首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The effect of tentoxin on the binding of adenine nucleotides to soluble chloroplast coupling factor (CF1) has been studied and the following results have been obtained: 1. Tentoxin (400 micron) increases the maximum attainable tight binding of ADP to CF1. In the absence of tentoxin, the maximal binding observed by the method employed is about 0.3 nmol ADP/mg protein, whereas in the presence of tentoxin this ranges from 1.5 to 2.0 nmol ADP/mg protein. 2. Tentoxin-induced binding of ADP to CF1 is severely inhibited by divalent cations (50% inhibition at about 2 mM) but only weakly inhibited by monovalent cations (less than 50% inhibition at 100 mM). 3. The binding of ADP to CF1 induced by tentoxin is inhibited by ATP and adenylyl imidodiphosphate but is not inhibited by other nucleotides including AMP, GDP, CDP, IDP, or beta, gamma-methylene ATP. 4. The ADP-CF1 complex induced by tentoxin is quite stable. 75% remains bound to CF1 even after passage of the complex through a gel filtration column. An additional 25% can be removed by incubation in the presence of ADP, and all of the bound ADP can be removed only after incubation in the presence of both tentoxin and ADP. The latter result is interpreted as a tentoxin-induced exchange of bound ADP for medium ADP.  相似文献   

2.
D. Bar-Zvi  N. Shavit 《BBA》1982,681(3):451-458
Inactivation of the chloroplast ATPase upon tight nucleotide binding was studied with several adenine nucleotide analogs. Compared with ADP, the other nucleoside diphosphates were less effective in the follwing order: IDP >?-ADP > 1-oxido-ADP > GDP. The nucleotide analogs compete with ADP for binding to the tight nucleotide-binding site(s) on the ATPase and also prevent further inactivation by ADP. AdoPP[NH]P also causes inactivation but has a lower affinity than ADP. [3H]GDP binds tightly to the ATPase, but the resulting enzyme-GDP complex is more readily dissociable than the enzyme-ADP complex. Although both nucleotides appear to bind to the same site, the catalytic and binding properties of the coresponding nucletide-enzyme complexes differ. Binding of GDP also decreases the rate and extent of the sontaneous decay of the activated enzyme. PPi decreases the rate of inacivation caused by ADP and also the level of tigthly buond ADP. Based on these results, we suggest that two different confomations of the ATPase exist which contain tigthly bound ADP. The active conformation is conveted to the inactive conformation in the absence of a continued supply of energy by illumination or ATP hydrolysis.  相似文献   

3.
Steady-state binding of adenine nucleotides by thylakoid membranes is measured by employing a centrifugation technique. By this method tightly bound nonexchangeable nucleotides can be discriminated from loosely bound, exchangeable nucleotides. Nucleotide binding requires membrane energization and is highly specific for medium ADP. In illuminated chloroplasts almost no exogenous AMP and only some ATP are incorporated, most being recovered as tightly bound nucleotides. In light-triggered chloroplasts, however, which are capable of hydrolyzing ATP, a high level of exchangeable nucleotides is found on the membranes. The sum of tightly bound and loosely bound nucleotides originating from medium ADP is about one per CF1. The ratio between them decreases with increasing proton-motive force. Exchangeable nucleotides most probably represent the ligands involved in the catalytic process, as suggested from substrate specificity and the effect of a competitive inhibitor of photophosphorylation, naphthoyl ADP. This compound in a low concentration range supresses loose binding but not tight binding of medium ADP. Under phosphorylating conditions (presence of ADP, Pi and light), some of the tightly bound nucleotides exist as ATP even in the presence of a hexokinase system. The results are discussed in the context of the regulation of chloroplast ATPase by tight nucleotide binding.  相似文献   

4.
Studies of the kinetics of association and dissociation of the formycin nucleotides FTP and FDP with CF1 were carried out using the enhancement of formycin fluorescence. The protein used, derived from lettuce chloroplasts by chloroform induced release, contains only 4 types of subunit and has a molecular weight of 280 000.In the presence of 1.25 mM MgCl2, 1 mol of ATP or FTP is bound to the latent enzyme, with Kd = 10?7 or 2 · 10?7, respectively. The fluorescence emission (λmax 340 nm) of FTP is enhanced 3-fold upon binding, and polarization of fluorescence is markedly increased. The fluorescence changes have been used to follow FTP binding, which behaves as a bimolecular process with K1 = 2.4 · 104 M?1 · s?1. FTP is displaced by ATP in a process apparently involving unimolecular dissociation of FTP with k?1 = 3 · 10?3 s?1. The ratio of rates is comparable to the equilibrium constant and no additional steps have been observed.The protein has 3 sites for ADP binding. Rates of ADP binding are similar in magnitude to those for FTP. ADP and ATP sites are at least partly competitive with one another.The kinetics of nucleotide binding are strikingly altered upon activation of the protein as an ATPase. The rate of FTP binding increases to at least 106 M?1 · s?1. This suggests that activation involves lowering of the kinetic barriers to substrate and product binding-dissociation and has implications for the mechanism of energy transduction in photophosphorylation.  相似文献   

5.
6.
The ATPase activity of the chloroplast coupling factor 1 (CF1) isolated from the green alga Dunaliella is completely latent. A brief heat treatment irreversibly induces a Ca2+ -dependent activity. The Ca2+ dependent ATPase activity can be reversibly inhibited by ethanol, which changes the divalent cation dependency from Ca2+ to Mg2+. Both the Ca2+ -dependent and Mg2+ -dependent ATPase activities of heat-treated Dunaliella CF1 are inhibited by monospecific antisera directed against Chlamydomonas reinhardi CF1. However, when assayed under identical conditions, the Ca2+ -dependent ATPase activity is significantly more sensitive to inhibition by the antisera than is the Mg2+ -dependent activity. These data are interpreted as indicating that soluble Dunaliella CF1 can exist in a variety of conformations, at least one of which catalyzes a Ca2+ -dependent ATPase and two or more of which catalyze an Mg2+ -dependent ATPase.  相似文献   

7.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C-labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C]ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891–2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

8.
(1) Octylglucoside stimulates an Mg2+-specific ATPase activity with CF1 preparations from different higher plants and the alga Chlamydomonas reinhardii. (2) Tentoxin at high concentrations (10?4–10?3 M) in the presence of octylglucoside further stimulates the Mg2+-ATPase activity of CF1 from tentoxin-sensitive species and inhibits the activity of CF1 from tentoxin-resistant species. The extent of tentoxin stimulation and inhibition varies among species. A maximal stimulation of over 2-fold was obtained with spinach CF1 and a maximal inhibition of 50% was obtained with C. reinhardii CF1. In Nicotiana spp., tentoxin had only a marginal effect on the Mg2+-ATPase activity induced by octylglucoside.  相似文献   

9.
The rate of inhibition of cyclic photophosphorylation in chloroplast thylakoids by the arginine reagent phenylglyoxal was enhanced in the light, i.e., under conditions where membrane energization occurred. Uncouplers, but not energy-transfer inhibitors, prevented the effect of light. Chemical modification of chloroplast thylakoids by phenylglyoxal under dark or in light conditions affected differently the light-induced exchange of tightly bound ADP. In both cases the exchange was less inhibited than photophosphorylation. Complete inhibition of ATPase activity of soluble CF1 was correlated with the incorporation of 8 mol [14C]phenylglyoxal per mol enzyme. About 50% of the incorporated radioactivity was lost at different rates depending on the buffer present and suggesting a change in the stoichiometry of the adduct from 2:1 to 1:1. Inhibition of ATPase and photophosphorylating activities of chloroplasts by modification with [14C]phenylglyoxal in the dark was associated with the incorporation of 1 and 2 mol reagent per mol membrane-bound CF1, respectively. In the light the rate of incorporation was enhanced and both reactions were inactivated when 2 mol [14C]phenylglyoxalCF1 were bound. In all the labelling experiments the radioactivity was mainly recovered from the α- and β-subunits.  相似文献   

10.
The interaction of tentoxin [cyclo(-l-leucyl-N-methyl-(Z)-dehydrophenyl-analyl-glycyl-N-methyl-l-alanyl-)] with solubilized lettuce chloroplast coupling factor 1 was characterized by direct binding studies, measurement of the time course of ATPase inhibition, and steady-state enzyme kinetics. Neither substrates, products or Ca2+ competed with the tentoxin binding site, nor did they induce any large change in tentoxin affinity. The inhibition of lettuce chloroplast coupling factor 1 ATPase was found to be the time dependent, and at equilibrium the affinities estimated by equilibrium ultrafiltration and enzyme inhibition were similar (1.8 · 108M?1). The steady-state kinetics best fit an uncompetitive pattern suggesting that the inhibited steps follow an irreversible step occurring after ATP binding.  相似文献   

11.
Exchange of 500–600 atoms of 3H per mol of solubilized spinach chloroplast coupling factor (CF1) occurs when the enzyme is incubated for 4 min in 3H2O at 63°C. These 3H atoms are bound in parts of the protein where exchange is hindered by the three-dimensional structure at 25°C. Back-exchange at 25°C shows complex kinetics, with at least two kinetic components having half-times of 1.4 and 40 h, respectively. Back-exchange from the denatured enzyme is extremely rapid with an apparent half-time of the order of 20–30 s. The time courses for exchange and ATPase activation are very similar at 63°C, and reasonably close at 25°C. Both reactions have an optimum temperature of 60°C when measured after 4 min. Activation of ATPase requires a strong reducing agent to be present, but this is not needed for hydrogen exchange. It is suggested that an open conformation of CF1 induced by heat may be a required intermediate for the rapid activation of ATPase, being a sporadic and rare occurrence at 25°C but also a required step in ATPase activation. This open conformation could be related to that induced in bound CF1 by thylakoid membrane energization.  相似文献   

12.
13.
The trypsin-activated Ca2+ -ATPase of spinach chloroplast membranes was completely inhibited by treatment with naphthylglyoxal, a fluorescent compound that should bind covalently to arginine residues. The inhibition followed apparent first-order kinetics. The apparent order of reaction with respect to inhibitor concentration gave values near unity, suggesting that inactivation is a consequence of modifying one arginine residue per active site. Partial protection against naphthylglyoxal was afforded by ADP and ATP, with either less or no protection by other nucleotide bases. At inhibition levels less than complete, the Km for ATP was not affected but the Vmax of the enzyme was diminished. The light-dependent exchange of tightly bound nucleotides on the membrane-bound enzyme was not inhibited by naphthylglyoxal treatment, indicating significant retention of the conformational response of the enzyme to the membrane high-energy state. Using [3H]naphthylglyoxal, the extent of inhibition was a linear function of the amount of naphthylglyoxal bound up to 60% inhibition. The curves extrapolated to 2 mol naphthylglyoxal bound, associated with complete inhibition of ATPase. The radioactive naphthylglyoxal was distributed equally between α- and β-subunits.  相似文献   

14.
The effects of solvents on the ATPase activity of chloroplast coupling factor 1 (CF1) isolated from wild-type Chlamydomonas reinhardii have been studied. Of the solvents examined, the following order summarizes their maximal ability to stimulate the ATPase activity of CF1: ethanol > methanol>allyl alcohol >n-propanol > acetone≈dioxane > ethylene glycol. Glycerol inhibits the CF1 activity at all concentrations. In the absence of organic solvents, 50% of the activity of the enzyme is irreversibly lost after a 10 min incubation at 65–70°C. Ethanol (23%) causes a 30°C drop in the temperature required for 50% inactivation. ATP partially stabilizes the CF1 in the presence, but not in the absence, of ethanol. In the absence of organic solvents, both free Mg2+ and ADP inhibit the CF1-ATPase. Mg2+ is a noncompetitive inhibitor with respect to MgATP, and the kinetic constants are: V, 6.3 μmol ATP hydrolyzed/mg protein per min; Km(MgATP), 0.23 mM; Kii(Mg2+), 27 μM; and Kis(Mg2+), 50 μM. In the presence of ethanol, double-reciprocal plots are no longer linear and have a Hill coefficient of about 1.8±0.1. V increases about 10–12-fold. The pattern of inhibition by Mg2+ appears to change from noncompetitive to competitive with respect to MgATP. In addition, ADP no longer inhibits the MgATPase activity of CF1.  相似文献   

15.
16.
Spinach chloroplast coupling factor (CF1) was crystal-lized at 20°C from 0.05 M TRIS-PO4, containing 4 mM ATP, 15mM KCl, 1.0 mM EDTA and 1.80 M (NH4)2SO4, at pH 7.8. Some unit cell parameters were determined by electron microscopy and by X-ray diffraction. The cube shaped crystals have a tetragonal lattice, a = b = 135 Å, c = 280 Å with eight molecules per unit cell; possible space group P422 or P42212, hence half a molecule in the asymmetric unit. Crystals grown at pH 7.5 in the absence of ATP have an orthorhombic lattice, a = 125 Å, b = 145 Å, c = 169 Å (C2221), eight molecules per unit cell.  相似文献   

17.
  rgen Schumann 《BBA》1987,890(3):326-334
Phosphorylation of ADP and nucleotide exchange by membrane-bound coupling factor CF1 are very fast reactions in the light, so that a direct comparison of both reactions is difficult. By adding substrate ADP and phosphate to illuminated thylakoids together with the uncoupler FCCP, the phosphorylation time is limited and the amount of ATP formed can be reduced to less than 1 ATP per enzyme. Low concentrations of medium nucleotides during illumination increase the amount of ATP formed during uncoupling presumably by binding to the tight nucleotide binding site (further designated as ‘site A’) with an affinity of 1 to 7 μM for ADP and ATP. ATP formation itself shows half-saturation at about 30 μM. Loosely bound nucleotides are exchanged upon addition of nucleotides with uncoupler (Schumann, J. (1984) Biochim. Biophys. Acta 766, 334–342). Release depends binding of nucleotides to a second site. The affinity of this site for ADP (in the presence of phosphate) is about 30 μM. It is assumed that phosphorylation and induction of exchange both occur on the same site (site B). During ATP hydrolysis, an ATP molecule is bound to site A, while on another site, ATP is hydrolyzed rapidly. The affinity of ADP for the catalytic site (70 μM) is in the same range as the observed Michaelis constant of ADP during phosphorylation; it is assumed that site B is involved in ATP hydrolysis. Site A exhibits some catalytic activity; it might be that site A is involved in ATP formation in a dual-site mechanism. For ATP hydrolysis, however, direct determination of exchange rates showed that the exchange rate of ATP bound to site A is about 30-times lower than ATP hydrolysis under the same conditions.  相似文献   

18.
The binding of various nucleotides to chloroplast coupling factor CF1 was studied by two dialysis techniques. It was found that the number of nucleoside diphosphate sites and their specificities for the base moiety is dependent on the magnesium concentration. In the presence of 50 μM added MgCl2, the protein has a single strong site/mol protein with Kd = 0.5 μM for ADP and high specificity (Kd > 20 μM for ?ADP, GDP, CDP). In the presence of 5 mM MgCl2, the protein has two independent tight ADP sites (Kd = 0.4 μM) of low specificity (Kd ≈ 0.8, 2, and 2 μrmM, respectively for ?ADP, GDP, and CDP). These results are compared with the specificity of the partial reactions for photophosphorylation.  相似文献   

19.
A kinetic analysis of ATP binding to noncatalytic sites of chloroplast coupling factor CF1 was made. The ATP binding proved to be unaffected by reduction of the disulfide bridge of the CF1 -subunit. The first-order equation describing nucleotide binding to noncatalytic sites allowed for two vacant nucleotide binding sites different in their kinetics. As suggested by nucleotide concentration dependence of the rate of nucleotide binding, the tight binding was preceded by rapid reversible binding of nucleotides. Preincubation of CF1 with Mg2+ resulted in a decreased rate of ATP binding. ATP dissociation from noncatalytic sites was described by the first order equation for similar sites with a dissociation rate constant k d (ATP) 10–3 min–1. Noncatalytic sites of CF1 were shown to be not homogeneous. One of them retained the major part of endogenous ADP after precipitation of CF1 with ammonium sulfate. Its two other sites differed in kinetic parameters and affinity for ATP. Anions of phosphate, sulfite, and especially, pyrophosphate inhibited the interaction between ATP and the noncatalytic sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号