首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 · 107 M?1 · s?1 at low ionic strength (I = 223 mM, 10°C). The value of this rate constant decreases to 1.8 · 105 M?1 · s?1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 · 105 M?1 · s?1 and k?1 = 3.3 · 105 M?1 · s?1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10°C). The ‘equilibrium’ constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ai cytochrome c3+1 + cytochrome c2+.  相似文献   

2.
Pulse radiolysis-kinetic spectrometry has been used to investigate the reaction of hydrated electrons with ferricytochrome c in dilute aqueous solution at pH 6.5–7.0. Time resolutions from 2·10?7 to 1 s were employed. Transient spectra from 320 to 580 nm were characterized with a wavelength resolution of ±0.5 nm. 1 In neutral salt-free solution, k(ferricytochrome c+e?aq)=(6.0±0.9)·1010 M?1·s?1 and k(ferricytochrome c+H)=(1.2±0.2)·1010 M?1·s?1. The reaction of ferricytochrome c with hydrated electrons is sensitive to ionic strength; in 0.1 M NaClO4, k(ferricytochrome c+e?aq)=(2.4±0.4)·1010 M?1·s?1. In contrast, k(ferricytochrome c+H) is insensitive to ionic strength. Time resolution of three spectral stages has been accomplished. The primary spectrum is the first observable spectrum detectable after irradiation and is formed in a second-order process. Its rate of formation is indisting-uishable from the rate of disappearance of the electron spectrum. The secondary spectrum is generated in a true first order intramolecular process, k(p→s)=(1.2±0.1)·105 s?1. The tertiary spectrum is also generated in a true first-order process, k(s→t)=(1.3±0.2)·102 s?1. The specific rates of both transformations are independent of the wavelength of measurement. The tertiary spectrum, observable 50 ms after initial reaction and remaining unchanged thereafter for at least 1 s, shows that relaxed ferrocytochrome c is the only detectable product. This product is not autoxidizable, as expected for native reduced enzyme. It is more probable that the intramolecular changes responsible for the p→s and s→t spectral transformations involve the influence of conformational relaxation of ferrocytochrome c upon electronic energy states then that they are intramolecular transmission of reducing equivalents from primary sites of electron attachment.  相似文献   

3.
4.
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5–8) · 108 M?1 · s?1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 · 105 M?1 · s?1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 μM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 · 108 M?1 · s?1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres.  相似文献   

5.
The kinetics of the oxidation-reduction reactions of cytochrome c1 with ascorbate, ferricyanide, triphenanthrolinecobalt(III) and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) have been examined using the stopped-flow technique. The reduction of ferricytochrome c1 by ascorbic acid is investigated as a function of pH. It is shown that at neutral and alkaline pH the reduction of the protein is mainly performed by the doubly deprotonated form of ascorbate. From the ionic-strength-dependence studies of the reactions of cytochrome c1 with ascorbate, ferricyanide and triphenanthrolinecobalt(III), it is demonstrated that the reaction rate is governed by electrostatic interactions. The second-order rate constants for the reaction of cytochrome c1 with ascorbate, ferricyanide, TMPD and triphenanthrolinecobalt(III) are 1.4·104, 3.2·103, 3.8·104 and 1.3·108 M?1·s?1 (pH 7.0, I = 0, 10°C), respectively. Application of the Debye-Hückel theory to the the ionic-strength-dependence studies of these redox reactions of cytochrome c1 yielded for ferrocytochrome c1 and ferricytochrome c1 a net charge of ?5 and ?4, respectively. The latter value is close to that of ?3 for the oxidized enzyme, calculated from the amino acid sequence of the protein. This implies that not a local charge on the surface of the protein, but the overall net charge of cytochrome c1 governs the reaction rate with small redox molecules.  相似文献   

6.
7.
Hiroshi Seki  Masashi Imamura 《BBA》1981,635(1):81-89
The reactions of ferrocytochrome c with Br?2, (SCN)?2, N3 and OH radicals were followed by measuring the change in the optical spectra of cytochrome c on γ-irradiation as well as the rate of change of absorbance upon pulse irradiation.Ferrocytochrome c is oxidized to ferricytochrome c by Br?2, (SCN)?2 or N3 radical with an efficiency of about 100% through a second-order process in which no intermediates were observed. The rate constants in neutral solutions at I = 0.073 are 9.7 · 108 M?1 · s?1, 7.9 · 108 M?1 · s?1, 1.3 · 109 M?1 · s?1 for the oxidation by Br?2, (SCN)?2 and N3 radicals, respectively. The rate constants do not vary appreciably in alkaline solutions (pH 8.9). The ionic strength dependence was observed for the rate constants of the oxidation by Br?2 and (SCN)?2. Those rate constants estimated on the assumption that the radicals react only with the amino acid residues with the characteristic steric correction factors were less than one-tenth of the observed ones. These results suggest that the partially exposed region of the heme is the probable site of electron transfer from ferrocytochrome c to the radical.Hydroxyl radicals also oxidize ferrocytochrome c with a high rate constant (k > 1 · 1010 M?1 · s?1), but with a very small efficiency (5%).  相似文献   

8.
9.
1. Using stopped-flow technique we have investigated the electron transfer form cytochrome c to cytochrome aa3 and to the (porphyrin) cytochrome c-cytochromeaa3 complex.2. In a low ionic strength medium, the pre-steady state reaction occurs in a biphasic way with rate constants of at least 2 · 108 M?1 · s?1 and about 107 M?1 · s?1 (I = 8.8 mM, pH 7.0, 10° C), respectively.3. A comparison of the rate constants, determined in the presence of an excess of cytochrome c with those found in the presence of an excess of cytochrome aa3 reveals the existence of two slower reacting sites on the functional unit (2 hemes and 2 coppers) of cytochrome aa3. On basis of these results we discuss various models. If no site-site interactions are assumed (non-cooperative model) cytochrome aa3 has 2 high and 2 low affinity sites available for the reaction with ferrocytochrome c. If negative cooperativity occurs, cytochrome aa3 has 2 high affinity sites which change into 2 low affinity sites upon binding of one cytochrome c molecule. The latter model is favoured.  相似文献   

10.
P.Muir Wood  D.S. Bendall 《BBA》1975,387(1):115-128
The rates of electron transfer to P700 from plastocyanin and cytochrome f have been compared with those from three other c-type cytochromes and azurin, a copper protein resembling plastocyanin. Three different disruptive techniques were used to expose P700; digitonin, Triton X-100 and sonication. The following rate constants were measured at 25 °C, pH 7.0, with digitonin-treated chloroplasts: plastocyanin, 8 · 107 M?1 · s?1; red-algal cytochrome c-553, 1.9 · 107 M?1 · s?1; Pseudomonas cytochrome c-551, 8 · 106 M?1 · s?1; azurin, ? 3 · 105 M?1 · s?1; cytochrome f, ? 2 · 104 M?1 · s?1; mammalian cytochrome c, ? 2 · 104 M?1 · s?1. For electron transfer from plastocyanin, the effects of ionic strength, pH and temperature were also studied, and saturation effects found in earlier work were avoided by a full consideration of the various secondary reactions and inclusion of superoxide dismutase. The relative rates are discussed in relation to photosynthetic electron transport.  相似文献   

11.
Electron transfer between horse heart and Candida krusei cytochromes c in the free and phosvitin-bound states was examined by difference spectrum and stopped-flow methods. The difference spectra in the wavelength range of 540–560 nm demonstrated that electrons are exchangeable between the cytochromes c of the two species. The equilibrium constants of the electron transfer reaction for the free and phosvitin-bound forms, estimated from these difference spectra, were close to unity at 20°C in 20 mM Tris-HCl buffer (pH 7.4). The electron transfer rate for free cytochrome c was (2–3) · 104 M?1 · s?1 under the same conditions. The transfer rate for the bound form increased with increase in the binding ratio at ratios below half the maximum, and was almost constant at higher ratios up to the maximum. The maximum electron exchange rate was about 2 · 106 M?1 · s?1, which is 60–70 times that for the free form at a given concentration of cytochrome c. The activation energy of the reaction for the bound cytochrome c was equal to that for the free form, being about 10 kcal/mol. The dependence of the exchange rate on temperature, cytochrome c concentration and solvent viscosity suggests that enhancement of the electron transfer rate between cytochromes c on binding to phosvitin is due to increase in the collision frequency between cytochromes c concentrated on the phosvitin molecule.  相似文献   

12.
J. Wilms  J. Lub  R. Wever 《BBA》1980,589(2):324-335
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 μM, respectively.2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme.3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M?1 · s?1 and dissociation constant Kd of 3.9 mM.4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M?1 · s?1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes.5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome a3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

13.
(1) Using the pulse-radiolysis and stopped-flow techniques, the reactions of iron-free (porphyrin) cytochrome c and native cytochrome c with cytochrome aa3 were investigated. The porphyrin cytochrome c anion radical (generated by reduction of porphyrin cytochrome c by the hydrated electron) can transfer its electron to cytochrome aa3. The bimolecular rate constant for this reaction is 2·107 M?1·s?1 (5 mM potassium phosphate, 0.5% Tween 20, pH 7.0, 20°C). (2) The ionic strength dependence of the cytochrome c-cytochromeaa3 interaction was measured in the ionic strength range between 40 and 120 mM. At ionic strengths below 30 mM, a cytochrome c-cytochrome aa3 complex is formed in which cytochrome c is no longer reducible by the hydrated electron. A method is described by which the contributions of electrostatic forces to the reaction rate can be determined. (3) Using the stopped-flow technique, the effect of the dielectric constant (?) of the reaction medium on the reaction of cytochrome c with cytochrome aa3 was investigated. With increasing ? the second-order rate constant decreased.  相似文献   

14.
The reduction of spinach ferredoxin by the CO?2 radical and the hydrated electron (e?aq) has been studied by pulse radiolysis in the pH range between 5.05 and 9.67. The reduction of oxidized spinach ferredoxin by both CO?2 and e?aq was found to be essentially quantitative. The CO?2 radical reduces spinach ferredoxin by a single second-order process at a rate k5 = (6.2 ± 0.6) · 107 M?1 · s?1. Reduction by e?aq follows a biphasic pathway. The first phase obeys second-order kinetics for the reduction of the cluster, kapp = (9.4 ± 0.3) · 109 M?1 · s?1. The second phase follows an intramolecular first-order reaction kB = (8.3 ± 1.7) · 102 s?1 which is observed as a further reduction of the active site. Spectral changes accompanying the reduction of oxidized spinach ferredoxin in the ultraviolet and visible range are discussed.  相似文献   

15.
The rate of reduction of cytochrome c by 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropteridine was examined as a function of binding to liposomes prepared from mixed soybean phospholipids, asolectin, and from various purified phospholipids. Binding of cytochrome c to asolectin liposomes caused an increase in the rate of reduction by the pteridine derivative from 2900 to 16 000 M?1 · s?1 at pH 7. At low ionic strength (0.003 M) the binding stoichiometry between cytochrome c and asolectin vesicles is 15 ± 2 phosphospolipid/cytochrome c (mole ratio), determined by monitoring the change in reduction rate of cytochrome c by pteridine as cytochrome c is bound to the vesicles. A stoichiometry of 14 phospholipid/cytochrome c was obtained from gel filtration studies. Equilibrium association constants for the binding of cytochrome c to sites on the asolectin vesicles varied from 2.2 · 106 to 1.8 · 103 M?1 between 0.02 and 0.10 M ionic strength, respectively. In general, liposomes prepared from purified phospholipids resulted in less binding of cytochrome c per mole of phospholipid and lower reduction rates than those prepared from asolectin.  相似文献   

16.
Mark A. Jensen  Philip J. Elving 《BBA》1984,764(3):310-315
The rate constant, kd, for the dimerization of the free radical (NAD·), produced on the initial one-electron reduction of NAD+, was measured by double potential-step chronoamperometry, fast-scan cyclic voltammetry (cathodic-anodic peak current ratio) and slow-scan cyclic voltammetry (peak potential shift) for a medium in which neither NAD+ nor its reduction products are adsorbed at the solution/electrode interface. All three methods give concordant values of kd (approx. 3·107 M?1·s?1), which are in reasonable accord with the values determined by pulse radiolysis but are considerably greater than values previously determined electrochemically. For the NAD+/NAD· couple, the heterogeneous rate constant (ks,h) exceeds 1 cm·s?1 at 25°C and the formal potential (E0c) vs. sce is ? 1.155 V at 25°C and ? 1.149 V at 1°C at pH 9.1, with an uncertainty of about ±0.005 V.  相似文献   

17.
Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4], whereas the value of k on for NO2 ? reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M?1 s?1 (at pH 7.4). CL facilitates the NO2 ?-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 ?-mediated conversion of CL–CM-cytc-Fe(II) to CL–CM-cytc-Fe(II)-NO (5.6 ± 0.6 M?1 s?1; at pH 7.4) being slightly higher than that for the NO2 ?-mediated conversion of CL–cytc-Fe(II) to CL–cytc-Fe(II)-NO (2.6 ± 0.3 M?1 s?1; at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10?6 M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are ?1.05 ± 0.07 and ?1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH?. These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL–CM-cytc.  相似文献   

18.
Recently, it was suggested that the measured rate of reduction of ferricyto chrome C by O?2 below pH 8, was too high in the presence of high concentrations of formate (Koppenol, W.H., Van Buuren, K.J.H., Butler J. and Braams, R. (1976) Biochim. Biophys. Acta 449, 157–168).The high values were attributed to the presence of impurities of copper, which compete for O?2. This assumption is consistent with either a decrease in the reduction yield of ferricytochrome C in the presence of copper, or with a very fast reaction of Cu(I) with ferricytochrome C.It was previously shown by us and by others that the reduction yield of ferricytochrome C by O?2 is 100%. We measured the rate of reduction of ferricytochrome C by Cu(I), and found that this reaction is slow: k = (1.5±0.5) · 103M?1) · s?1.Therefore, our results rule out the possibility that below pH 8 copper impurities affect the measured rate constant of the reduction of ferricytochrome C by O?2.  相似文献   

19.
The binding of[Co(CN)6]3?, and that of[Fe(CN)6]3? and [Ru(CN)6]4? using a competitive method, to horse cytochrome c has been studied by 59 Co NMR spectroscopy. At I = 0.07 M, without added salt and in 2H2O at ph* 7.3 (measured in 2H2O) and 25°C, there are at least two binding sites on ferricytochrome c and ferrocytochrome c for [Co(CN)6]3?. Association constants were determined to be 2.0 ± 0.6 × 103M?1 and 1.5 ± 0.5 × 102M?1 respectively. with no effect of the oxidation state of the cytochrome. At higher ionic strength (I = 0.12 M adjusted with KCl the binding markedly decreased, and, although it was not possible to determine the precise binding stoichiometry and magnitude of association constants, it is clear that the association constants are ≤ 1.5 × 10tM?1 The binding of [Ru(CN)6]4? at I = 0.07, without added salt and in 2H2O at pH 1.3 and 23°C, was not precisely defined, but its binding strength relative to that of [Fe(CN)6]3? was determined. Extrapolating this to I = 0.12 (KCl) suggests that under these conditions the association constant for [Ru(CN)6]4? binding to ferricytochrome c is ≤ 3 × 102M?1.  相似文献   

20.
During the aerobic xanthine oxidase reaction, O2? is produced and accumulates to a steady state determined by a balance between the rate of production of this radical and its rate of dismutation. Addition of ferricytochrome c then results in a biphasic reduction, the very rapid phase of which reflects reaction of the accumulated O2?, while the slower phase corresponds to the continuing production of this radical. Superoxide dismutase suppresses the accumulation of O2? during the xanthine oxidase reaction and thus diminishes the burst of reduction seen upon addition of ferricytochrome c. This effect has been utilized, at pH 10.2, as the basis of an assay that permits measurement of picomolar levels of superoxide dismutase. The theory and practice of this ultrasensitive assay are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号