首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amphipathic fluorescence probe, 2-p-toluidinonaphthalene-6-sulphonate has been used to investigate the surface electrical properties of chloroplast thylakoid membranes. The fluorescence yield of 2-p-toluidinonaphthalene-6-sulphonate in aqueous solution increases on addition of hypotonically shocked chloroplast, and the emission maximum shifts towards the blue to 440 nm, although the emission spectrum is somewhat distorted by chloroplast pigment absorption. The intensity of 2-p-toluidinonaphthalene-6-sulphonate fluorescence is further increased on adding salts to the membrane suspension, and changes of greater than 100% are routinely observed. Similar observations have also been made with soya bean phospholipid (azolectin) liposomes. The magnitude of the fluorescence increase is dependent on membrane concentration, being more pronounced at high surface area/suspending volume ratios. The effect of salt addition appears to be that of shielding the fixed negative charges on the membrane surface, thus increasing the fraction of 2-p-toluidinonaphthalene-6-sulphonate molecules at the surface, where the 2-p-toluidinonaphthalene-6-sulphonate has a higher fluorescence yield than in free aqueous solution. This concept is supported by the fact that the effectiveness of salts in increasing 2-p-toluidinonaphthalene-6-sulphonate fluorescence is as predicted by classical electrical double layer theory: governed mainly by the charge carried by the cation with an order of effectiveness C3+ greater than C2+ greater than C+, and not by the chemical nature of the cation or by the nature of its co-ion. It has been argued that the chlorophyll fluorescence yield, controlled by the cation composition of the suspending medium follows the total diffusible positive charge density at the thylakoid membrane surface (Barber, J., Mills, J. and Love, A. (1977) Febs. Lett. 74, 174--181). Although the cation induced 2-p-toluidinonaphthalene-6-sulphonate and chlorophyll fluorescence yield changes show similar characteristics, there are also distinct differences between the two phenomena particularly when cations are added to chloroplasts initially suspended in a virtually cation-free medium. Therefore it is concluded that although both 2-p-toluidinonaphthalene-6-sulphonate and chlorophyll fluorescence yields are governed by the electrical properties of the thylakoid membrane surface, the mechanism controlling their cation sensitivity is not the same.  相似文献   

2.
3.
H.Y. Nakatani  J. Barber  M.J. Minski 《BBA》1979,545(1):24-35
Thylakoid membranes isolated from peas have been subjected to ionic analyses using the technique of neutron activation. This has allowed the analyses of K+, Na+, Mg2+, Ca2+ and Cl? to be measured simultaneously on the same sample. By varying the ionic composition of the suspending medium it has been shown that these chloroplast membranes have no obvious chemical specificity for the inorganic cations studied and that the major controlling factor is the electrostatic neutralization of the surface negative charges. In agreement with the Gouy-Chapman theory and for the conditions used, divalent cations were preferentially attracted to the membrane surface. This finding, together with the ionic analysis of the unwashed thylakoids and of isolated intact chloroplasts, indicated that the major physiological surface cation is Mg2+ and that K+ is probably the main inorganic cation of the stroma. This conclusion is discussed in terms of counterion movement in response to light induced proton pumping at the thylakoid membrane.  相似文献   

4.
We have investigated the influence of chloroplast organization on the nature of chemical reductive titrations of Photosystem II fluorescence decay kinetics in spinach chloroplasts. Structural changes of the chloroplast membrane system were induced by varying the ionic environment of the thylakoids. A single-photon timing system with picosecond resolution monitored the kinetics of the chlorophyll a fluorescence emission. At all ionic concentrations studied, we have observed biphasic potentiometric titration curves of fluorescence yield; these have been interpreted to be suggestive of electron acceptor Q heterogeneity (Karukstis, K.K. and Sauer, K. (1983) Biochim. Biophys. Acta 722, 364–371; Cramer, W.A. and Butler, W.L. (1969) Biochim. Biophys. Acta 172, 503–510). A direct relation is observed between the Em value of the low-potential component of Q and the Mg2+ concentration of the chloroplast suspending medium. We have attributed these midpoint potential variations to the thylakoid structural rearrangements involved in cation-regulated grana stacking. Ionic effects on the fluorescence decay kinetics at the redox transitions are discussed in terms of the heterogeneity of Photosystem II units (α- and β-centers) and the mechanism of deexcitation at a closed reaction center (fluorescence or nonradiative decay).  相似文献   

5.
Experiments are presented to show that the phosphorylation of the light-harvesting chlorophyll ab-protein complex (LHC) induces structural reorganisation within the thylakoid membrane in response to the introduction of additional negative surface charges. The effect of cations of different valency on chlorophyll fluorescence measurements indicates that LHC-phosphorylation-induced reorganisation involves a change in the electrostatic screening capability of the added cation. At intermediate levels of cations (e.g., 1 or 2 mM Mg2+), which substantially stack non-phosphorylated membranes, it was found that membrane phosphorylation caused considerable unstacking as monitored by light scattering and electron microscopy. Concomitant with this was a large decrease in chlorophyll fluorescence indicative of randomisation of chlorophyll protein complexes which would result in an increase in energy transfer between the photosystems as well as an absorption cross-section change. At higher concentrations (e.g., above 5 mM Mg2+) a persistent ATP-induced decrease in chlorophyll fluorescence has been attributed to the displacement of charged phosphorylated LHC from the appressed granal to the non-appressed stromal lamellae, thus decreasing the absorption cross-section of Photosystem II. Under these circumstances only a small degree of unstacking was detected by light scattering and measurements of the percentage of thylakoid length which is stacked to form grana. However, when considered on a surface area basis, the structural changes observed can qualitatively account for the magnitude of the chlorophyll fluorescence quenching due to the lateral diffusion of LHC.  相似文献   

6.
H.Y. Nakatani  J. Barber  J.A. Forrester 《BBA》1978,504(1):215-225
1. Particle microelectrophoresis mobility studies have been conducted with chloroplast thylakoid membranes and with isolated intact chloroplasts.2. The pH dependence of the electrophoretic mobility indicated that at pH values above 4.3 both membrane systems carry a net negative charge.3. Chemical treatment of thylakoids has shown that neither the sugar residues of the galactolipids in the membrane nor the basic groups of the membrane proteins having pK values between 6 and 10 are exposed at the surface.4. However, treatment with 1-ethyl-3(3-dimethylaminopropyl)carbodiimide, together with glycine methyl ester, neutralized the negative charges on the thylakoid membrane surface indicating the involvement of carboxyl groups which, because of their pH sensitivity, are likely to be the carboxyl groups of aspartic and glutamic acid residues.5. The nature of the protein giving rise to the negative surface charges on the thylakoids is not known but is shown not to involve the coupling factor or the light harvesting chlorophyl achlorophyll bpigment · protein complex.6. No significant effect of light was observed on the electrophoretic mobility of either thylakoids or intact chloroplasts.7. The striking difference in the ability of divalent and monovalent cations to screen the surface charges was demonstrated and explained in terms of the Gouy-Chapman theory.8. Calculations of the ζ-potentials for thylakoid membranes gave values for the charge density at the plane of shear to be in the region of one electronic charge per 1500–2000 Å2.9. The significance of the results is discussed in terms of cation distribution in chloroplasts and the effect of cations on photosynthetic phenomena.  相似文献   

7.
Trypsin digestion of photosynthetic membranes isolated from spinach (Spinacia oleracea L.) leaves eliminates the cation stimulation of chlorophyll fluorescence. High concentrations of cations protect the fluorescence yield against trypsin digestion, and the cation specificity for this protection closely resembles that required for the stimulation of fluorescence by cations. Trypsin digestion reverses cation-induced thylakoid stacking, and the time course of this effect seems to parallel that of the reversal of cation fluorescence. High concentrations of cations protect thylakoid stacking and cation-stimulated fluorescence alike. The cation stimulation of photosytem II photochemistry remains intact after trypsinization has reversed both cation-induced thylakoid stacking and fluorescence yield. It is concluded that cation-stimulated fluorescence yield, and not the cation stimulation of photosystem II photochemistry, is associated with thylakoid membrane stacking.  相似文献   

8.
Chloroplast ultrastructural and photochemical features were examined in 6-d-old barley (Hordeum vulgare L. cv. Sundance) plants which had developed in the presence of 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone (San 9785). In spite of a substantial modification of the fatty-acid composition of thylakoid lipids there were no gross abnormalities in chloroplast morphology, and normal amounts of membrane and chlorophyll were present. Fluorescence kinetics at 77K demonstrated considerable energetic interaction of photosystem (PS)I and PSII chlorophylls within the altered lipid environment. An interference with electron transport was indicated from altered room-temperature fluorescence kinetics at 20°C. Subtle changes in the arrangements of chloroplast membranes were consistently evident and the overall effects of these changes was to increase the proportion of appressed to nonappressed membranes. This correlated with a lower chlorophyll a/b ratio, an increase in the amount of light-harvesting chlorophylls as determined by gel electrophoresis and fluorescence emission spectra, and an increase in excitation-energy transfer from PSII to PSI, as predicted from current ideas on the organisation of photosystems in appressed and non-appressed thylakoid membranes.Abbreviations CP1 P700-chlorophyll a protein - Fo, Fm, Fv minimal, maximal and variable fluorescence yield - LHCP light-harvesting chlorophyll-protein complex - PSI, PSII photosystem I, II - San 9785 4-chloro-5(dimethylamino)-2-phenyl-3(2H)-pyridazinone  相似文献   

9.
Inside-out thylakoid vesicles have been separated from right-side-out material after press disruption of chloroplast lamellae. The separation was obtained by partition in an aqueous dextran-polyethylene glycol two-phase system, a method which utilizes differences in surface properties for separation of membrane particles. The isolated thylakoid vesicles showed the following inside-out properties: (1) light-induced reversible proton extrusion into the surrounding medium when supplied with the Photosystem II electron acceptor phenyl-p-benzoquinone; (2) a pH rise in the internal phase accompanying the external proton release, (3) sensitivity to trypsin treatment different from that of thylakoid membranes of normal orientation; (4) concave EF and convex PF freeze-fracture faces.  相似文献   

10.
The time-resolved chlorophyll fluorescence emission of higher plant chloroplasts monitors the primary processes of photosynthesis and reflects photosynthetic membrane organization. In the present study we compare measurements of the chlorophyll fluorescence decay kinetics of the chlorophyll-b-less chlorina-f2 barley mutant and wild-type barley to investigate the effect of alterations in thylakoid membrane composition on chlorophyll fluorescence. Our analysis characterizes the fluorescence decay of chlorina-f2 barley chloroplasts by three exponential components with lifetimes of approx. 100 ps, 400 ps and 2 ns. The majority of the chlorophyll fluorescence originates in the two faster decay components. Although photo-induced and cation-induced effects on fluorescence yields are evident, the fluorescence lifetimes are independent of the state of the Photosystem-II reaction centers and the degree of grana stacking. Wild-type barley chloroplasts also exhibit three kinetic fluorescence components, but they are distinguished from those of the chlorina-f2 chloroplasts by a slow decay component which displays cation- and photo-induced yield and lifetime changes. A comparison is presented of the kinetic analysis of the chlorina-f2 barley fluorescence to the decay kinetics previously measured for intermittent-light-grown peas (Karukstis, K. and Sauer, K. (1983) Biochim. Biophys. Acta 725, 384–393). We propose that similarities in the fluorescence decay kinetics of both species are a consequence of analogous rearrangements of the thylakoid membrane organization due to the deficiencies present in the light-harvesting chlorophyll ab complex.  相似文献   

11.
We studied the effects of a variety of cations on chlorophyll fluorescence yield of broken chloroplasts prepared under carefully controlled ionic conditions. In the absence of light-induced electron transport and associated proton pumping, two types of cation-induced chlorophyll fluorescence changes could be distinguished in broken chloroplasts. These are termed "reversible" and "irreversible" fluorescence yield changes. Reversible fluorescence yield changes are characterized by antagonistic effects of monovalent and divalent cations and are prevented by the presence of 5 mM Mg2+ in the suspending media. Reversible-type fluorescence yield changes show little or no dependence on the structure, lipid solubility, or coordination number of the cation, but depend strictly on the net positive charge carried by the ion. It is proposed that these fluorescence changes are brought about through the interaction of monovalent or divalent cations with an electrical double layer at the interface of the outer surface of the thylakoid membrane and the surrounding aqueous solution. The results are interpreted in terms of the Gouy-Chapman theory of the diffuse double layer, indicating that the thylakoid outer surface bears an excess fixed negative charge density of about 2.5 muC/cm2, or approximately 1 negative charge per 640 A2 of membrane surface. Chlorophyll fluorescence quenching in isolated broken chloroplasts suspended in media containing 5 mM MgCl2 is also observed on addition of certain polyvalent cations to the medium. This type of cation-induced fluorescence change appears to be largely irreversible and may occur through specific binding of the cation to the thylakoid as a result of the high electrostatic attraction exerted by the negatively charged membrane surface.  相似文献   

12.
13.
Using measurements of the kinetics of chlorophyll a fluorescence emission, we have investigated the development of the photosynthetic membrane during etioplast-to-chloroplast differentiation. The chlorophyll fluorescence decay kinetics of pea chloroplasts from plants grown under intermittent (2 min light-118 min dark) and continuous light regimes were monitored with a single-photon timing system with picosecond resolution. We have associated the changes in the fluorescence yields and decay kinetics with known structural and organizational developmental phenomena in the chloroplast. This correlation provides a more detailed assignment of the origins of the fluorescence decay components than has been previously obtained by studying only mature chloroplasts. In particular, our analysis of the variable kinetics and multiexponential character of the fluorescence emission during thylakoid development focuses on the organization of photosynthetic units and the degree of communication between reaction centers in the same photosystem. Our results further demonstrate that the age of etiolated tissue is critical to plastid development.  相似文献   

14.
M. Hodges  J. Barber 《BBA》1984,767(1):102-107
The effect of Mg2+ concentration and phosphorylation of the light harvesting chlorophyll ab protein on the ability of DBMIB to quench chlorophyll fluorescence of isolated pea thylakoids has been studied. Over a wide range of Mg2+ concentrations (5?0.33 mM), the observed changes in fluorescence yield are mirrored by similar changes in the quenching ability of DBMIB, indicating that the cation-induced phenomenon involves alterations in radiative lifetimes. In contrast, phosphorylation at 10 mM Mg2+ brings about a lowering of the chlorophyll fluorescence yield, while having no effect on the quenching capacity of DBMIB. This result can be interpreted as a phosphorylation-induced decrease in PS II absorption cross-section. At Mg2+ levels between 5 and 1 mM, phosphorylation leads to a change in the quenching of fluorescence by DBMIB, when compared with non-phosphorylated thylakoids. At these cation levels, the degree of DBMIB-induced quenching cannot wholly account for the observed changes in chlorophyll fluorescence due to phosphorylation. It is concluded that the phosphorylation- and Mg2+-induced changes in fluorescence yield are independent but inter-related processes which involve surface charge screening as emphasised by the change in cation sensitivity of the DBMIB quenching before and after phosphorylation.  相似文献   

15.
A mutant of Arabidopsis thaliana with reduced content of C18:3 and C16:3 fatty acids in membrane lipids exhibited a 45% reduction in the cross-sectional area of chloroplasts and had a decrease of similar magnitude in the amount of chloroplast lamellar membranes. The reduction in chloroplast size was partially compensated by a 45% increase in the number of chloroplasts per cell in the mutant. When expressed on a chlorophyll basis the rates of CO2-fixation and photosynthetic electron transport were not affected by these changes. Fluorescence polarization measurements indicated that the fluidity of the thylakoid membranes was not significantly altered by the mutation. Similarly, on the basis of temperature-induced fluorescence yield enhancement measurements, there was no significant effect on the thermal stability of chlorophyll-protein complexes in the mutant. These observations suggest that the high content of trienoic fatty acids in chloroplast lipids may be an important factor regulating organelle biogenesis but is not required to support normal levels of the photosynthetic activities associated with the thylakoid membranes.  相似文献   

16.
We have investigated the possible relationships between the cation-induced and phenazine methosulfate (PMS)-induced fluorescence changes and their relation to light induced conformational changes of the thylakoid membrane.1. In isolated chloroplasts, PMS markedly lowers the quantum yield of chlorophyll a fluorescence (φf) when added either in the presence or the absence of dichloro-phenyldimethylurea (DCMU). In contrast, Mg2+ causes an increase in φf. However, these effects are absent in isolated chloroplasts fixed with glutaraldehyde that retain (to a large extent) the ability to pump protons, suggesting that structural alteration of the membrane—not the pH changes—is required for the observed changes in φf. The PMS triggered decrease in φf is not accompanied by any changes in the emission (spectral) characteristics of the two pigment systems, whereas room temperature emission spectra with Mg2+ and Ca2+ show that there is a relative increase of System II to System I fluorescence.2. Washing isolated chloroplasts with 0.75 mM EDTA eliminates (to a large extent) the PMS-induced quenching and Mg2+-induced increase of φf, and these effects are not recovered by the further addition of dicyclohexyl carbodiimide. It is known that washing with EDTA removes the coupling factor, and thus, it seems that the coupling factor is (indirectly) involved in conformational change of thylakoid membranes leading to fluorescence yield changes.3. In purified pigment System II particles, neither PMS nor Mg2+ causes any change in φf. Our data, taken together with those of the others, suggest that a structural modification of the thylakoid membranes (not macroscopic volume changes of the chloroplasts) containing both Photosystems I and II is necessary for the PMS-induced quenching and Mg2+-induced increase of φf. These two effects can be explained with the assumption that the PMS effect is due to an increase in the rate of internal conversion (kh), whereas the Mg2+ effect is due to a decrease in the rate of energy transfer (kt), between the two photosystems.4. From the relative ratio of φf with DCMU and DCMU plus Mg2+, we have calculated kt (the rate constant of energy transfer between Photosystems II and I to be 4.2·108 s?1, and φt (quantum yield of this transfer) to be 0.12.  相似文献   

17.
A. Telfer  J. Barber  A.T. Jagendorf 《BBA》1980,591(2):331-345
1. Increase in electron transport rate and the decay rate of the 518 nm absorption change, induced by EDTA treatment, is prevented by cations. The order of effectiveness is C3+ > C2+ > C+.2. In this respect methyl viologen is an effective divalent cation in addition to its action as an electron acceptor.3. Complete cation irreversible EDTA-induced uncoupling occurs in the dark in 2 min. Light greatly stimulates the rate of uncoupling by EDTA. It is concluded that the uncoupling is due to release of coupling factor I from the thylakoid membrane.4. Binding of purified coupling factor I to coupling factor I-depleted thylakoids can be achieved with any cation. The order of effectiveness is C3+ > C2+ > C+, reconstituted thylakoids are active in photophosphorylation regardless of the cation used for coupling factor I binding.5. The marked difference in the concentration requirements for cation effects on 9-aminoacridine fluorescence yield and for prevention of uncoupling by EDTA indicate that coupling factor I and its binding site have a lower surface charge density than the net surface charge density of the thylakoid membrane.6. It is concluded that coupling factor I binding only occurs when negative charges on coupling factor I and its binding site are electrostatically screened by cations.7. Previously reported examples of uncoupling by low ionic conditions are discussed in relation to the basic concepts of diffuse electrical layer theory.  相似文献   

18.
C.J. Arntzen  C.L. Ditto 《BBA》1976,449(2):259-274
When isolated chloroplasts from mature pea (Pisum sativum) leaves were treated with digitonin under “low salt” conditions, the membranes were extensively solubilized into small subunits (as evidenced by analysis with small pore ultrafilters). From this solubilized preparation, a photochemically inactive chlorophyll · protein complex (chlorophyll ab ratio, 1.3) was isolated. We suggest that the detergent-derived membrane fragment from mature membranes is a structural complex within the membrane which contains the light-harvesting chlorophyll ab protein and which acts as a light-harvesting antenna primarily for Photosystem II.Cations dramatically alter the structural interaction of the light-harvesting complex with the photochemically active system II complex. This interaction has been measured by determining the amount of protein-bound chlorophyll b and Photosystem II activity which can be released into dispersed subunits by digitonin treatment of chloroplast lamellae. When cations are present to cause interaction between the Photosystem II complex and the light-harvesting pigment · protein, the combined complexes pellet as a “heavy” membranous fraction during differential centrifugation of detergent treated lamellae. In the absence of cations, the two complexes dissociate and can be isolated in a “light” submembrane preparation from which the light-harvesting complex can be purified by sucrose gradient centrifugation.Cation effects on excitation energy distribution between Photosystems I and II have been monitored by following Photosystem II fluorescence changes under chloroplast incubation conditions identical to those used for detergent treatment (with the exception of chlorophyll concentration differences and omission of detergents). The cation dependency of the pigment · protein complex and Photosystem II reaction center interactions measured by detergent fractionation, and regulation of excitation energy distribution as measured by fluorescence changes, were identical. We conclude that changes in substructural organization of intact membranes, involving cation induced changes in the interaction of intramembranous subunits, are the primary factors regulating the distribution of excitation energy between Photosystems II and I.  相似文献   

19.
The interrelations between thylakoid polypeptide components and Mg2+-induced Chl a fluorescence and thylakoid surface charge changes were investigated in Zostera marina chloroplasts treated with Ca2+ and trypsin. It was observed that: 1. The increase of Mg2+- induced PS Ⅱ fluorescence intensity was closely related to the decrease of Mg2+-induced surface charge density of the thylakoid membrane in the normal chloroplast; 2. Removal of the 32~34 kD polypeptides of the thylakoid surface by Ca2+ extraction of the chloroplast did not affect the Mg2+-induced phenomena; 3. If the Ca2+-treated chloroplast was further digested by trypsin to remove the 26 kD polypeptide of the membrane surface, the Mg2+-induced phenomena disappeared completely. These results clearly indicated that the 26 kD polypeptide of thylakoid surface is the specific acting site of the cation that induced these two correlated phenomena in the chloroplast from Zostera marina. The mechanism on the regulating effect of the cation on excitation energy distribution between PS Ⅱ and PS Ⅰ was discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号