首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sheep erythrocytes (E) which, with or without certain treatments, are currently used as "immunological reagents" to detect cells with specific receptors (by rosette-formation) have been partitioned in two-polymer aqueous-phase systems selected so as to reflect charge-associated or lipid-related membrane surface properties. We have found that the partitioning behavior of E is not affected in these phases by reacting the cells with anti-E antibody (either IgG or IgM), forming EA. The additional binding of complement to the cell-antibody complex, forming EAC, results, however, in a marked decrease in the partition coefficient, K. Apparently both the charge-associated and hydrophobic properties reflected by partitioning remain accessible to the phase polymers when the cells are coated with antibody, but are not with the addition of complement. It is interesting that EA can still rosette with T-lymphocytes (14), a property of E, while the additional coating with complement results in EAC which does not appreciably do so (26). Neuraminidase or trypsin treatments of E, which yield Es having quite different rosetting properties with T-lymphocytes (14), cause increased Ks and unchanged Ks, respectively, in phases reflecting lipid-related surface properties. Either treatment causes reduced Ks of E in charged-phase systems. Neuraminidase treatment also results in a reduced electrophoretic mobility of E, while trypsin treatment is not detectable by cell electrophoresis (25). We are currently studying the possible usefulness of employing cell electrophoresis and cell partitioning in charged-phase systems jointly to obtain information on events occurring at the shear plane versus those occurring deeper in the membrane.  相似文献   

2.
Aqueous solutions of dextran and of poly(ethylene glycol) when mixed give rise to two-phase systems useful in separating cells, on the basis of their surface properties, by partitioning. Depending on whether salts with unequal or equal affinity for the two phases are chosen, phases with or without an electrostatic potential difference between the phases are obtained. At appropriate polymer concentrations the former yield cell partition coefficients (i.e., the quantity of cells in the top phase as a percentage of total cells added) based on charge-associated surface properties while the latter reflect membrane lipid-related parameters. With increasing cell age, rat erythrocytes have diminishing partition coefficients in both charged and uncharged phases. Using the elevated aspartate aminotransferase levels of younger red cells as a marker, we have now found that young mature erythrocytes of human do not have the highest partition coefficient in the red cell population as they do in rat. Experiments with isotopically labeled dog red cells yield results similar to those found with human erythrocytes. Furthermore, density-separated young and old red cells from human give overlapping countercurrent distribution curves. Finally, counter-current distribution of human red blood cells followed by pooling of cells from the left and right ends of the distribution and subjection of these cells to a redistribution gives curves that overlap with each other and with the original countercurrent distribution. This indicates that not only are human red cells not subfractionated based on possible age-related surface alterations, but also that they are not subfractionated by partitioning based on any surface parameter.These results are consistent with our previous findings that membrane sialic acid/hemoglobin absorbance is essentially constant through the extraction train after countercurrent distribution of human erythrocytes in a charged phase system; and with the recent reports of others that there is no difference in electrophoretic mobility between human young and old red cells.  相似文献   

3.
The partition behavior of cells in dextran-poly(ethylene glycol) aqueous phases (i.e., the cells' relative affinity for the top or bottom phase or their adsorption at the interface) is greatly dependent on the polymer concentrations and ionic composition and concentration. Appropriate selection of phase system composition permits detection of differences in either charge-associated or lipid-related surface properties. We have now developed a method that can reveal differences by partitioning that fall within experimental error if one were to compare countercurrent distribution (CCD) curves of two closely related cell populations run separately. One cell population is isotopically labeled in vitro (e.g., with 51Cr-chromate) and is mixed with an excess of the unlabeled cell population with which it is to be compared. The mixture is subjected to CCD and the relative specific radio-activities are determined through the distribution. As control we also examine a mixture of labeled cells and unlabeled cells of the same population. The feasibility of this method was established by use of cell mixtures the relative partition coefficients of which were known. The procedure was then used to test for human erythrocyte subpopulations. 51Cr-chromate-labeled human young or old red blood cells were mixed with unfractionated erythrocytes and subjected to CCD in a phase system reflecting charge-associated properties. It was found that older cells had a high, young cells (probably only reticulocytes) a low partition coefficient. Because of the small differences involved these results were not previously obtained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Membrane surface properties of rat intestinal epithelial cells (crypt base to villus tips) were studied by cell partition in a two-polymer aqueous phase system. A higher partition generally reflects higher cell surface charge (or charge-associated properties) which is not necessarily the same as the charge determined by cell electrophoresis since the latter reflects only the charge at the plane of shear while the former gauges it deeper into the membrane [10]. Cells were prepared by the method of Weiser [22] which sequentially yields cell fractions from villus tips to crypt base. The isolated cells were subjected to countercurrent distribution in a dextran-polyethylene glycol aqueous two-phase system. Countercurrent distribution on the first fractions obtained by Weiser's method have a peak to the left and a smaller peak to the right indicating a surface membrane heterogeneity of upper villus cells; last fractions have a peak only to the right. When all fractions are pooled before countercurrent distribution two well-separated peaks are obtained with the right peak sometimes showing additional heterogeneities. Experiments combining isotope labeling of cells with countercurrent distribution lead us to conclude that the membrane charge (or charge-associated properties) of crypt base cells increases during differentiation and that the charge of the villus cells to which they give rise then diminishes during maturation. The charge of the bulk of the upper villus cells is the lowest of any in the intestinal cell population. The basis for the alteration in charge has not been established but the phenomenon of changing membrane surface charge (or charge-associated properties) as a function of cell differentiation, maturation and aging appears to be a general phenomenon having been found and traced in different cell populations [14, 16, 17, 28].  相似文献   

5.
Aqueous solutions of dextran and of poly(ethylene glycol) when mixed give rise to two-phase systems useful in separating cells, on the basis of their surface properties, by partitioning. Depending on whether salts with unequal or equal affinity for the two phases are chosen, phases with or without an electrostatic potential difference between the phases are obtained. At appropriate polymer concentrations the former yield cell partition coefficients (i.e., the quantity of cells in the top phase as a percentage of total cells added) based on charge-associated surface properties while the latter reflect membrane lipid-related parameters. With increasing cell age, rat erythrocytes have diminishing partition coefficients in both charged and uncharged phases. Using the elevated aspartate aminotransferase levels of younger red cells as a marker, we have not found that young mature erythrocytes of human do not have the highest partition coefficient in the red cell population as they do in rat. Experiments with isotopically labeled dog red cells yield results similar to those found with human erythrocytes. Furthermore, density-separated young and old red cells from human give overlapping countercurrent distribution curves. Finally, countercurrent distribution of human red blood cells followed by pooling of cells from the left and right ends of the distribution and subjection of these cells to a redistribution gives curves that overlap with each other and with the original countercurrent distribution. This indicates that not only are human red cells not subfractionated based on possible age-related surface alterations, but also that they are not subfractionated by partitioning based on any surface parameter. These results are consistent with our previous findings that membrane sialic acid/hemoglobin absorbance is essentially constant through the extraction train after countercurrent distribution of human erythrocytes in a charged phase system; and with the recent reports of others that there is no difference in electrophoretic mobility between human young and old red cells.  相似文献   

6.
Sheep erythrocytes (E) which, with or without certain treatments, are currently used as “immunological reagents” to detect cells with specific receptors (by rosette-formation) have been partitioned in two-polymer aqueousphase systems selected so as to reflect charge-associatedor lipid-related membrane surface properties. We have found that the partitioning behavior of E is not affected in these phases by reacting the cells with anti-E antibody (either IgG or IgM), forming EA. The additional binding of complement to the cell-antibody complex, forming EAC, results, however, in a marked decrease in the partition coefficient,K. Apparently both the charge-associated and hydrophobic properties reflected by partitioning remain accessible to the phase polymers when the cells are coated with antibody, but are not with the addition of complement. It is interesting that EA can still rosette with T-lymphocytes (14), a property of E, while the additional coating with complement results in EAC which does not appreciably do so (26). Neuraminidase or trypsin treatments of E, which yield Es having quite different rosetting properties with T-lymphocytes (14), cause increasedKs and unchangedKs, respectively, in phases reflecting lipid-related surface properties. Either treatment causes reducedKs of E in charged-phase systems. Neuraminidase treatment also results in a reduced electrophoretic mobility of E, while trypsin treatment is not detectable by cell electrophoresis (25). We are currently studying the possible usefulness of employing cell electrophoresis and cell partitioning in charged-phase systems jointly to obtain information on events occurring at the shear plane versus those occurring deeper in the membrane.  相似文献   

7.
The partition behavior of cells in dextran-poly(ethylene glycol) aqueous phases (i.e., the cells' relative affinity for the top or bottom phase or their adsorption at the interface) is greatly dependent on the polymer concentrations and ionic composition and concentration. Appropriate selection of phase system composition permits detection of differences in either charge-associated or lipid-related surface properties. We have now developed a method that can reveal differences by partitioning that fall within experimental error if one were to compare countercurrent distribution (CCD) curves of two closely related cell populations run separately. One cell population is isotopically labeled in vitro (e.g., with 51Cr-chromate) and is mixed with an excess of the unlabeled cell population with which it is to be compared. The mixture is subjected to CCD and the relative specific radio-activities are determined through the distribution. As control we also examine a mixture of labeled cells and unlabeled cells of the same population. The feasibility of this method was established by use of cell mixtures the relative partition coefficients of which were known. The procedure was then used to test for human erythrocyte subpopulations. 51Cr-chromate-labeled human young or old red blood cells were mixed with unfractionated erythrocytes and subjected to CCD in a phase system reflecting charge-associated properties. It was found that older cells had a high, young cells (probably only reticulocytes) a low partition coefficient. Because of the small differences involved these results were not previously obtained. It was further determined, by repartitioning 51Cr-labeled cells from the left or right ends of a CCD of human red blood cells admixed to unlabeled unfractionated erythrocytes, that a subpopulation with higher partition coefficient exists (probably constituting the old red cells). These experiments serve to illustrate (a) that human red blood cells, contrary to a previous report, can be subfractionated by partitioning and (b) the usefulness of this new method in detecting smaller surface differences between closely related cell populations than was heretofore possible by partitioning alone.  相似文献   

8.
The partition behavior of cells in dextran-poly(ethylene glycol) aqueous phases (i.e., the cells' relative affinity for the top or bottom phase or their adsorption at the interface) is greatly dependent on the polymer concentrations and ionic composition and concentration. Appropriate selection of phase system composition permits detection of differences in either charge-associated or lipid-related surface properties. We have now developed a method that can reveal differences by partitioning that fall within experimental error if one were to compare countercurrent distribution (CCD) curves of two closely related cell populations run separately. One cell population is isotopically labeled in vitro (e.g., with51Cr-chromate) and is mixed with an excess of the unlabeled cell population with which it is to be compared. The mixture is subjected to CCD and the relative specific radio-activities are determined through the distribution. As control we also examine a mixture of labeled cells and unlabeled cells of the same population. The feasibility of this method was established by use of cell mixtures the relative partition coefficients of which were known. The procedure was then used to test for human erythrocyte subpopulations51Cr-chromate-labeled human young or old red blood cells were mixed with unfractionated erythrocytes and subjected to CCD in a phase system reflecting charge-associated properties. It was found that older cells had a high, young cells (probably only reticulocytes) a low partition coefficient. Because of the small differences involved these results were not previously obtained. It was further determined, by repartitioning51Cr-labeled cells from the left or right ends of a CCD of human red blood cells admixed to unlabeled unfractionated erythrocytes, that a subpopulation with higher partition coefficient exists (probably constituting the old red cells). These experiments serve to illustrate (a) that human red blood cells, contrary to a previous report, can be subfractionated by partitioning and (b) the usefulness of this new method in detecting smaller surface differences between closely related cell populations than was heretofore possible by partitioning alone.  相似文献   

9.
Partitioning of cells in dextran-poly(ethylene glycol) aqueous two-phase systems depends on the interaction between the surface properties of the cells and the physical properties of the phases. The latter can be manipulated to a considerable extent by selection of polymer concentrations and ionic composition and concentration. If salts (e.g., phopshate) are used that have an unequal affinity for the two phases, an electrostatic potential difference between the phases results and, at appropriately high polymer concentrations, the partition coefficient of cells is determined predominantly by membrane charge-associated properties. By “balancing” the magnitude of the electrostatic potential difference against that of the interfacial tension (primarily a function of polymer, but also phosphate, concentrations) one can obtain phase systems that give usable partition coefficients for most cell populations (1). In work under way in our laboratory on the effects of different chemical and enzymatic modifications on the relative surface properties of rat red blood cells of different ages, we have now found that certain phase compositions did not resolve such treated cell subpopulations while other phase compositions did. Thus not all charged phase systems in which cell populations as a whole have usable partition coefficients are equally capable of detecting or subfractionating cell subpopulations. It is therefore essential, before drawing conclusions on the nonseqarability of cell subpopulations, to test cell separability in charged phase systems of different compositions if the system initially chosen does not afford a subfractionation.  相似文献   

10.
Aqueous solutions of dextran and of poly-(ethylene glycol) when mixed give rise to immiscible aqueous-aqueous two-phase systems which, when buffered and rendered isotonic, are suitable for the separation by partition of cells based on subtle differences in selected membrane surface properties. Mononuclear cells from human peripheral blood were obtained on a Hypaque-Ficoll cushion and were then separated on the basis of size on a velocity sedimentation gradient at unit gravity. Lymphocytes obtained in this manner were subjected to countercurrent distribution (CCD) in a phase system which reflects membrane surface charge-associated properties. Cells in the different cavities of the extraction train were examined by fluorescent techniques utilizing goat antihuman IgM and anti-human IgD (either separately or mixed) and for their ability to form rosettes with a sheep erythrocyte-antibody-complement (EAC) complex. Results indicate that the highest percentage of fluorescing cells and EAC rosetting cells are under the left part of the distribution. B-lymphocytes are highly heterogeneous and consist of at least two distinct sub-populations not attributable to a difference in surface immunoglobulins. Experimental variation and error preclude, at present, a statement relating to the partial separability of IgM- and IgD-bearing cells. Conversely, the differences in surface charge-associated properties of IgM- and IgD-bearing cells, if they exist, must be small.  相似文献   

11.
Rat reticulocytes undergo charge-associated surface changes, detectable by cell partitioning in charged dextran-poly(ethylene glycol) aqueous phase systems, as they become mature erythrocytes. Young reticulocytes have a lower partition coefficient, i.e., quantity of cells in the top phase as a percentage of total cells added, than do mature erythrocytes. Sialic acid is the main charge-bearing group on red blood cells and, in the case of the rat, most of the sialic acid can be removed by treatment of the cells with neuraminidase (Vibrio cholerae). By combining isotopic 59Fe-labeling of reticulocytes with countercurrent distribution of the entire red blood cell population in charged dextran-poly(ethylene glycol) aqueous phases we have now studied the relative effect of neuraminidase-treatment on rat reticulocytes and mature erythrocytes. It was found that neuraminidase-treatment (a) does not eliminate surface differences, detectable by partitioning, between rat reticulocytes and erythrocytes and (b) reduces the partition coefficient of mature erythrocytes to a greater extent than the partition coefficient of reticulocytes indicating a differential effect of this enzyme on the two cell populations.  相似文献   

12.
Partitioning differences between cells in two-polymer aqueous phase systems originate from subtle differences between the surface properties of cells. Because of the exponential relation between the parameters affecting the partition ratio (P) and the P itself, differences in membrane components suspected of effecting the differential partitioning of closely related cell populations cannot be directly established by conventional chemical assay techniques. In order to study the chemical nature of the components responsible for the age-related changes in surface properties of rat red cells we have devised an approach which uses a combination of isotopic labeling of erythrocyte subpopulations of distinct cell age with different enzyme and/or chemical treatments followed by countercurrent distribution in charge-sensitive two-polymer aqueous phase systems. These studies show that: neuraminidase-susceptible sialic acid is not responsible for the cell age-related surface differences detected by partitioning; the component(s) responsible for the cell age-related surface differences can be extracted (from aldehyde-fixed red cells) with ethanol or cleaved with dilute sulfuric acid. Our data are consistent with the hypothesis that ganglioside-linked sialic acid is the chemical moiety responsible for the cell charge-associated surface differences among rat red blood cells of different ages.  相似文献   

13.
Rat reticulocytes undergo charge-associated surface changes, detectable by cell partitioning in charged dextran-poly(ethylene glycol) aqueous phase systems, as they become mature erythrocytes. Young reticulocytes have a lower partition coefficient, i.e., quantity of cells in the top phase as a percentage of total cells added, than do mature erythrocytes. Sialic acid is the main charge-bearing group on red blood cells and, in the case of the rat, most of the sialic acid can be removed by treatment of the cells with neuraminidase (Vibrio cholerae). By combining isotopic 59Fe-labeling of reticulocytes with countercurrent distribution of the entire red blood cell population in charged dextran-poly(ethylene glycol) aqueous phases we have now studied the relative effect of neuraminidase-treatment on rat reticulocytes and mature erythrocytes. It was found that neuraminidase-treatment (a) does not eliminate surface differences, detectable by partitioning, between rat reticulocytes and erythrocytes and (b) reduces the partition coefficient of mature erythrocytes to a greater extent than the partition coefficient of reticulocytes indicating a differential effect of this enzyme on the two cell populations.  相似文献   

14.
Partitioning cells in a dextran polyethylene glycol aqueous two-phase system (countercurrent distribution, CCD) is a sensitive method for learning about cell surface membrane properties and for subfractionating cell populations. In this study, we subjected lymphocytes from normal DBA/2 mice and autoimmune F1 New Zealand black/New Zealand white [NZB/NZW)F1) mice to countercurrent distribution and found that T cells partition to the right and B cells partition to the left of the CCD curve. We found no difference between the CCD patterns of normal and autoimmune mice. When the murine lymphocytes were exposed to a cationic dietary amino acid (L-canavanine) in vitro, L-canavanine selectively affected the CCD pattern of autoimmune B cells, reflecting an alteration in surface membrane properties. We separated these lymphocytes with altered surface membrane properties by CCD. Impaired B-cell immune responses associated with L-canavanine were isolated to this lymphocyte fraction. This study provides the first evidence that alterations in the charged surface membrane properties are associated with abnormal (auto) immune response.  相似文献   

15.
Human peripheral blood monocyte-enriched fractions (identified by staining for peroxidase and by sizing) were obtained by velocity sedimentation at unit gravity of peripheral blood mononuclear cells. They were then fractionated by countercurrent distribution (a multiple-extraction procedure) in a charged Dextran/poly(ethylene glycol) aqueous phase system. The monocytes remained viable after the separation (order of 90%). Cells obtained from different cavities along the extraction train were tested for their ability to phagocytize latex particles. With increasing partition coefficient (presumably higher charge-associated membrane properties) the ratio of monocytes that phagocytized to monocytes that did not phagocytize increased appreciably. When, however, monocytes were permitted to phagocytize particles prior to countercurrent distribution, an increase in partition coefficient was associated with an appreciable decrease in the above-specified ratio. Control experiments indicate that the observed change in partitioning behavior cannot be ascribed to an alteration in size and/or density of the monocytes as a function of phagocytosis. It may be due to the internalization of charged surface groups during phagocytosis. We conclude that there is a correlation between the surface properties of monocytes (as reflected by partitiartitioning behavior cannot be ascribed to an alteration in size and/or density of the monocytes as a function of phagocytosis. It may be due to the internalization of charged surface groups during phagocytosis. We conclude that there is a correlation between the surface properties of monocytes (as reflected by partitioning) and their ability to ingest particles. Furthermore, an alteration in the surface charge-associated properties of monocytes as a consequence of phagocytosis is indicated by the cells' reduced partition coefficient.  相似文献   

16.
Cell surface-associated changes in behaviour of cultured cells on partition in an aqueous two-phase polymer system were studied using FM3A cell line (a cultured mammary cancer of mouse) with respect to aging.The aqueous polymer system consisted of dextran, polyethyleneglycol and sodium phosphate, equilibrated at 6°C to separate into two phases. Enzyme treatment of cells with neuraminidase reduced cell electrophoretic mobility, as well as the cell partition ratio. Hyaluronidase produced no observable effects on partition and cell electrophoretic mobility, suggesting that the partition is related to sialic acid-associated cell surface charges. The pattern of change in relation to culture time was similar for both cell electrophoretic mobility and cell partition, showing a rise and fall of charge-associated cell surface change during cell growth, the maximum occurring at the beginning of exponential growth. This change was reflected in the pattern of countercurrent distribution of the cells in respective stages of growth. Countercurrent distribution with our two-phase system is expected to be capable of fractionating cell populations according to cell surface properties.  相似文献   

17.
A fluorescence method is presented for quantitatively analyzing exocytosis phenomena and monitoring their kinetics. The method is based on the particular properties of a hydrophobic fluorescent probe, 1-[4-(trimethylammonio)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) [Prendergast, F.G., Haugland, R.P., & Callahan, P.J. (1981) Biochemistry 20, 7333-7338; Kuhry, J.G., Fonteneau, P., Duportail, G., Maechling, C., & Laustriat, G. (1983) Cell Biophys. 5, 129-140; Kuhry, J.G., Duportail, G., Bronner, C., & Laustriat, G. (1985) Biochim. Biophys. Acta 845, 60-67]. When this probe is interacted with intact resting cells in aqueous suspensions, it labels solely the membranes that are in contact with the external medium and is incorporated into them according to a partition equilibrium; i.e., the amount of the probe incorporated is proportional to the available membrane surface. TMA-DPH is highly fluorescent in membranes and not at all in water. Thus, a measurement of the TMA-DPH fluorescence intensity provides a signal proportional to the membrane surface. In secretory cells, the membrane surface available for the probe is increased upon fusion of the membrane of the secretory granules with the cell plasma membranes, directly or via intergranule fusion. Thus, when these cells are stimulated, more TMA-DPH is incorporated than in resting cells since the probe is allowed to also interact with the granule membranes now connected with the external medium by pores. This process results in a proportional increase in the TMA-DPH fluorescence intensity. The response was found to be very rapid and able to follow accurately the exocytosis kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The function of the syncytiotrophoblast in maternal-fetal exchange is related to the properties of its microvillous (maternal-facing) and basal (fetal-facing) plasma membranes. We have previously reported the properties of the microvillous membrane (Smith, C.H., Nelson, D.M., King, B.F., Donohue, T.M., Ruzycki, S.M. and Kelley, L.K. (1977) Am. J. Obstet. Gynecol. 128, 190–196), and now describe the purification and partial characterization of the basal plasma membrane. Sonication and incubation with EDTA were used to isolate selectively the basal cell membrane. These steps were followed by a more conventional purification by centrifugation. The trophoblast was disrupted and its microvillous membrane and cytoplasmic contents were removed by sonication. The exposed basal cell membrane was selectively released from the underlying basal lamina by sonication in the presence of EDTA and further purified by discontinuous Ficoll gradient centrifugation. The material at the 4–10% Ficoll interface consisted of smooth membrane vesicles with internal microfilaments. It was 45-fold enriched in dihydroalprenolol binding activity and 11-fold enriched in ouabain binding activity. Other enzymatic analyses, including alkaline phosphatase, cytochrome-c oxidase, cytochrome-c reductase and galactosyl transferase indicated low contamination by other organelles. This procedure yields a preparation of relatively high purity which should be suitable for investigation of transport and other functions of the basal surface membrane of trophoblast. In principle, the purification procedures used may be applicable to other transporting epithelia.  相似文献   

19.
The intact H-2Kk antigen has been detergent-solubilized and purified using an immunoabsorbent column prepared from the 11-4.1 monoclonal antibody described by Oi et al. (Oi, V. T., Jones, P. P., Goding, J. Current Topics in Microbiology and Immunology (Melchers, F., Potter, M., and Warner, N. L., eds) Vol. 81, pp. 115-129, Springer-Verlag, New York). The mild conditions used for elution from the column, 0.5% deoxycholate in 10 mM Tris buffer, pH 8, with 0.14 M NaCl, result in recovery of 70 to 100% of the allogeneic serological activity. A murine lymphoma, RDM-4, was found to express high levels of H2-Kk; approximately 2 X 10(6) molecules/cell. Milligram quantities of H-2Kk can be purified readily using these cells.  相似文献   

20.
The behavior of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cell membrane proteins upon treatment with diamide, the thiol-oxidizing agent (Kosower, N.S. et al. (1969) Biochem. Biophys. Res. Commun. 37, 593–596), was studied with the aid of monobromobimane, a fluorescent labeling agent (Kosower, N.S., Kosower, E.M., Newton, G.L. and Ranney, H.M. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3382–3386) convenient for following membrane thiol group status. In diamide-treated G6PD-deficient red cells (and in glucose deprived normal cells), glutathione (GSH) is oxidized to glutathione disulfide (GSSG). When cellular GSH is absent, membrane protein thiols are oxidized with the formation of intrachain and interchain disulfides. Differences in sensitivity to oxidation are found among membrane thiols. In diamidetreated normal red cells, GSH is regenerated in the presence of glucose and membrane disulfides reduced. In G6PD-deficient cells, GSSG is not reduced, and the oxidative damage (disulfide formation) in the membrane not repaired. Reduction of membrane disulfides does occur after the addition of GSH to these membranes. A direct link between the thiol status of the cell membrane and cellular GSH is thereby established. GSH serves as a reductant of membrane protein disulfides, in addition to averting membrane thiol oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号