首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rapid translocation of external ADP-[14C]by corn mitochondria is inhibited by high concentrations of atractyloside with enhanced inhibition occurring in the presence of Mg2+. This translocation is also inhibited by AMP or ATP but CDP, GDP, IDP or UDP have little effect. Backward exchange of internal ADP-[14C] occurs in the presence of AMP, ADP or ATP but is not promoted by other nucleoside diphosphates. It is suggested that the adenine nucleotide (AdN) carrier is specific for ADP and ATP and that apparent translocation of AMP is a result of adenylate kinase activity. The translocated ADP can be separated into 3 components: (1) atractyloside-insensitive binding; (2) carrier-bound ADP saturated at ca 30 μM external ADP; and (3) exchanged ADP saturated as ca 5 μM external ADP. It is suggested that the adenine nucleotide carrier of plant mitochondria possesses similar properties to the classical carrier of vertebrate mitochondria.  相似文献   

3.
The efflux of mitochondrial adenine nucleotide which is induced by addition of PPi to suspensions of rat liver mitochondria has been investigated. This efflux of adenine nucleotide is greatly stimulated by the uncoupler FCCP at 1 μM, Vmax being 6.7 nmol/min per mg protein as compared to 2.0 nmol/min per mg protein in its absence. The depletion process is inhibited by carboxyatractyloside. The Km for PPi of 1.25 mM is essentially unchanged when uncoupler is added. Quantitation of the individual adenine nucleotide species (ATP, ADP and AMP) and their relationship to the rate of efflux suggests that ADP is the predominant species being exchanged for PPi.  相似文献   

4.
The adenine nucleotide carrier from Jerusalem artichoke (Helianthus Tuberosus L.) tubers mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. SDS gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 33 kDa. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5-phosphate-sensitive ATP/ATP exchange. It was purified 75-fold with a recovery of 15% and a protein yield of 0.18% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ATP, ADP, and GTP and was inhibited by bongkrekate, phenylisothiocyanate, pyridoxal 5-phosphate, mersalyl and p-hydroxymercuribenzoate (but not N-ethylmaleimide). Atractyloside and carboxyatractyloside (at concentrations normally inhibitory in animal and plant mitochondria) were without effect in Jerusalem artichoke tubers mitochondria. V max of the reconstituted ATP/ATP exchange was determined to be 0.53 mol/min per mg protein at 25°C. The half-saturation constant K m and the corresponding inhibition constant K i were 20.4 M for ATP and 45 M for ADP. The activation energy of the ATP/ATP exchange was 28 KJ/mol between 5 and 30°C. The N-terminal amino acid partial sequence of the purified protein showed a partial homology with the ANT protein purified from mitochondria of maize shoots.  相似文献   

5.
Jill Rulfs  June R. Aprille 《BBA》1982,681(2):300-304
The adenine nucleotide content (ATP+ADP+AMP) of newborn rabbit liver mitochondria was 6.0±0.5 nmol/mg mitochondrial protein at birth, increased rapidly to 14.5±1.7 nmol/mg protein by 2 h postnatal, peaked at 6 h, then decreased gradually to 7.8±0.6 nmol/mg protein by 4 days postnatal. There was a strong positive correlation (r=0.82) between the total adenine nucleotide pool size and adenine nucleotide translocase activity in these mitochondria. In contrast, glutamate + malate-supported State 3 respiratory rates remained constant from birth through the first week of life. State 4 rates also remained constant, as did the respiratory control index and uncoupled respiratory rates. The following conclusions are suggested: (1) The maximum rate of translocase activity is limited by the intramitochondrial adenine nucleotide pool size. (2) In newborn rabbit liver mitochondria, the State 3 respiratory rate is not limited by either the adenine pool size or the maximum capacity for translocase-mediated adenine exchange. (3) In contrast to rat, rabbit liver mitochondria are fully functional at birth with regard to respiratory rates and oxidative phosphorylation. (4) The rapid postnatal accumulation of adenine nucleotides by liver mitochondria, now documented in two species, may be a general characteristic of normal metabolic adjustment in neonatal mammals.  相似文献   

6.
F. Dabbeni-Sala  A. Pitotti  A. Bruni 《BBA》1981,637(3):400-407
(1) The effect of phospholipids on a preparation containing the ATPase complex and the adenine nucleotide carrier is studied in the presence of ligands known to affect the conformation of these components of the mitochondrial inner membrane. (2) When ATPase activity is abolished by phospholipid depletion, the reactivation induced by phosphatidylcholine is prevented by the simultaneous addition of ATP. ADP partially reproduces the ATP effect. AMP, GTP, UTP and Pi are ineffective. (3) The influence of ATP is associated with reduced phospholipid binding to the membrane fragments and is reversible. The ATP effect on reconstitution is not manifest when phosphatidylcholine is added together with negatively charged phospholipids. (4) Carboxyatractyloside does not modify the phospholipid-ATPase complex interaction but bongkrekic acid is as effective as ATP. In the presence of ADP, the influence of bongkrekic acid is considerably increased. (5) It is concluded that the binding of ATP to the adenine nucleotide carrier enables the complex to select between the charged and uncharged phospholipids. As a result of the carrier conformational change, the ATPase complex is induced to prefer a negatively charged phospholipid environment.  相似文献   

7.
Initial velocity measurements of [3H]ADP and [3H]ATP uptake have been made with mitochondria isolated from Morris hepatomas of differing growth rates, and factors known to influence the rates of nucleotide exchange have been examined in an effort to determine whether the elevated rates of aerobic glycolysis in these tumors can be attributed to altered carrier activity. These studies included the determination of the apparent kinetic constants for nucleotide uptake as a function of the mitochondrial energy state and the dependence of transport rates on temperature. Also included in these studies were measurements of the mitochondrial levels of endogenous inhibitors, divalent cations and internal adenine nucleotides. Results obtained showed that with mitochondria isolated from the various tumor lines, the apparent kinetic constants for nucleotide uptake are different from those of control rat or regenerating liver mitochondria; the apparent Vmax values for both ADP and ATP uptake are significantly lower. Furthermore, under conditions of a high-energy state, the Km and Vmax values for ATP uptake are greater than the Km and Vmax value for ADP uptake but that under uncoupled conditions, the opposite is observed. Comparison of the levels of mitochondrial Ca2+, Mg2+, long-chain acyl-CoA ester and adenine nucleotide from the various mitochondria showed that important differences exist between liver and hepatoma mitochondria in the levels of Ca2+, long-chain acyl-CoA ester and AMP. Mitochondrial Ca2+ levels are elevated 3–5-fold in all tumor lines, and for Morris 7777 hepatoma (a rapidly growing tumor) by a remarkable 70-fold; whereas the levels of acyl-CoA ester and AMP are significantly lower in the more rapidly growing tumors. Arrhenius plots for nucleotide uptake in mitochondria from liver and hepatoma are characterized as being biphasic, having similar activation energies above and below the break point temperature (28–38 and 6–16 kcal/mol, respectively). However, the transition temperature for mitochondria from the various hepatomas is uniformly 4–5°C lower than mitochondria from control liver. The latter difference may reflect a variation in membrane composition, most probably lipid components. It is concluded that the presence of elevated levels of Ca2+ and lower levels of AMP in hepatoma mitochondria and difference of membrane compositions may play an important role in limiting adenine nucleotide transport activity in vivo and that the impaired carrier activity may contribute to higher rates of aerobic glycolysis observed in these tumors.  相似文献   

8.
The azide analog of 14C-labeled ethidium bromide was mixed with yeast cells and when photolyzed by visible light, formed covalent complexes with all yeast cell organelles. The 14C counts were found in DNA, RNA and protein of yeast subcellular fractions, illustrating the complexity of binding of a drug which appears highly specific in its actions.  相似文献   

9.
10.
Azidoimipramine, a photoaffinity labelling reagent for the serotonin transport protein, was synthesized. This reagent, upon irradiation, binds covalently to brain synaptosomes preparation and to gel-filtered platelets. Two-dimensional SDS-polyacrylamide gel electrophoresis-isoelectric focussing and tritium fluorography analysis indicate that two synaptosomal proteins and four platelets proteins were labelled by [3H]azidoimipramine.  相似文献   

11.
Low concentrations (50–200 μ M ) of the anionic detergents cholate, deoxycholate and dodecylsulphate inhibited the activity of adenine nucleotide translocator in mitochondria from etiolated maize ( Zea mays L. hybrid Krasnodarskij 303) coleoptiles. This resulted in: (a) a decrease in the rates of oxidative phosphorylation and hydrolysis of extramitochondrial ATP; (b) a decrease in the rate of [33P]-ATP transport through the inner mitochondrial membrane. Anionic detergents may act as competitive inhibitors of ADP and ATP transport in maize mitochondria.  相似文献   

12.
The consequence of the complexity of the metabolic network on the amount of control strength of adenine nucleotide translocator was investigated with isolated rat liver mitochondria. Two experimental systems were compared: (i) mitochondria in the presence of yeast hexokinase (hexokinase system) and (ii) the same system plus additional pyruvate kinase (pyruvate kinase system). In both systems the control strength was analysed for the adenine nucleotide translocator by inhibitor titration studies with carboxyatractyloside and for the hexokinase or pyruvate kinase by changing their relative activities. Experimental results were compared with computer simulation of these systems and that of a third one, where the extramitochondrial ATP / ADP ratio was held constant by perifusion (perifusion system). The results demonstrate quite different flux-dependent control strength of the translocator in the three systems. In the hexokinase system the control strength of the translocator on mitochondrial respiration was zero up to respiration rates of about 60 nmol O2/mg protein per min. For higher rates, the control strength increased until the maximum value (0.45) was reached in the fully active state. Here, the same value was also found in the pyruvate kinase system. In all other states of respiration the translocator exerts a higher control strength in the pyruvate kinase system than in the hexokinase system. This different behaviour was attributed to the various changes in the adenine nucleotide pattern caused by partial inhibition of the translocator in the hexokinase and pyruvate kinase system. The data clearly show that the sharing of control strength depends not only on the respiration rate but also on the complexity of the metabolic system.  相似文献   

13.
Rafael Moreno-Sánchez 《BBA》1983,724(2):278-285
The mechanism through which internal Ca2+ inhibits oxidative phosphorylation of rat heart mitochondria has been explored. In parallel to a Ca2+-induced diminution of the activity of the adenine nucleotide translocator, an efflux of internal adenine nucleotides is observed. The efflux of adenine nucleotides depends on the amount of Ca2+ accumulated by the mitochondria and on the time that Ca2+ remains in the mitochondria; this efflux is atractyloside insensitive. These results suggest that internal Ca2+, by inducing a lowering of the internal concentration of adenine nucleotides, diminishes the rate of exchange of adenine nucleotides via the translocase, and in consequence of oxidative phosphorylation. Under conditions in which the Ca2+-induced release of adenine nucleotides takes place, no gross changes of the permeability properties of the membrane are observed. As revealed by studies with arsenate, respiratory activity and the function of the ATPase in the direction of ATP synthesis are not affected by internal Ca2+.  相似文献   

14.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C-labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C]ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891–2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

15.
The respiration of rat liver mitochondria was stimulated by three different ways of energy drain: (a) partial uncoupling (equivalent to direct collapse of the proton-motive force), (b) intramitochondrial utilization of ATP for citrulline synthesis, and (c) extramitochondrial utilization of ATP for glucose phosphorylation. At identical rates of respiration, the intramitochondrial ATP: ADP ratios were the same in all three systems. Furthermore, the proton-motive force was the same in partially uncoupled mitochondria and in the presence of hexokinase plus glucose up to a respiration rate amounting to about 60% of that of the fully active state. However, external ATP: ADP ratios were considerably different in various systems at comparable rates of oxygen uptake, being the lowest under conditions when ATP was being utilized externally. On this basis, it is concluded that the respiratory rate is controlled directly by the proton-motive force and the mitochondrial ATP-synthesizing system operates under near-equilibrium conditions with respect to the membrane energy state parameters. However, a disequilibrium exists at the step of the transport of ATP from mitochondria to the external (cytoplasmic) compartment.  相似文献   

16.
1. Inhibitor titration experiments carried out with carboxyatractyloside, oligomycin and rotenone show that in the case of heart mitochondria the membrane-bound ATPase and the respiratory chain are the major factors controlling the rate of oxidative phosphorylation whereas the adenine nucleotide carrier exhibits no control strength. 2. As shown by carboxyatractyloside titration curves under different conditions, the relative importance of the adenine nucleotide carrier depends on the mode of regeneration (F1-ATPase or glucose plus hexokinase) of ADP from ATP exported outside mitochondria, on the total concentration of adenine nucleotides present in the medium and on the mode of limitation of the rate of respiration (cyanide, rotenone, oligomycin or mersalyl). 3. Concomitantly with the inhibition of O2 consumption, carboxyatractyloside brings about a rise in membrane potential. The inverse relationship between the two processes is observed for carboxyatractyloside concentrations ranging between 0.7 and 1.5 nmol per mg protein. Carboxyatractyloside concentrations below and above this range increase the membrane potential without affecting significantly the rate of respiration. 4. Titration experiments aimed at comparing the effects of ADP, carboxyatractyloside and the uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, corroborate the conclusion that in heart mitochondria a major limiting factor in oxidative phosphorylation is the capacity of the respiratory chain.  相似文献   

17.
It has been shown recently that African catfish (Clarias gariepinus) spermatozoa possess relatively low ATP content and low adenylate energy charge (AEC). One of the possible explanations for this phenomenon is that the spermatozoa actively catabolize adenine nucleotides. A relatively high rate of such catabolism could then contribute to the low ATP concentration and low adenylate energy charge observed in the spermatozoa in vitro. To check this hypothesis, we investigated ATP content and adenine nucleotide catabolism in African catfish spermatozoa stored at 4 °C in the presence of glycine as an energetic substrate. Our results indicate that the storage of African catfish sperm at 4 °C in the presence of glycine causes time-dependent ATP depletion. In contrast to ATP, the AMP content increases significantly during the same period of sperm storage, while the ADP increases only slightly. Moreover, a significant increase of inosine and hypoxanthine content was also found. Hypoxanthine was accumulated in the storage medium, but xanthine was found neither in spermatozoa nor in the storage medium. It indicates that hypoxanthine is not converted to xanthine, probably due to lack of xanthine oxidase activity in catfish spermatozoa. Present results suggest that adenine nucleotides may be converted to hypoxanthine according to the following pathway: ATP→ADP→AMP (adenosine/IMP)→inosine→hypoxanthine. Moreover, hypoxanthine seems to be the end product of adenine nucleotide catabolism in African catfish spermatozoa. In conclusion, our results suggest that a relatively high rate of adenine nucleotide catabolism contributes to the low ATP concentration and low adenylate energy charge observed in African catfish spermatozoa in vitro.  相似文献   

18.
Knorpp C  Johansson M  Baird AM 《FEBS letters》2003,555(2):363-366
This study shows that the plant mitochondrial nucleoside diphosphate kinase (mNDPK) localizes to both the intermembrane space and to the mitochondrial inner membrane. We show that mNDPK is very firmly attached to the membrane. Co-immunoprecipitation experiments identified the adenine nucleotide translocator as an interaction partner. This is the first report showing a direct association between these two proteins, although previous studies have shown metabolic cooperation between them. Possible consequences for mitochondrial energy metabolism are discussed.  相似文献   

19.
The mechanism of CYP3A4-substrate interactions has been investigated using a battery of techniques including cysteine scanning mutagenesis, photoaffinity labeling, and structural modeling. In this study, cysteine scanning mutagenesis was performed at seven sites within CYP3A4 proposed to be involved in substrate interaction and/or cooperativity. Photolabeled CYP3A4 peptide adducts were further characterized by mass spectrometric analysis for each mutant after proteolytic digestion and isolation of fluorescent photolabeled peptides. Among the tryptic peptides of seven tested mutants, three photolabeled peptides of the F108C mutant, ECYSVFTNR (positions 97-105), VLQNFSFKPCK (positions 459-469), and RPCGPVGFMK (positions 106-115) were identified by MALDI-TOF-MS and nano-LC/ESI QTOF MS. The site of modification was further localized to the substituted Cys-108 residue in the mutant peptide adduct RPCGPVGFMK (positions 106-115) by nano-LC/ESI QTOF MS/MS. In summary, we described a potentially useful method to study P450 active sites using a combination of cysteine scanning mutagenesis and photoaffinity labeling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号