首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach   总被引:1,自引:0,他引:1  
The effects of nano-TiO2 (rutile) on the photochemical reaction of chloroplasts of spinach were studied. The results showed that when spinach was treated with 0.25% nano-TiO2, the Hill reaction, such as the reduction rate of FeCy, and the rate of evolution oxygen of chloroplasts was accelerated and noncyclic photophosphorylation (nc-PSP) activity of chloroplasts was higher than cyclic photophosphorylation (c-PSP) activity, the chloroplast coupling was improved and activities of Mg2+-ATPase and chloroplast coupling factor I (CF1)-ATPase on the thylakoid membranes were obviously activated. It suggested that photosynthesis promoted by nano-TiO2 might be related to activation of photochemical reaction of chloroplasts of spinach.  相似文献   

2.
The ATPase activity of the chloroplast coupling factor 1 (CF1) isolated from the green alga Dunaliella is completely latent. A brief heat treatment irreversibly induces a Ca2+ -dependent activity. The Ca2+ dependent ATPase activity can be reversibly inhibited by ethanol, which changes the divalent cation dependency from Ca2+ to Mg2+. Both the Ca2+ -dependent and Mg2+ -dependent ATPase activities of heat-treated Dunaliella CF1 are inhibited by monospecific antisera directed against Chlamydomonas reinhardi CF1. However, when assayed under identical conditions, the Ca2+ -dependent ATPase activity is significantly more sensitive to inhibition by the antisera than is the Mg2+ -dependent activity. These data are interpreted as indicating that soluble Dunaliella CF1 can exist in a variety of conformations, at least one of which catalyzes a Ca2+ -dependent ATPase and two or more of which catalyze an Mg2+ -dependent ATPase.  相似文献   

3.
(1) Octylglucoside stimulates an Mg2+-specific ATPase activity with CF1 preparations from different higher plants and the alga Chlamydomonas reinhardii. (2) Tentoxin at high concentrations (10?4–10?3 M) in the presence of octylglucoside further stimulates the Mg2+-ATPase activity of CF1 from tentoxin-sensitive species and inhibits the activity of CF1 from tentoxin-resistant species. The extent of tentoxin stimulation and inhibition varies among species. A maximal stimulation of over 2-fold was obtained with spinach CF1 and a maximal inhibition of 50% was obtained with C. reinhardii CF1. In Nicotiana spp., tentoxin had only a marginal effect on the Mg2+-ATPase activity induced by octylglucoside.  相似文献   

4.
Kahn JS 《Plant physiology》1984,75(2):410-413
The recently described method for the activation of the Ca2+-ATPase of coupling factor 1 from chloroplasts (CF1) of Euglena gracilis by low pH occurs optimally in high concentrations of NaCl, and is unaffected by the acid used to lower the pH to 4.5. Activation is inhibited by light, and this effect can be reversed by the presence of NADP+, ADP + inorganic phosphate, or an uncoupler. There appears to be no difference between the activities in the soluble and the particulate phases, and they seem to represent the same enzyme. The response of the activation process to light and to effectors of electron transport and phosphorylation indicates a possible physiological role for the acid activation of Euglena CF1.  相似文献   

5.
(1) Photophosphorylation, Ca2+-ATPase and Mg2+-ATPase activities of isolated chloroplasts were inhibited 55--65% when the chemical potential of water was decreased by dehydrating leaves to water potentials (psi w) of --25 bars before isolation of the plastids. The inhibition could be reversed in vivo by rehydrating the leaves. (2) These losses in activity were reflected in coupling factor (CF1) isolated from the leaves, since CF1 from leaves with low psi w had less Ca2+-ATPase activity than control CF1 and did not recouple phosphorylation in CF1-deficient chloroplasts. In contrast, CF1 from leaves having high psi w only partially recoupled phosphorylation by CF1-deficient chloroplasts from leaves havig low psi w. This indicated that low psi w affected chloroplast membranes as well as CF1 itself. (3) Coupling factor from leaves having low psi w had the same number of subunits, and the same electrophoretic mobility, and could be obtained with the same yields as CF1 from control leaves. However, direct measurements of fluorescence polarization, ultraviolet absorption, and circular dichroism showed that CF1 from leaves having low psi w differed from control CF1. The CF1 from leaves having low psi w also had decreased ability to bind fluorescent nucleotides (epsilon-ATP and epsilon-ADP). (4) Exposure of isolated CF1 to low psi w in vitro by preincubation in sucrose-containing media inhibited the Ca2+-ATPase activity of the protein in subsequent assays without sucrose. Inclusion of 5 or 10 mM Mg2+ in the preincubation medium markedly inhibited Ca2+-ATPase activity. (5) These results show that CF1 undergoes changes in cells which alter its phosphorylating ability. Since low cell psi w changed the spectroscopic properties but not other protein properties of CF1, the changes were most likely caused by altered confurn, photophosphorylation. The inhibition of ATPase activity in CF1 in vitro at low psi w and high ion concentration mimicked the change in activity seen in vivo.  相似文献   

6.
《BBA》1986,850(2):294-299
Using rapid micromethods for chloroplast isolation and ATPase solubilization from preilluminated leaves, the deactivation of the proton-ATPase after different treatments was compared. The rate of decay of the ‘in vivo’ light-activated membrane-bound Mg2+-ATPase was highly dependent on temperature. However, the soluble Ca2+-ATPase, extracted from the temperature-inactivated membrane-bound ATPase, was active. Coupling factor 1 with a manifest and stable Ca2+-ATPase activity was also solubilized from chloroplasts activated by light in whole leaves and deactivated after chloroplast isolation with gramicidin D. Deactivation of the proton-ATPase in isolated chloroplasts was only associated with the dissipation of the proton gradient. Reaction of the accessible sulfhydryl groups of the membrane-bound proton-ATPase with iodoacetamide prevent inactivation of the enzyme by oxidants. However, the iodoacetamide treatment had not effect on the temperature-dependent decay. The rate of deactivation of the proton-ATPase in whole leaves was similar for both membrane-bound and soluble ATPases. Thus, the oxidation process may play an important role in physiological conditions.  相似文献   

7.
SolubilizedRhodospirillum rubrum RrF1-ATPase, depleted of loosely bound nucleotides, retains 2.6 mol of tightly bound ATP and ADP/mol of enzyme. Incubation of the depleted RrF1 with Mg2+-ATP or Mg2+-AMP-PNP, followed by passage through two successive Sephadex centrifuge columns, results in retention of a maximal number of 4 mol of tightly bound nucleotides/mol of RrF1. They include 1.5 mol of nonexchangeable ATP, whereas all tightly bound ADP is fully exchangeable. A similar retention of only four out of the six nucleotide binding sites present on CF1 has been observed after its passage through one or two centrifuge columns. These results indicate that the photosynthetic, unlike the respiratory, F1-ATPases have fasterk off constants for two of the Mg-dependent nucleotide binding sites. This could be the reason for the tenfold lower Mg2+ than Ca2+-ATPase activity observed with native RrF1, as with -depleted, activated CF1. An almost complete conversion of both RrF1 and CF1 from Ca2+- to Mg2+-dependent ATPases is obtained upon addition of octylglucoside, at concentrations below its CMC, to the ATPase assay medium. Thus, octylglucoside seems to affect directly the RrF1 and CF1 divalent cation binding site(s), in addition to its proposed role in relieving their inhibition by free Mg2+ ions. The RrF1-ATPase activity is 30-fold more sensitive than CF1 to efrapeptin, and completely resistant to either inhibition or stimulation by the CF1 effector, tentoxin. Octylglucoside decreases the inhibition by efrapeptin and tentoxin, but exposes on CF1 a low-affinity, stimulatory site for tentoxin.Abbreviations: CF1, EcF1, MF1, and TF1, the soluble F1-ATPase from chloroplasts, PE. coli, mitochondria,R. rubrum, and the thermophilic bacterium PS3, respectively: AMP-PNP, adenylyl-, -imidodiphosphate; CMC, critical micellar concentration; DTT, dithiothreitol, LDAO, lauryl dimethylamine oxide.Dedicated to Professor Achim Trebst in honor of this 65th birthday.  相似文献   

8.
The interaction between sulfite, an efficient Mg2+-dependent F1-ATPase activator, and chloroplast CF1-ATPase was studied. The sulfite anion was shown to inhibit ADP and ATP binding to the noncatalytic sites of CF1. The stimulating activity of sulfite persists when all noncatalytic sites are nucleotide-occupied. Phosphate, a competing candidate for binding to CF1 catalytic sites, suppresses this activity. These results support the suggestion that the stimulation of Mg2+-dependent ATPase activity of CF1 is caused by sulfite binding to its catalytic sites.  相似文献   

9.
H. Strotmann  H. Hesse  K. Edelmann 《BBA》1973,314(2):202-210
Repeated washes of isolated chloroplasts with dilute sodium pyrophosphate solution results in the removal of carboxydismutase and some minor proteins from the thylakoid membranes. A subsequent treatment of the membranes with hypertonic sucrose solution yields pure coupling factor CF1 in the supernatant. Purity of the protein was demonstrated by disc electrophoresis.The amount of CF1 protein liberated was quantitatively determined. The percentage of CF1 removed by this treatment was calculated from the Ca2+-dependent ATPase activity retained at the thylakoid membranes. From these data the total CF1 content of chloroplasts was calculated. An average value of 0.42 mg CF1 protein/mg chlorophyll was obtained. Based on a molecular weight for CF1 of 326000 (see Farron, F. (1970) Biochemistry 9, 3823–3828), a ratio of 1 mole CF1 per 860 moles chlorophyll was computed.  相似文献   

10.
The regulatory effects of malate on chloroplast Mg2+-ATPase were investigated and the mechanism was discussed. Malate stimulated methanol-activated membrane-bound and isolated CF1 Mg2+-ATPase activity. The subunit of CF1 may be involved in malate regulation of the enzyme function. Modification of subunit at one site of the peptide by NEM may affect malate stimulation of ATPase while at another site may have no effect. The effect of malate on the Mg2+-ATPase was also controlled by the Mg2+/ATP ratio in the reaction medium. The enhancing effect of malate on Mg2+-ATPase activity depended on the presence of high concentrations of Mg2+ in the reaction mixture. Kinetic study showed that malate raised the Vmax of catalysis without affecting the Km for Mg2+ ATP. The experiments imply that the stimulation of Mg2+-ATPase by malate is probably correlated with the Pi binding site on the enzyme. The regulation of ATPase activity by malate in chloroplasts may be relevant to its function in vivo.Abbreviations CF1 chloroplast coupling factor 1 - CF1 (-) and CF1 (-) CF1 deficient in the and subunit - MF1 mitochondria coupling factor 1 - NEM N-ethylmaleimide - PMS phenazine methosulfate - OG n-octyl--d-glucopyranoside  相似文献   

11.
Adenosine triphosphatase activity of tobacco leaf chloroplasts in the dark was measured, using leaves of different age as determined by the position of the leaves along the stem. The activity of the chloroplast preparations strongly decreased with age, regardless of the addition of Mg2+ or Ca2+. Opposite effects of Mg2+ and Ca2+ on the activity of the chloroplasts were noted in experiments where different ratios of Mg2+/Ca2+ were applied. They were related to the age of the leaves, Ca2+ strongly stimulated the activity of the preparations from old leaves but was practically without effect in young, just expanded leaves. Mg2+ slightly stimulated the activity from old leaves while it invariably inhibited the hydrolytic activity of preparations from young leaves.  相似文献   

12.
A fifteen minute incubation of spinach chloroplasts with the divalent Ca2+ chelator, EGTA, in concentrations 50–250 μM, inhibits electron transport through both photosystems. All photosystem II partial reactions, including indophenol, ferricyanide and the DCMU-insensitive silicomolybdate reduction are inhibited from 70–100%. The photosystem II donor reaction, diphenyl carbazide → indophenol, is also inhibited, indicating that the inhibition site comes after the Mn2+ site, and that the first Ca2+ effect noted (site II) is not on the water oxidation enzyme, as is commonly assumed, but between the Mn2+ site and plastoquinone A pool. The other photosystem II effect of EGTA (Ca2+ site I), occurs in the region between plastoquinone A and P700 in the electron transport chain of chloroplasts. About 50% inhibition of the reaction ascorbate + TMPD → methyl viologen is given by incubation with 200 μM EGTA for 15 min. Ca2+ site II activity can be restored with 20 mM CaCl2. Ca2+ site I responds to Ca2+ and plastocyanin added jointly. More than 90% activity in the ascorbate + TMPD → methylviologen reaction can be restored. Various ways in which Ca2+ ions could affect chloroplast structure and function are discussed. Since EGTA is more likely to penetrate chloroplast membranes than EDTA, which is known to remove CF1, the coupling factor, from chloroplast membranes, and since Mg2+ ions are ineffective in restoring activity, it is concluded that Ca2+ may function in the electron transport chain of chloroplasts in a hitherto unsuspected manner.  相似文献   

13.
Removal of coupling factor protein (CF1) from spinach thylakoid membranes results in an enhancement of proton permeability but has no effect on chloride or potassium permeability. Anion permeability was measured by the rate of thylakoid packed volume changes. Potassium permeability was monitored by turbidity changes, packed thylakoid volume changes and ion flux studies using 86Rb+ as a tracer. 45Ca2+ was used to measure divalent cation fluxes. CF1-depleted chloroplasts had an unaltered rate of Ca2+ uptake, but the rate of Ca2+ efflux appeared to be increased. Calcium efflux rates could also be increased by the addition of a proton specific uncoupler, FCCP.  相似文献   

14.
We investigated responses of chloroplasts from flag leaves of a newly-developed super-high-yield rice (Oryza sativa L.) hybrid LiangYouPeiJiu (LYPJ) to water stress (withholding irrigation) during the grain-filling period. In the early stage of water stress (0–6 d) only the activity of Hill reaction was inhibited, whereas activities of photophosphorylation and Ca2+-ATPase, and ATP content were increased and peaked in the day 6 of withholding irrigation. In the late stage of water stress (6-12 d), the activities of photosynthetic O2 evolution, Hill reaction, photophosphorylation, and Ca2+- ATPase, and ATP content were significantly reduced. The membrane lipid content was sharply decreased, especially of sulfoquinovosyl-diacylglycerol (SQDG) and phosphatidylglycerol (PG). The changes in the ultrastructure of chloroplasts included mainly a decrease in number of grana and increase in number of osmiophilic granules.  相似文献   

15.
We have compared effects of dimethylsulfoxide (Me2SO) and two polyols on the Ca2+-ATPase purified from human erythrocytes. As studied under steady-state conditions over a broad solute concentration range and temperature, Me2SO, glycerol, and xylitol do not inhibit the Ca2+-ATPase activity; this is in contrast to numerous other organic solutes that we have investigated. Under specific experimental conditions, Me2SO (but not glycerol) substantially increases Ca2+-ATPase activity, suggesting a possible facilitation of enzyme oligomerization. The activation is more pronounced at low Ca2+ concentrations. In contrast to glycerol, Me2SO shows no protective effect on enzyme structure as assessed by determining residual Ca2+-ATPase activity after exposing the enzyme to thermal denaturation at 45°C. Under these conditions several other organic solutes strongly enhance the denaturating effect of temperature. Because of the temperature dependence of its effect on the Ca2+-ATPase activity we believe that Me2SO activates the Ca2+-ATPase by indirect water-mediated interactions.  相似文献   

16.
Dark-induced aging of detached primary leaves of 11-day-old barley seedlings brings about a significant decline in the rates of ferricyanide [Fe(CN)6]3? reduction and photophosphorylations of isolated chloroplasts. Ferricyanide-supported noncyclic photophosphorylation is somewhat more susceptible to leaf aging than phenazine methosulfate (PMS)-supported cyclic phosphorylation. Non-latent membrane-bound adenosine triphosphatase (ATPase) and ribulosediphosphate carboxylase (RuDPCase) lose about half of their initial activities after 24 h, while during this period the electron transport and photophosphorylation activities are much less affected. Also, the loss of RuDPCase is almost complete, while chloroplasts still exhibit a significant level of [Fe(CN)6]3? reduction and photophosphorylations after 7 days of dark incubation. This would suggest that the enzymatic dark reactions are more sensitive to aging stress than the primary photochemical reactions of chloroplasts. Studies on the effect of divalent cations such as Mg2+ and Ca2+ on non-latent ATPase activity revealed that the dark stressed aging of detached leaves brings about a time dependent alteration in the response of this enzyme to Mg2+, but not to Ca2+. The former showed inhibitory as well as stimulatory response, whereas the latter always caused the usual stimulation. Addition of kinetin (50 μM) ensured retention of [Fe(CN)6]3? reduction, photophosphorylations and RuDPCase activity in chloroplasts during leaf aging, but it failed to preserve the initial loss in the activity of the non-activated membrane-bound ATPase.  相似文献   

17.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

18.
D. Bar-Zvi  N. Shavit 《BBA》1984,765(3):340-346
3′-O-(4-benzoyl)benzoyl ADP (BzADP) acts as a reversible inhibitor of the chloroplast coupling factor 1 ATPase (CF1) when incubated with the enzyme in the dark. The Vmax of ATP hydrolysis is decreased and the kinetics of the reaction are altered from noncooperative to cooperative with respect to ATP. Photoactivation of the benzophenone group in BzADP by irradiation with ultraviolet light (366 nm) results in the covalent binding of BzADP to the enzyme and inactivation of its enzymic activity. Polyacrylamide gel electrophoresis of CF1-ATPase in the presence of sodium dodecyl sulfate shows that the analog is bound primarily to the enzyme's β subunit. Complete inactivation of the activated CF1-ATPase occurs upon covalent binding of 2.45 mol BzADP/mol CF1. Binding of BzADP and inactivation of the ATPase are prevented if ADP, but not ATP, is present during the photoactivation step. The presence of Ca2+ during irradiation enhances the rate of BzADP covalent binding as well as the rate of inactivation of the enzyme.  相似文献   

19.
Ca2+-ATPase in the peribacteroid membrane (PBM) of symbiosomes isolated from Vicia faba root nodules was characterized in terms of its hydrolytic and transport activities. Both activities were found to be pH-dependent and exhibit pH optimum at pH 7.0. Translocation of Ca2+ through the PBM by the Ca2+-ATPase was shown to be fueled by ATP and other nucleotide triphosphates in the following order: ATP?>?ITP???GTP???UTP???CTP, the K m of the enzyme for MgATP being about 100 μM. Ca-dependent ITP-hydrolytic activity of symbiosomes was investigated in the presence of the Ca-EGTA buffer system and showed the affinity of PBM Ca2+-ATPase for Ca2+ of about 0.1 μM. The transport activity of Ca2+-ATPase was inhibited by erythrosin B as well as orthovanadate, but markedly stimulated by calmodulin from bovine brain. These results allowed us to conclude that this enzyme belongs to IIB-type Ca2+-ATPases which are present in other plant membranes.  相似文献   

20.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号