共查询到20条相似文献,搜索用时 0 毫秒
1.
Myxothiazol, an inhibitor of the ubiquinol oxidase site of the ubiquinol: cytochrome c2 oxidoreductase complex, has been shown in the present work to inhibit a part of the electrogenic process indicated by phase III of the carotenoid change, in addition to the part of the change inhibited by antimycin. This finding shows that there is an antimycin-insensitive, but myxothiazol-sensitive portion of the slow phase, which indicates the existence of an electrogenic event within the ubiquinol: cytochrome c2 oxidoreductase complex, in addition to that linked to oxidation of cytochrome b-561 which has been previously characterized. Redox titrations show that the appearance of the new electrogenic step is correlated with the amount of cytochrome b-561 available in the oxidized form before the flash. The rate of the antimycin-insensitive and myxothiazol-sensitive portion of the carotenoid change correlates well with the rate of reduction of cytochrome b-561. No carotenoid change associated with reduction of cytochrome b-566 was seen. These findings suggest that the newly identified electrogenic process is linked to electron transfer between cytochrome b-566 and b-561. Calculations of the contribution of this new electrogenic step to the total electrogenic event within the complex show that electrons passing from cytochrome b-566 to cytochrome b-561 pass about 35–50% of the distance across the whole membrane. 相似文献
2.
Martin F. Hohmann-Marriott 《BBA》2007,1767(1):106-113
Green sulfur bacteria possess a complex photosynthetic machinery. The dominant light harvesting systems are chlorosomes, which consist of bacteriochlorophyll c, d or e oligomers with small amounts of protein. The chlorosomes are energetically coupled to the membrane-embedded iron sulfur-type reaction center via a bacteriochlorophyll a-containing baseplate protein and the Fenna-Matthews-Olson (FMO) antenna protein. The fluorescence yield and spectral properties of these photosynthetic complexes were investigated in intact cells of several species of green sulfur bacteria under physiological, anaerobic conditions. Surprisingly, green sulfur bacteria show a complex modulation of fluorescence yield upon illumination that is very similar to that observed in oxygenic phototrophs. Within a few seconds of illumination, the fluorescence reaches a maximum, which decreases within a minute of illumination to a lower steady state. Fluorescence spectroscopy reveals that the fluorescence yield during both processes is primarily modulated on the FMO-protein level, while the emission from chlorosomes remains mostly unchanged. The two most likely candidates that modulate bacteriochlorophyll fluorescence are (1) direct excitation quenching at the FMO-protein level and (2) indirect modulation of FMO-protein fluorescence by the reduction state of electron carriers that are part of the reaction center. 相似文献
3.
Photochemically active reaction centers were isolated from the facultatively aerobic gliding green bacterium Chloroflexus aurantiacus. The absorption difference spectrum, obtained after a flash, reflected the oxidation of P-865, the primary donor, and agreed with that observed in a purified membrane preparation from the same organism (Bruce, B.D., Fuller, R.C. and Blankenship, R.E. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6532–6536). By analysis of the kinetics in the presence of reduced N-methylphenazonium methosulfate to prevent accumulation of oxidized P-865, the absorption difference spectrum of an electron acceptor was obtained. The electron acceptor was identified as menaquinone (vitamin K-2), which is reduced to the semiquinone anion in a stoichiometry of approximately one molecule per reaction center. Reduction of menaquinone was accompanied by changes in pigment absorption in the infrared region. Our results indicate that the electron-acceptor chain of C. aurantiacus is very similar to that of purple bacteria. 相似文献
4.
A W Rutherford 《Biochemical and biophysical research communications》1981,102(3):1065-1070
Photosystem II particles have been poised at redox potentials where the pheophytin acceptor is reduced. Illumination of these particles at 200K results in the formation of radical signal in the g?2.00 region. This is attributed to the photoreduction of another acceptor. This acceptor may function between the primary donor, P680, and pheophytin in forward electron transfer. 相似文献
5.
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5–8) · 108 M?1 · s?1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 · 105 M?1 · s?1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 μM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 · 108 M?1 · s?1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres. 相似文献
6.
Péter Maróti 《BBA》2019,1860(4):317-324
In the native and most mutant reaction centers of bacterial photosynthesis, the electron transfer is coupled to proton transfer and is rate limiting for the second reduction of QB??→?QBH2. In the presence of divalent metal ions (e.g. Cd2+) or in some (“proton transfer”) mutants (L210DN/M17DN or L213DN), the proton delivery to QB? is made rate limiting and the properties of the proton pathway can be directly examined. We found that small weak acids and buffers in large concentrations (up to 1?M) were able to rescue the severely impaired proton transfer capability differently depending on the location of the defects: lesions at the protein surface (proton gate H126H/H128H?+?Cd2+), beneath the surface (M17DN?+?Cd2+, L210DN/M17DN) or deep inside the protein (L213DN) could be completely, partially or to very small extent recovered, respectively. Small zwitterionic acids (azide/hydrazoic acid) and buffers (tricine) proved to be highly effective rescuers consistent with their enhanced binding affinity and access to any of the proton acceptors (including QB? itself) in the pathway. As a consequence, back titration of the protons at L212Glu could be observed as a pH-dependence of the rate constant of the charge recombination in the presence of azide or formate. Model calculations support the collective influence of the acid cluster on the change of the protonation states upon extension of the cluster with the bound small acid. In proton transfer mutants, the rescuing agents decreased the free energy of activation together with their enthalpic and entropic components. This is in agreement with the hypothesis that they function as protein-penetrating protonophores delivering protons into the chain and select dominating paths out of many alternate routes. We estimate that the proton delivery will be accelerated in one pathway out of 100–200 alternate pathways. The implications for design of the chemical recovery of impaired intra-protein proton transfer pathways in proton transfer mutants are discussed. 相似文献
7.
1. In Rhodopseudomonas sphaeroides the Qx absorption band of the reaction center bacteriochlorophyll dimer which bleaches on photo-oxidation is both blue-shifted and has an increased extinction coefficient on solubilisation of the chromatophore membrane with lauryldimethylamine-N-oxide. These effects may be attributable in part to the particle flattening effect.2. The difference spectrum of photo-oxidisable c type cytochrome in the chromatophore was found to have a slightly variable peak position in the α-band (λmax at 551–551.25 nm); this position was always red-shifted in comparison to that of isolated cytochrome c2 (λmax at 549.5 ± 0.5 nm). The shift in wavelength maximum was not due to association with the reaction center protein. A possible heterogeneity in the c-type cytochromes of chromatophores is discussed.3. Flash-induced difference spectra attributed to cytochrome b were resolved at several different redox potentials and in the presence and absence of antimycin. Under most conditions, one major component, cytochrome b50 appeared to be involved. However, in some circumstances, reduction of a component with the spectral characteristics of cytochrome b?90 was observed.4. Difference spectra attributed to (BChl)2, Q?II, c type cytochrome and cytochrome b50 were resolved in the Soret region for Rhodopseudomonas capsulata.5. A computer-linked kinetic spectrophotometer for obtaining automatically the difference spectra of components functioning in photosynthetic electron transfer chains is described. The system incorporates a novel method for automatically adjusting and holding the photomultiplier supply voltage. 相似文献
8.
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A0, has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the “primary electron donor,” P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of ∼ 7 ps and ∼ 25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A0: both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A0. We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A0− → AA0 charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A0 axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A0−. 相似文献
9.
(1) Current models for the mechanism of cyclic electron transport in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata have been investigated by observing the kinetics of electron transport in the presence of inhibitors, or in photosynthetically incompetent mutant strains. (2) In addition to its well-characterized effect on the Rieske-type iron sulfur center, 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) inhibits both cytochrome b50 and cytochrome b?90 reduction induced by flash excitation in Rps. sphaeroides and Rps. capsulata. The concentration dependency of the inhibition in the presence of antimycin (approx. 2.7 mol UHDBT/mol reaction center for 50% inhibition of extent) is very similar to that of its inhibition of the antimycin-insensitive phase of ferricytochrome c re-reduction. UHDBT did not inhibit electron transfer between the reduced primary acceptor ubiquinone (Q?I) and the secondary acceptor ubiquinone (QII) of the reaction center acceptor complex. A mutant of Rps. capsulata, strain R126, lacked both the UHDBT and antimycin-sensitive phases of cytochrome c re-reduction, and ferricytochrome b50 reduction on flash excitation. (3) In the presence of antimycin, the initial rate of cytochrome b50 reduction increased about 10-fold as the Eh(7.0) was lowered below 180 mV. A plot of the rate at the fastest point in each trace against redox potential resembles the Nernst plot for a two-electron carrier with Em(7.0) ≈ 125 ± 15 mV. Following flash excitation there was a lag of 100–500 μs before cytochrome b50 reduction began. However, there was a considerably longer lag before significant reduction of cytochrome c by the antimycin-sensitive pathway occurred. (4) The herbicide ametryne inhibited electron transfer between Q?I and QII. It was an effective inhibitor of cytochrome b50 photoreduction at Eh(7.0) 390 mV, but not at Eh(7.0) 100 mV. At the latter Eh, low concentrations of ametryne inhibited turnover after one flash in only half of the photochemical reaction centers. By analogy with the response to o-phenanthroline, it is suggested that ametryne is ineffective at inhibiting electron transfer from Q?I to the secondary acceptor ubiquinone when the latter is reduced to the semiquinone form before excitation. (5) At Eh(7.0) > 200 mV, antimycin had a marked effect on the cytochrome b50 reduction-oxidation kinetics but not on the cytochrome c and reaction center changes or the slow phase III of the electrochromic carotenoid change on a 10-ms time scale. This observation appears to rule out a mechanism in which cytochrome b50 oxidation is obligatorily and kinetically linked to the antimycin-sensitive phase of cytochrome c reduction in a reaction involving transmembrane charge transfer at high Eh values. However, at lower redox potentials, cytochrome b50 oxidation is more rapid, and may be linked to the antimycin-sensitive reduction of cytochrome c. (6) It is concluded that neither a simple linear scheme nor a simple Q-cycle model can account adequately for all the observations. Future models will have to take account of a possible heterogeneity of redox chains resulting from the two-electron gate at the level of the secondary quinone, and of the involvement of cytochrome b?90 in the rapid reactions of the cyclic electron transfer chain 相似文献
10.
Lancaster CR Hunte C Kelley J Trumpower BL Ditchfield R 《Journal of molecular biology》2007,368(1):197-208
We describe in detail the conformations of the inhibitor stigmatellin in its free form and bound to the ubiquinone-reducing (Q(B)) site of the reaction center and to the ubiquinol-oxidizing (Q(o)) site of the cytochrome bc(1) complex. We present here the first structures of a stereochemically correct stigmatellin in complexes with a bacterial reaction center and the yeast cytochrome bc1 complex. The conformations of the inhibitor bound to the two enzymes are not the same. We focus on the orientations of the stigmatellin side-chain relative to the chromone head group, and on the interaction of the stigmatellin side-chain with these membrane protein complexes. The different conformations of stigmatellin found illustrate the structural variability of the Q sites, which are affected by the same inhibitor. The free rotation about the chi1 dihedral angle is an essential factor for allowing stigmatellin to bind in both the reaction center and the cytochrome bc1 pocket. 相似文献
11.
The kinetics of reoxidation of the primary acceptor Qa has been followed by measuring the changes in the fluorescence yield induced by a series of saturating flashes in intact cells of Rhodobacter sphaeroides in anaerobic conditions. At 0 °C, about half of Qa− is reoxidized in about 200 ms while reoxidation of the remaining fraction is completed in several seconds to minutes. The fast phase is associated with the transfer of ubiquinone formed at site Qo of the cytochrome bc1 complex while the slowest phase is associated with the diffusion of ubiquinone present in the membrane prior to the flash excitation. The biphasic kinetics of Qa− oxidation is interpreted assuming that the electron chain is organized in supercomplexes that associate two RCs and one cyt bc1 complex, which allows a fast transfer of quinone formed at the level of cyt bc1 complex to the RCs. In agreement with this model, the fast phase of Qa− reoxidation is inhibited by myxothiazol, a specific inhibitor of cyt bc1. The PufX-deleted mutant displays only the slowest phase of Qa− oxidation; it is interpreted by the lack of supramolecular organization of the photosynthetic chain that leads to a larger average distance between cyt bc1 and RCs. 相似文献
12.
We have recorded triplet optical absorption-difference spectra of the reaction center triplet state of isolated reaction centers from Rhodopseudomonas sphaeroides R-26 and Rps. viridis with optical absorption-detected electron spin resonance in zero magnetic field (ADMR) at 1.2 K. This technique is one to two orders of magnitude more sensitive than conventional flash absorption spectroscopy, and consequently allows a much higher spectral resolution. Besides the relatively broad bleachings and appearances found previously (see, e.g., Shuvalov V.A. and Parson W.W. (1981) Biochim. Biophys. Acta 638, 50–59) we have found strong, sharp oscillations in the wavelength regions 790–830 nm (Rps. sphaeroides) and 810–890 nm (Rps. viridis). For Rps. viridis these features are resolved into two band shifts (a blue shift at about 830 nm and a red shift at about 855 nm) and a strong, narrow absorption band at 838 nm. For Rps. sphaeroides R-26 the features are resolved into a red shift at about 810 nm and a strong absorption band at 807 nm. We conclude that the appearance of the absorption bands at 807 and 838 nm, respectively, is due to monomeric bacteriochlorophyll. Apparently, the exciton interaction between the pigments constituting the primary donor is much weaker in the triplet state than in the singlet state, and at low temperature the triplet is localized on one of the bacteriochlorophylls on an optical time scale. The fact that for Rps. sphaeroides the strong band shift and the monomeric band found at 1.2 K are absent at 293 K and very weak at 77 K indicates that these features are strongly temperature dependent. It seems, therefore, premature to ascribe the temperature dependence between 293 and 77 K of the intensity of the triplet absorption-difference spectrum at 810 nm (solely) to a delocalization of the triplet state on one of the accessory bacteriochlorophyll pigments. 相似文献
13.
Radical-pair decay kinetics and molecular triplet quantum yields at various magnetic fields are reported for quinone-depleted reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides R26. The radical-pair decay is observed by picosecond absorption spectroscopy to be a single exponential to within the experimental uncertainty at all fields. The decay time increases from 13 ns at zero field to 17 ns at 1 kG, and decreases to 9 ns at 50 kG. The orientation averaged quantum yield of formation of the molecular triplet of the primary electron donor, 3P, drops to 47% of its zero-field value at 1 kG and rises to 126% at 50 kG. Combined analysis of these data gives a singlet radical-pair decay rate constant of 5 · 107s?1, a lower limit for the triplet radical-pair decay rate constant of 1 · 108s?1 and a lower limit for the quantum yield of radical-pair decay by the triplet channel of 38% at zero field. The upper limit of the quantum yield of 3P formation at zero field is measured to be 32%. In order to explain this apparent discrepancy, decay of the radical pair by the triplet channel must lead to some rapid ground state formation as well as some 3P formation. It is proposed that the triplet radical pair decays to a triplet charge-transfer state which is strongly coupled to the ground state by spin-orbit interactions. Several possibilities for this charge-transfer state are discussed. 相似文献
14.
In this work, we report the unique case of bacteriochlorophyll (BChl) - protein covalent attachment in a photosynthetic membrane complex caused by a single mutation. The isoleucine L177 was substituted by histidine in the photosynthetic reaction center (RC) of Rhodobacter sphaeroides. Pigment analysis revealed that one BChl molecule was missing in the acetone-methanol extract of the I(L177)H RCs. SDS-PAGE demonstrated that this BChl molecule could not be extracted with organic solvents apparently because of its stable covalent attachment to the mutant RC L-subunit. Our data indicate that the attached bacteriochlorophyll is one of the special pair BChls, P(A). The chemical nature of this covalent interaction remains to be identified. 相似文献
15.
The reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides has been studied with respect to the kinetics of charge recombination and to the phospholipid and ubiquinone (UQ) complements tightly associated with it. In the antenna-RC complexes, at 6.5 < pH < 9.0, P+QB− recombines with a pH independent average rate constant <k> more than three times smaller than that measured in LH1-deprived RCs. At increasing pH values, for which <k> increases, the deceleration observed in RC-LH1 complexes is reduced, vanishing at pH > 11.0. In both systems kinetics are described by a continuous rate distribution, which broadens at pH > 9.5, revealing a strong kinetic heterogeneity, more pronounced in the RC-LH1 complex. In the presence of the antenna the QAQB− state is stabilized by about 40 meV at 6.5 < pH < 9.0, while it is destabilized at pH > 11. The phospholipid/RC and UQ/RC ratios have been compared in chromatophore membranes, in RC-LH1 complexes and in the isolated peripheral antenna (LH2). The UQ concentration in the lipid phase of the RC-LH1 complexes is about one order of magnitude larger than the average concentration in chromatophores and in LH2 complexes. Following detergent washing RC-LH1 complexes retain 80-90 phospholipid and 10-15 ubiquinone molecules per monomer. The fractional composition of the lipid domain tightly bound to the RC-LH1 (determined by TLC and 31P-NMR) differs markedly from that of chromatophores and of the peripheral antenna. The content of cardiolipin, close to 10% weight in chromatophores and LH2 complexes, becomes dominant in the RC-LH1 complexes. We propose that the quinone and cardiolipin confinement observed in core complexes reflects the in vivo heterogeneous distributions of these components. Stabilization of the charge separated state in the RC-LH1 complexes is tentatively ascribed to local electrostatic perturbations due to cardiolipin. 相似文献
16.
Nithya Srinivasan 《BBA》2009,1787(9):1057-682
This review focuses on phylloquinone as an indispensable link between light-induced charge separation and subsequent charge stabilization in Photosystem I (PS I). Here, the role of the polypeptide in conferring the necessary kinetic and thermodynamic properties to phylloquinone so as to specify its functional role in PS I electron transfer is discussed. Photosynthetic electron transfer and the role of quinones in Type I and Type II reaction centers are introduced at the outset with particular emphasis on the determination of redox potentials of the cofactors. Currently used methodologies, particularly time-resolved optical spectroscopy and varieties of magnetic resonance spectroscopy that have become invaluable in uncovering the details of phylloquinone function are described in depth. Recent studies on the selective alteration of the protein environment and on the incorporation of foreign quinones either by chemical or genetic means are explored to assess how these studies have improved our understanding of protein-quinone interactions. Particular attention is paid to the function of the H-bond, methyl group and phytyl tail of the phylloquinone in interacting with the protein environment. 相似文献
17.
18.
Sasmit S. Deshmukh Charles Protheroe Matei-Alexandru Ivanescu Sarah Lag László Kálmán 《BBA》2018,1859(4):227-233
Systematic control over molecular driving forces is essential for understanding the natural electron transfer processes as well as for improving the efficiency of the artificial mimics of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may identify evolutionary intermediates and provide insights to the energetics of biological water oxidation. This work presents effective environmental methods that substantially and simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic enzyme from native anoxygenic bacteria without the necessity of genetic modification or synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the manganese (II) to manganese (III) transition to an unusually low value (~400?mV) at pH?9.4 and allowed its binding to the bacterial reaction center. Binding to a novel buried binding site elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up to 92?mV also at pH?9.4 and facilitated the electron transfer that is able to compete with the wasteful charge recombination. These events impaired the function of the natural electron donor and made BTP-coordinated manganese a viable model for an evolutionary alternative. 相似文献
19.
Membranes isolated from aerobically grown mutants 01 and PM8bg II-15 of Rhodopseudomonas sphaeroides lack reaction centres. Incorporation of purified reaction centres into these membranes can be achieved by mixing the protein and membranes in 1% sodium cholate with added soybean phospholipid and removing the cholate by dialysis.The kinetics of light-stimulated electron flow in these reconstituted membranes have been examined and compared with those observed in chromatophore membranes isolated from photosynthetically grown R. sphaeroides. Following a single saturating flash, reconstituted reaction centres become photo-oxidised, and about 60% are re-reduced within about 200 ms by cytochrome c2 in the 01 membrane. Cytochrome c2 photo-oxidation is biphasic, the half-time of the first fase being faster than 20 μs. The second phase is variable and can be as slow as 60 ms. A cytochrome b in the membrane becomes photoreduced with a half-time of 27 ms. Electron flow between cytochromes b and c2 is slow and appears only partially sensitive to antimycin A.Using membranes from the reaction centre-less mutant PM8bg II-15 similar reconstitution measurements were performed. The resulting kinetic measurements showed that fast cytochrome b photoreduction and cytochrome c2 photo-oxidation occurred.The absorbance change at 560 minus 570 nm induced by steady-state illumination of 01 membranes reconstituted with reaction centres was measured at a range of ambient potentials; the reaction was abolished at oxidation-reduction potentials below 0 mV. The change was approximately halved at +50 mV, indicating that cytochrome b+50 is the recipient of electrons from the reconstituted reaction centres. 相似文献
20.
Yuki Takegawa Makoto Nakamura Shin Nakamura Takumi Noguchi Julien Sellés A. William Rutherford Alain Boussac Miwa Sugiura 《BBA》2019,1860(4):297-309
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1? radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA? formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430?nm during the S-state cycle. 相似文献