effective diameter in toxin-treated membranes, the possibility is raised that native alpha-toxin oligomerizes on and in the membrane to form an amphiphilic annular complex that, through its partial embedment within the lipid bilayer, generates a discrete transmembrane channel.  相似文献   

11.
The calcium dependence and the time course of phosphatidylethanolamine and phosphatidylcholine degradation by sheep erythrocyte membrane suspensions in presence of Triton X-100 were investigated. One enzyme with phospholipase A2 specificity was found to be responsible for both phosphatidylethanolamine and phosphatidylcholine degradation.The localization of this enzyme in the membrane of the sheep erythrocyte was investigated by proteolytic treatment of sealed erythrocyte ghosts from the outside and of ghosts which had both sides of the membrane exposed to chymotrypsin. The inability of sealed ghosts to take up chymotrypsin was followed by flux measurements of [14C]dextran carboxyl previously trapped in the ghosts. No efflux of the marker was found during the proteolytic treatment. By comparing the residual phospholipase activities in the membranes from both ghost preparations, we concluded that the phospholipase is oriented to the exterior of the sheep erythrocyte.  相似文献   

12.
The calcium dependence and the time course of phosphatidylethanolamine and phosphatidylcholine degradation by sheep erythrocyte membrane suspensions in presence of Triton X-100 were investigated. One enzyme with phospholipase A2 specificity was found to be responsible for both phosphatidylethanolamine and phosphatidylcholine degradation.The localization of this enzyme in the membrane of the sheep erythrocyte was investigated by proteolytic treatment of sealed erythrocyte ghosts from the outside and of ghosts which had both sides of the membrane exposed to chymotrypsin. The inability of sealed ghosts to take up chymotrypsin was followed by flux measurements of [14C]dextran carboxyl previously trapped in the ghosts. No efflux of the marker was found during the proteolytic treatment. By comparing the residual phospholipase activities in the membranes from both ghost preparations, we concluded that the phospholipase is oriented to the exterior of the sheep erythrocyte.  相似文献   

13.
Effects of p-chloromercuribenzoate (PCMB) on the cytoskeletal organization of rat red blood cells were studied. Upon incubation with 50 microM PCMB in 10 mM Tris-HCl (pH 7.4) at 37 degrees C for 30 min, 80% of actin and 45% of spectrin were released from the ghosts, resulting in the fragmentation of ghost membranes. Addition of 2 mM Mg2+ or 0.1 M KCl, or lowering incubation temperature to 0 degree C substantially inhibited the solubilization of the cytoskeletal proteins and the fragmentation of ghost membranes, which enable to examine the effects of PCMB on the interaction between transmembrane proteins and the peripheral cytoskeletal network. Decreased recoveries of transmembrane proteins, such as band 3 and glycophorin, in Triton shell fraction were observed in the ghosts incubated with PCMB either in the presence of Mg2+ or at 0 degree C. PCMB also inhibited the in vitro association of purified spectrin with spectrin-depleted inside-out vesicles through interaction with proteins in the vesicle, such as bands 2.1 and 3. In the PCMB-treated ghosts, intramembrane particles were highly aggregated, which further supports the PCMB-induced dissociation of the transmembrane proteins from the cytoskeletal network. The decreased recovery of glycophorin in the Triton shell fraction also observed in intact red blood cells upon incubation with PCMB. These results suggest that the main action of PCMB on red cell membranes under physiological condition, at higher ionic strength and in the presence of Mg2+, is to dissociate transmembrane proteins from the peripheral cytoskeletal network, which may modify functions of these proteins.  相似文献   

14.
Spermine (N, N'-bis(aminopropyl)-1,4-butanediamine) is a polyamine thought to be important in several cell regulatory processes. Previous studies had shown that spermine prevented the lateral diffusion of transmembrane proteins in human erythrocyte ghosts (Schindler et al. (1980) Proc. Natl. Acad. Sci. USA 77, 1457-1461). In this paper, we present results of studies on the effect of spermine on erythrocyte membranes by employing electron spin resonance spin-labeling techniques in conjunction with spin labels specific for skeletal proteins, bilayer lipids or cell-surface sialic acid of the membrane and by employing SDS-polyacrylamide gel electrophoresis analysis of extracted spectrin and Triton shells. The major findings are: (1) spermine significantly decreases the segmental motion of protein spin-label binding sites (P less than 0.0001), which are predominantly on cytoskeletal proteins; (2) addition of spermine leads to a significant increase in the rotational motion of spin-labeled terminal sialic acid residues (P less than 0.001), most of which are located on glycophorin A, a result which may be secondarily caused by spermine-induced aggregation of cytoskeletal proteins and the cytoplasmic pole of this transmembrane sialoglycoprotein; (3) spermine completely inhibits the low-ionic strength extraction of spectrin, the major protein of the skeletal network which is attached to the bilayer proteins by two or more connecting proteins; (4) pretreatment of ghosts with spermine followed by Triton extraction resulted in the retention of significantly increased amounts of Band 3 and other skeletal and bilayer proteins including Bands 4.2, 6 and 7 in Triton X-100 shells relative to that of control-treated ghosts. These results suggest that spermine acts both to increase protein-protein interactions in the cytoskeletal protein network and to bridge skeletal and bilayer proteins and are discussed with reference to possible molecular mechanisms by which spermine may influence cell functions.  相似文献   

15.
The calcium dependence and the time course of phosphatidylethanolamine and phosphatidylcholine degradation by sheep erythrocyte membrane suspensions in presence of Triton X-100 were investigated. One enzyme with phospholipase A2 specificity was found to be responsible for both phosphatidyl-ethanolamine and phosphatidylcholine degradation. The localization of this enzyme in the membrane of the sheep erythrocyte was investigated by proteolytic treatment of sealed erythrocyte ghosts from the outside and of ghosts which had both sides of the membrane exposed to chymotrypsin. The inability of sealed ghosts to take up chymotrypsin was followed by flux measurements of [14C]dextran carboxyl previously trapped in the ghosts. No efflux of the marker was found during the proteolytic treatment. By comparing the residual phospholipase activities in the membranes from both ghost preparations, we concluded that the phospholipase is oriented to the exterior of the sheep erythrocyte.  相似文献   

16.
Band 3 tyrosine kinase. Association with the human erythrocyte membrane   总被引:1,自引:0,他引:1  
Band 3, the anion transport protein of the human erythrocyte membrane, is known to be phosphorylated in ghosts at tyrosine 8. The band 3 tyrosine kinase is now shown to be associated with the Triton X-100 insoluble membrane skeleton but not with spectrin or actin. The kinase was reversibly dissociated from membranes and skeletons at elevated ionic strength (50% at mu = 0.15). The binding capacity of the membranes exceeded their native complement of the kinase by at least 60-fold. Prior removal of all peripheral proteins from the cytoplasmic surface of inside-out vesicles did not diminish the rebinding of the kinase, whereas prior removal of band 3 and other accessory proteins from skeletons abolished the rebinding of the kinase. An excess of glyceraldehyde-3-P dehydrogenase, which binds to band 3 in the region of the phosphate acceptor tyrosine 8, both inhibited the phosphorylation of band 3 and released the kinase into solution. Soluble 40/45-kDa chymotryptic fragments from the cytoplasmic pole of band 3 were phosphorylated at least as well as membranous band 3 and caused the release of the kinase from Triton-extracted skeletons. Membrane skeletons lacked most of the membrane band 3, but retained most of the kinase. Nevertheless, the band 3 population solubilized by Triton X-100 from prelabeled ghosts was as well phosphorylated as the population of band 3 retained by the skeletons. Furthermore, the fraction of band 3 not associated with the skeletons following Triton X-100 extraction was a good substrate for the solubilized kinase. We conclude that this tyrosine kinase is reversibly bound to the membrane through electrostatic interactions with the polyacidic sequence surrounding the phosphate accepting tyrosine 8 on band 3. The kinase appears to be preferentially linked to those band 3 molecules associated with the membrane skeleton, but it impartially phosphorylates band 3 species free in the bilayer as well as band 3 fragments in solution. The resemblance of its plasma membrane binding behavior to that of tyrosine kinases of certain viruses causing oncogenic transformation is discussed.  相似文献   

17.
The effects of phosphorylation of spectrin on the properties of the cytoskeletal network of the human erythrocyte have been studied. A suspension of the cytoskeletal residues obtained after extraction of the ghosts with the nonionic detergent Triton X-100 forms a gel on addition of membrane kinase and ATP. Phosphorylation has no effect on the association state of purified spectrin. No species higher than a tetramer of polypeptide chains is formed in vitro; in the absence of divalent cations, this tetramer is an entity liberated from and evidently present in the membrane. It has not so far proved possible to detect any F-actin in the cytoskeleton before or after phosphorylation. It is suggested that the consequence of phosphorylation is formation of additional interactions between spectrin and monomeric actin molecules. This view is supported by the formation, after phosphorylation of the Triton-extracted cytoskeleton, of an insoluble mass of protein on treatment with a cross-linking reagent. In the absence of divalent cations, a series of oligomeric species is progressively liberated from the cytoskeleton on extraction with solutions of low ionic strength. These oligomers contain actin as well as spectrin, and are thought to result from disruption of the network by random denaturation of the mono meric actin in the absence of divalent metal ions. A schematic view of the effects of phosphorylation on the structure of the cytoskeleton is presented.  相似文献   

18.
This paper demonstrates the translational movement along the plane of the human erythrocyte ghost of the membrane particles exposed by freeze-fracture. The membrane particles can be aggregated by incubation of the ghosts in media with a pH in the vicinity of 5 5 or 3 5. The particles are disaggregated in neutral and alkaline media (pH 9 5) and also at pH 4.5 Aggregation of the particles at pH 5.5 is reversible, prevented by prefixation in glutaraldehyde and by media of high ionic strength. Particle aggregation occurs within 2–4 min. These results are consistent with the concept that the erythrocyte ghost membrane is a planar fluid domain formed by a bilayer membrane continuum which is interrupted by localized, yet mobile, proteic intercalations.  相似文献   

19.
S C Liu  G Fairbanks  J Palek 《Biochemistry》1977,16(18):4066-4074
Changes in pH significantly affect the morphology and physical properties of red cell membranes. We have explored the molecular basis for these phenomena by characterizing the pattern of protein disulfide cross-linkages formed spontaneously in ghost exposed to acid pH or elevated temperature (37 degrees C). Protein aggregation was analyzed by two-dimensional polyacrylamide gel electrophoresis in sodium dodecyl sulfate. incubation of ghosts at pH 4.0 to 5.5 (0-4 degrees C) yielded (i) complexes of spectrin and band 3, (ii) complexes of actin and band 3, (iii) band 3 complexes, i.e. dimer and trimer, and (iv) heterogeneous aggregates involving spectrin, band 3, band 4.2, and actin in varying proportions. Aggregation was maximal near the isoelectric points of the major membrane proteins, and appeared to reflect (i) the aggregation of intramembrane particles including band 3 and (ii) more intimate contact between spectrin-actin meshwork and band 3.  相似文献   

20.
Mobilization and aggregation of intramembrane particles (IMPs) are physiological events observed in various cells. In erythrocyte membranes, aggregation of IMPs can be induced by the exposure of partially desprectrinized erythrocyte membranes to acidic pH. We investigated the association between IMPs aggregation, protein mobility, and membrane fluidity in erythrocyte membranes of healthy controls and Duchenne muscular dystrophy (DMD) patients by using electron spin resonance and specific spin labels for membrane proteins and lipids. In erythrocyte membranes of control subjects, the partial spectrin removal induced a decreased segmental motion of protein spin label indicating an increase of protein-protein interactions. Stearic acid spin labels 5- and 16-(N-oxyl-4,4'-dimethyloxazolidine) showed that the treatment induces an increase of membrane fluidity. In DMD patients, both treated and untreated erythrocyte membranes showed changes of membrane fluidity when compared to those of the controls. Our results suggest that defects in the interactions between skeletal proteins and/or between membrane and skeleton components may contribute to the alterations of erythrocyte membranes in DMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号