首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Examination of the interaction of a number of structurally related polycyclic aromatic hydrocarbons with the erythrocyte plasma membrane indicated that the presence and position of methyl groups on the lipophilic hydrocarbon nucleus determined whether the compound acted as an inhibitor of membrane function. 7,12-Dimethylbenz(a)anthracene, a potent carcinogen, acted as a noncompetitive inhibitor of membrane acetylcholinesterase. The inhibition depended on the anion composition of the buffer at the time of exposure of the cells to inhibitor, i.e., it was only manifest in the presence of an anion gradient. The temperature dependence of the intact cell enzyme in the presence of inhibitor was influenced by the temperature at which the compound was added prior to assay and may involve the perturbation of tightly associated lipids. Glucose exchange across the membrane was inhibited by the same compounds which inhibit acetylcholinesterase. The temperature dependence of the exchange was not grossly altered by the presence of 7,12-dimethylbenz(a)anthracene. The observed inhibition of two membrane functions by the polycyclic aromatic hydrocarbons does not correlate simply with their theoretical octanol/water partition coefficients, water solubilities, or ability to confer membrane stabilization against osmotic hemolysis. This demonstration of differential inhibition by compounds having the same overall hydrophobicity was unexpected and suggests a more complex mode of interaction with the cell membrane.  相似文献   

2.
Examination of the interaction of a number of structurally related polycyclic aromatic hydrocarbons with the erythrocyte plasma membrane indicated that the presence and position of methyl groups on the lipophilic hydrocarbon nucleus determined whether the compound acted as an inhibitor of membrane function. 7,12-Dimethylbenz(a)anthracene, a potent carcinogen, acted as a noncompetitive inhibitor of membrane acetylcholinesterase. The inhibition depended on the anion composition of the buffer at the time of exposure of the cells to inhibitor, i.e., it was only manifest in the presence of an anion gradient. The temperature dependence of the intact cell enzyme in the presence of inhibitor was influenced by the temperature at which the compound was added prior to assay and may involve the perturbation of tightly associated lipids. Glucose exchange across the membrane was inhibited by the same compounds which inhibit acetylcholinesterase. The temperature dependence of the exchange was not grossly altered by the presence of 7, 12-dimethylbenz(a)anthracene.The observed inhibition of two membrane functions by the polycyclic aromatic hydrocarbons does not correlate simply with their theoretical octanol/ water partition coefficients, water solubilities, or ability to confer membrane stabilization against osmotic hemolysis. This demonstration of differential inhibition by compounds having the same overall hydrophobicity was unexpected and suggests a more complex mode of interaction with the cell membrane.  相似文献   

3.
Phloretin is an inhibitor of anion exchange and glucose and urea transport in human red cells. Equilibrium binding and kinetic studies indicate that phloretin binds to band 3, a major integral protein of the red cell membrane. Equilibrium phloretin binding has been found to be competitive with the binding of the anion transport inhibitor, 4,4′-dibenzamido-2,2′-disulfonic stilbene (DBDS), which binds specifically to band 3. The apparent binding (dissociation) constant of phloretin to red cell ghost band 3 in 28.5 mM citrate buffer, pH 7.4, 25°C, determined from equilibrium binding competition, is 1.8 ± 0.1 μM. Stopped-flow kinetic studies show that phloretin decreases the rate of DBDS binding to band 3 in a purely competitive manner, with an apparent phloretin inhibition constant of 1.6 ± 0.4 μM. The pH dependence of equilibrium binding studies show that it is the charged, anionic form of phloretin that competes with DBDS binding, with an apparent phloretin inhibition constant of 1.4 μM. The phloretin binding and inhibition constants determined by equilibrium binding, kinetic and pH studies are all similar to the inhibition constant of phloretin for anion exchange. These studies suggest that phloretin inhibits anion exchange in red cells by a specific interaction between phloretin and band 3.  相似文献   

4.
Like phlorizin, two glycosidic esters of phlorizin, the 4-azido-2-nitrobenzoate (ANB-phlorizin) and the 2-nitrobenzoate (NB-phlorizin) were found to be effective inhibitors of SO42? equilibrium exchange at the outer but not at the inner membrane surface of the human erythrocyte ghost. After photolysis of ghost suspensions in the presence of extracellular ANB-phlorizin an irreversible inhibition of SO42? exchange was observed, while photolysis of intracellular ANB-phlorizin was without effect. After photolysis in the presence of extracellular or intracellular tritiated ANB-phlorizin gel electrophoresis of the labelled membranes revealed similar locations of binding. These findings suggest that the sidedness of action of ANB-phlorizin could not be related to inaccessibility of the inner membrane surface for the agent but that inhibition occurs via binding to fixed sites at the outer membrane surface that are not associated with a mobile carrier which crosses the membrane.  相似文献   

5.
A series of bis-[(m-hydroxyphenyl)trimethylammonium iodide] esters of polymethylenedicarbamic acids and a number of (m-hydroxyphenyl)trimethylammonium iodide esters of straight-chain N-alkylcarbamic acids have been examined as inhibitors of acetylcholinesterase from fly head. Evidence is presented suggesting that inhibition of acetylcholinesterase by the bis-carbamates is due to carbamoylation of the enzyme, as is generally thought to be the case with esters of N-alkylcarbamic acids. Inhibition is irreversible. The (m-hydroxyphenyl)trimethylammonium iodide ester of N-hexylcarbamic acid also inhibits fly head acetylcholinesterase irreversibly. There is therefore no need to implicate a second functional group in bis-carbamate esters to explain the irreversible inhibition of the enzyme. An unusual feature of the inhibition is that inhibition lines do not pass through 100% enzyme activity at t=0, except for rather low concentrations of inhibitor (<10mum for the octamethylene compound). Also, inhibition lines tend towards a maximum slope as inhibitor concentration is increased. The first observation indicates complex-formation, even in the presence of high concentrations of substrate, and by using measurements of inhibition at relatively high inhibitor concentrations, affinity constants K'(a) have been calculated. K'(a) varies from 0.1mum for the dodecamethylene compound to 10mum for the tetramethylene compound, in the presence of 3.75mm-acetylthiocholine, indicating high affinity for the enzyme. The second observation shows that, owing to this high affinity, the enzyme becomes saturated with inhibitor under the experimental conditions employed, and from the limiting slope values of the carbamoylation rate constant (k(2)) have been calculated. k(2) varies from 0.15min(-1) for the tetramethylene compound to 1min(-1) for the decamethylene compound. Variations of potency in this series are therefore mainly due to changes in affinity (100-fold) rather than in carbamoylation rate (sevenfold). The observation that large molecules may acylate the enzyme raises certain problems, which are discussed.  相似文献   

6.
An S-S cross-linking reagent, Cu2+-o-phenanthroline, increased the 36Cl-/Cl- exchange rate across the hog gastric vesicle membrane, which contains H,K-ATPase, but did not affect the 86Rb+/Rb+ exchange rate. The results show that closed Cl- conductance can be opened by S-S cross-linking. Gastric vesicles with opened Cl- conductance could take up H+ upon addition of MgATP without prolonged preincubation in a solution containing K+. Preincubation of gastric vesicles with picoprazole, which is a specific inhibitor of H,K-ATPase and binds to 100-kDa polypeptides of the enzyme, dose dependently inhibited opening of the Cl- conductance by Cu2+-o-phenanthroline, indicating that the Cl- conductance is part of the function of the H,K-ATPase. The effect of picoprazole was greater at alkaline pH than at acidic pH. Another H,K-ATPase inhibitor, 2-[2-(3,5-dimethyl-4-methoxy)-pyridylmethylsulfinyl] (5-methoxycarbonyl-6-methyl)-benzimidazole (H compound), had a similar but stronger effect on the Cl- conductance than that of picoprazole. A pungent ingredient of curry, allylisothiocyanate, caused similar pH-dependent inhibition to that of picoprazole. However, another substituted benzimidazole, omeprazole, did not inhibit Cl- conductance. Substituted benzimidazoles, such as picoprazole, H compound, and omeprazole, inhibited the H,K-ATPase activity progressively with a decrease in pH of the medium. This pH dependence was the reverse of that in inhibition of Cl- conductance, suggesting that the inhibitory site of Cl- conductance is different from that of the H,K-ATPase activity and that the conformational states of the two sites change in different ways with change in pH of the medium.  相似文献   

7.
The 2′,3′-dialdehyde of ADP, obtained by periodate oxidation of ADP, inhibited the hydrolytic activity of the purified Ca2+, Mg2+-activated ATPase of Escherichiacoli. In the initial stages of the reaction inhibition was due to the reaction of 1 mol inhibitor/active site. When non-specific labelling of amino groups by the dialdehyde was lowered by the simultaneous presence of 15 mM ATP in the reaction mixture, 3 mol “ATP-protectable” binding sites/mol ATPase were found. “ATP-protectable” binding of the dialdehyde was not observed when the hydrolytically inactive ATPase of an unc A mutant of E.coli was used although binding of the inhibitor to non-protected amino groups still occurred. This suggests that the mutant ATPase is unable to bind ATP or that the amino groups with which the dialdehyde reacts in the native enzyme are absent or masked.  相似文献   

8.
The binding of eosin-isothiocyanate (eosin-NCS) and iodoacetamido-eosin (IA-eosin) to band 3 proteins in the membrane of human erythrocytes is characterized by studying the effect of these probes on the anion transport system. Although the unbrominated fluorescein precursors do not affect anion transport, both eosin labels are strong inhibitors of sulphate exchange in intact erythrocytes. 50% inhibition is obtained by binding 4.7 · 105 or 6.0 · 105 molecules/cell for eosin-NCS and IA-eosin, respectively. Both eosin probes are irreversibly bound and occupy common binding sites with 4,4′-diisothiocyano-1,2-diphenyl-ethane-2,2′-disulfonic acid (H2DIDS), although other sites are labeled as well. The inhibition of anion transport is light independent and can therefore not be attributed to a photosensitizing action of the eosin probes. Both eosin derivatives, however, inactivate acetylcholinesterase upon illumination of air-equilibrated samples of hemoglobin-free labeled ghosts. The inactivation of the enzyme is accompanied by the formation of protein aggregates as visualized by polyacrylamide gel electrophoresis. These effects are not observed when intact erythrocytes are illuminated in the presence of eosin probes suggesting a protective effect of hemoglobin during the labeling procedure. Protection of ghosts from photo-oxidation is achieved by displacing air with argon. These results are discussed in relation to the use of these and similar probes to measure protein diffusion in membranes.  相似文献   

9.
Summary Chloride equilibrium exchange was measured in the presence of intracellular and extracellular urea, several different alkylureas and thiourea. Urea half-inhibited Cl exchange at about 2.5m, but the other, less polar analogs had significantly higher potencies; e.g., butylurea half-inhibited at about 60mm. Onset and reversal of inhibition occurred within less than 2 sec. The inhibition exhibited no obvious sigmoidal dependence on urea concentration, and at low concentrations dimethylurea was a noncompetitive inhibitor of Cl exchange. However, at higher concentrations the Dixon plots were curved upward and a Hill analysis of the dimethylurea data yielded a Hill coefficient of at least 1.5. When present on only one side of the membrane, the slowly penetrating thiourea inhibited Cl exchange with a higher potency from the outside of the cell. Cl/Br exchange was inhibited less under conditions of self-inhibition of anion exchange than in the absence of self-inhibition. These data indicate that the ureas inactivate the anion transporter by a reversible denaturation process, and that the function of the anion transport mechanism may be more sensitive to small perturbations of protein structure than are spectroscopically derived structural parameters.  相似文献   

10.
Structural consequences of antiarrhythmic drug interaction with erythrocyte membranes were analyzed in terms of resulting changes in the activity of membrane-associated acetylcholinesterase. When enzyme inhibitory effects of drugs were compared at concentrations producing an equivalent degree of erythrocyte antihemolysis, a number of distinct groupings emerged, indicating that the molecular consequences of drug-membrane interaction are not identical for all agents examined. Differences in drug-induced acetylcholinesterase inhibition in intact erythrocytes, erythrocyte membranes and a brain synaptic membrane preparation emphasized the role of membrane structural organization in determining the functional consequences of antiarrhythmic interaction in any given system. While the inhibitory actions of lidocaine, D-600 and bretylium in intact red cells were not altered by an increased transmembrane chloride gradient, enhanced enzyme inhibition by quinidine and propranolol was observed under these conditions. The diverse perturbational actions of these membrane-stabilizing antiarrhythmics observed here may be indicative of a corresponding degree of complexity in the mechanisms whereby substances modify the potential-dependent properties of excitable tissues.  相似文献   

11.
7-Deazahypoxanthine was found to be oxidised by cow's milk xanthine oxidase exclusively at carbon 2. The resulting 7-deazaxanthine is a strong inhibitor of the enzymatic reaction. This offers a possibility for determining the structural requirements of ligand binding separately for the first step. All the monomethyl isomers of 7-deazahypoxanthine were tested as probes by measuring their Km, Ki and V values. While the N-3-methyl and C-7-methyl isomers are still processed, the N-9-methyl and 6-O-methyl isomers are bound as inhibitors to the active site. The N-1-methyl compound is neither an inhibitor nor a substrate. This demonstrates that HN(1) and O = C(6) are essential for the binding. Replacement of O = C(6) by S = C(6) changes the substrate into a strong inhibitor (Ki = 9 microM), implying that the electron transfer to the enzyme is hindered. Methylation of the thioxo group (S =) reduces the inhibition significantly. In contrast to 7-deazahypoxanthine, 2-thioxo-7-deazaxanthine is an activator at concentrations below 87 microM and a partial competitive inhibitor above this concentration, which implies the presence of a second binding site.  相似文献   

12.
Lanthanum chloride (1 mM) inhibits the activity of acetylcholinesterasein vitro in the human erythrocyte membrane. Lineweaver-Burk analysis indicates that lanthanum chloride induced inhibition of acetylcholinesterase activity is competitive in nature. The Arrhenius plot shows that the transition temperature of erythrocyte membrane-bound acetylcholinesterase is significantly reduced in the presence of lanthanum chloride. These results suggest that lanthanum chloride increases the fluidity of the erythrocyte membrane and this may be a cause of inhibition of membrane-bound acetylcholinesterase activity.  相似文献   

13.
Hormone-sensitive lipase (HSL) plays an important role in the mobilization of free fatty acids (FFA) from adipocytes. The inhibition of HSL may offer a pharmacological approach to reduce FFA levels in plasma and diminish peripheral insulin resistance in type 2 diabetes. In this work, the inhibition of HSL by substituted 3-phenyl-5-alkoxy-1,3,4-oxadiazol-2-ones has been studied in vitro. 5-methoxy-3-(3-phenoxyphenyl)-1,3,4-oxadiazol-2(3H)-one (compound 7600) and 5-methoxy-3-(3-methyl-4-phenylacetamidophenyl)-1,3,4-oxadiazol-2(3H)-one (compound 9368) were selected as the most potent HSL inhibitors. HSL is inhibited after few minutes of incubation with compound 7600, at a molar excess of 20. This inhibition is reversed in the presence of an emulsion of lipid substrate. The reactivation phenomenon is hardly observed when incubating HSL with compound 9368. The molecular mechanism underlying the reversible inhibition of HSL by compound 7600 was investigated using high performance liquid chromatography and tandem mass spectrometry. The stoichiometry of the inhibition reaction revealed that specifically one molecule of inhibitor was bound per enzyme molecule. The inhibition by compound 7600 involves a nucleophilic attack by the hydroxy group of the catalytic Ser of the enzyme on the carbon atom of the carbonyl moiety of the oxadiazolone ring of the inhibitor, leading to the formation of covalent enzyme-inhibitor intermediate. This covalent intermediate is subsequently hydrolyzed, releasing an oxadiazolone decomposition product, carbon dioxide and the active HSL form. On the basis of this study, a kinetic model is proposed to describe the inhibition of HSL by compound 7600 in the aqueous phase as well as its partial reactivation at the lipid-water interface.  相似文献   

14.
During incubation of 2,4-dihydroxyoestrone with the 105000 X g supernatant of rat liver in the presence of S-adenosyl-[Me-14C]methionine, the formation of radioactive mono- as well as dimethyl ether derivatives was demonstrated. The products were identified as: 2,4-dihydroxyoestrone 2-methyl ether, 2,4-dihydroxyoestrone 3-methyl ether, 2,4-dihydroxyoestrone 4-methyl ether, 2,4-dihydroxyoestrone 2,3-dimethyl ether, 2,4-dihydroxyoestrone 2,4-dimethyl ether and 2,4-dihydroxyoestrone 3,4-dimethyl ether. The monomethyl ethers were the main products; within this group the 3-methyl ether of 2,4-dihydroxyoestrone was the main metabolite. Among the dimethyl ether derivatives, the 2,4-dihydroxyoestrone 2,3-dimethyl ether represented the quantitatively most important product. When 2,4-dihydroxyoestrone 2-methyl ether was incubated under the same conditions, 2,4-dihydroxyoestrone 2,3- as well as 2,4-dimethyl ether was formed. The 2,3-dimethyl ether was again the main metabolite. The incubation of 2,4-dihydroxyoestrone 4-methyl ether yielded the 2,4- and 3,4-dimethyl ethers, the first being the main product. In contrast, the 3-methyl ether of 2,4-dihydroxyoestrone was not further methylated by the catechol methyltransferase preparation. In further experiments, the effect of the pyrogalloloestrogen and its monomethyl ether derivatives on the enzymatic methylation of catecholamines was investigated. It was demonstrated that the methylation of adrenalin and dopamine was competitively inhibited by 2,4-dihydroxyoestrone and the 2,4-dihydroxyoestrone monomethyl ethers. Only a weak inhibitory effect was observed with the 3- and 4-monomenthyl ethers (Ki values 200 and 160muM). The unsubstituted pyrogalloloestrogen produced a marked inhibition (Ki value 50muM), but the strongest inhibition was found with the 2-monomethyl ether of 2,4-dihydroxyoestrone (Ki value 14muM). The extent of inhibition caused by the addition of the 2-monomethyl ether of 2,4-dihydroxyoestrone was thereby in the same range as the inhibition caused by pyrogallol and the catecholoestrogens.  相似文献   

15.
1. The inhibition of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) by compounds containing trifluoromethyl-carbonyl groups was investigated and related to the effects observed with structurally similar, non-fluorinated chemicals. 2. Compounds that in aqueous solution readily form hydrates inhibit acetylcholinesterase in a time-dependent process. On the other hand non-hydrated, carbonyl-containing compounds showed rapid and reversible, time-independent enzyme inactivation when assayed under steady state conditions. 3. m-N,N,N-Trimethylammonium-acetophenone acts as a rapid and reversible, time-independent, linear competitive inhibitor of acetylcholinesterase (Ki = 5.0 . 10(-7) M). 4. The most potent enzyme inhibitor tested in this series was N,N,N,-trimethylammonium-m-trifluoroacetophenone. It gives time-dependent inhibition and the concentration which inactivates eel acetylcholinesterase to 50% of the original activity after 30 min exposure is 1.3 . 10(-8) M. The bimolecular rate constant for this reaction is 1.8 . 10(6) 1 . mol-1 . min-1. The enzyme-inhibitor complex is very stable as the inhibited enzyme after 8 days of dialysis is reactivated to 20% only. This compound represents a quasi-substrate inhibitor of acetylcholinesterase.  相似文献   

16.
Multiconfiguration thermodynamic integration was used to determine the relative binding strength of tacrine and 6-chlorotacrine by Torpedo californica acetylcholinesterase. 6-Chlorotacrine appears to be bound stronger by 0.7 ± 0.4 kcal/mol than unsubstituted tacrine when the active site triad residue His-440 is deprotonated. This result is in excellent agreement with experimental inhibition data on electric eel acetylcholinesterase. Electrostatic Poisson-Boltzmann calculations confirm that order of binding strength, resulting in ΔG of binding of −2.9 and −3.3 kcal/mol for tacrine and chlorotacrine, respectively, and suggest inhibitor binding does not occur when His-440 is charged. Our results suggest that electron density redistribution upon tacrine chlorination is mainly responsible for the increased attraction potential between protonated inhibitor molecule and adjacent aromatic groups of Phe-330 and Trp-84. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
2′,2′-Difluoro-2′-deoxycytidine (dFdC, gemcitabine) is a cytidine analogue active against several solid tumor types, such as ovarian, pancreatic and non-small cell lung cancer. The compound has a complex mechanism of action. Because of the structural similarity of one metabolite of dFdC, dFdUMP, with the natural substrate for thymidylate synthase (TS) dUMP, we investigated whether dFdC and its deamination product 2′,2′-difluoro-2′-deoxyuridine (dFdU) would inhibit TS. This study was performed using two solid tumor cell lines: the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000. The specific TS inhibitor Raltitrexed (RTX) was included as a positive control. Using the in situ TS activity assay measuring the intracellular conversion of [5-3H]-2′-deoxyuridine or [5-3H]-2′-deoxycytidine to dTMP and tritiated water, it was observed that dFdC and dFdU inhibited TS. In A2780 cells after a 4 h exposure to 1 μM dFdC tritium release was inhibited by 50% but did not increase after 24 h, Inhibition was also observed following dFdU at 100 μM. No effect was observed in the dFdC-resistant cell line AG6000; in this cell line only RTX had an inhibitory effect on TS activity. In the A2780 cell line RTX inhibited TS in a time dependent manner. In addition, DNA specific compounds such as 2′-C-cyano-2′-deoxy-1-beta-D-arabino-pentafuranosylcytosine and aphidicoline were utilized to exclude DNA inhibition mediated down regulation of the thymidine kinase.Inhibition of the enzyme resulted in a relative increase of mis-incorporation of [5-3H]-2′-deoxyuridine into DNA. In an attempt to elucidate the mechanism of in situ TS inhibition the ternary complex formation and possible inhibition in cellular extracts of A2780 cells, before and after exposure to dFdC, were determined. With the applied methods no proof for formation of a stable complex was found. In simultaneously performed experiments with 5FU such a complex formation could be demonstrated. However, using purified TS it was demonstrated that dFdUMP and not dFdCMP competitively inhibited TS with a Ki of 130 μM, without ternary complex formation. In conclusion, in this paper we reveal a new target of dFdC: thymidylate synthase.  相似文献   

18.
Band 3 protein, extracted from human erythrocyte membranes by Triton X-100, was recombined with egg lecithin/cholesterol mixtures to form small unilamellar vesicles at a yield of 15–20%. These systems exhibited sulfate fluxes which were inhibitable by stilbene disulfonates and other inhibitors. Maximal inhibition could only be obtained when inhibitors were present at both membrane surfaces. Inhibitor constants I50 were higher than in the native membrane. Quantitatively, transport function was retained at least 60%, as related to the amount of protein involved. Sulfate transport in the recombinates resembled transport in the native membrane with respect to temperature dependence (Ea = 29?32 kcal/mol), pH dependence between pH 6.5 and 7.8, and the relationship between net and exchange fluxes. In contrast to the native cell, concentration dependence was linear up to 80 mM sulfate, which may be indicative of a lowered affinity for the substrate. Lactate transport in these systems, although substantial, was insensitive to stilbene disulfonates as well as to mercurials, indicating that band 3 is not involved in the specific monocarboxylate transfer in the erythrocyte. Anion transport in band 3-lipid recombinates was insensitive to cholesterol between 0 and 27 mol%. Treatment with proteases, while not affecting transport per se, abolished sensitivity to stilbene disulfonate inhibitors. These observations indicate a number of disturbances of band 3 after recombination, in spite of a preservation of the major transport properties.  相似文献   

19.
1. At different levels of the holding potential on neuron R2 membrane in the Aplysia depilans abdominal ganglion, dopamine injected intracellularly increases the amplitude of both inward and outward currents recorded in response to the application of acetylcholine (ACh) to the ganglion surface. 2. The addition of dopamine to the external perfused solution produces generation of inward currents and a decrease in the cell response to the ACh. 3. The enhancing effect of injected dopamine on ACh responses is retained after inhibition of acetylcholinesterase (AChE) by a specific organophosphorous inhibitor, compound Gd-42. 4. The modulating effect of injected dopamine on ACh responses is discussed in terms of the existence of intracellular receptors of neurotransmitters in the differentiated cells.  相似文献   

20.
Compound YS 035 [NN-bis-(3,4-dimethoxyphenethyl)-N-methylamine] is a new synthetic compound capable of inhibiting Ca2+ uptake by different cells. The inhibition of Ca2+ uptake by muscle cells isolated from chicken embryo is dose-dependent in the compound YS 035 concentration range 10-30 microM. The new compound also inhibits Ca2+ entry into rat brain synaptosomes and less effectively into baby-hamster kidney cells. Compound YS 035 partially inhibits the slow Ca2+ release induced by Ruthenium Red and the rapid Na+-dependent efflux from heart mitochondria. The inhibition of the Na+/Ca2+ exchange appears to be of a non-competitive type with an apparent Ki of 28 microM. The new Ca2+ antagonist totally inhibits the Ca2+ efflux from liver mitochondria induced by Ruthenium Red, but it does not affect the release induced by uncoupler, respiratory inhibitor or chelator, nor the mitochondrial ATP synthesis and membrane potential. The properties shown by the new compound indicate it to be a Ca2+ antagonist and a useful tool for studies on the mitochondrial Ca2+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号