首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37 degrees C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20 degrees C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20 degrees C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freeze-thaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

2.
Cholesterol transfer from small and large unilamellar vesicles   总被引:3,自引:0,他引:3  
The rates of transfer of [14C]cholesterol from small and large unilamellar cholesterol/egg yolk phosphatidylcholine vesicles to a common vesicle acceptor were compared at 37 degrees C. The rate of exchange of cholesterol between vesicles of identical cholesterol concentrations (20 mol%) did not differ from the rate of transfer from donor vesicles containing 20 mol% cholesterol to egg yolk PC vesicles. Further, the rate of transfer of [14C]cholesterol from vesicles containing 15 mol% dicetyl phosphate (to confer a negative charge) was not different from the rate of transfer from neutral vesicles. However, the half-time for transfer of [14C]cholesterol from large unilamellar donor vesicles was about 5-times greater (10.2 h, 80 nm diameter) than from small unilamellar vesicles (2.3 h, 23 nm diameter). These data suggest that increased curvature in small unilamellar vesicles reduces cholesterol-nearest neighbor interactions to allow a more rapid transfer of cholesterol into the aqueous phase.  相似文献   

3.
Cholesterol sulphate is a potent stabilizer of membrane bilayer structure in both dielaidoylphosphatidylethanolamine and egg phosphatidylethanolamine model membranes, however, the addition of calcium abolishes this bilayer stabilization. Calcium also induces fusion and leakage of egg phosphatidylethanolamine large unilamellar vesicles containing cholesterol sulphate, but has no effect on fusion or leakage of egg phosphatidylcholine large unilamellar vesicles containing cholesterol sulphate. With egg phosphatidylethanoiamine liposomes, the initial rate, and extent of fusion, at constant calcium concentration, vary inversely with the mol percentage of cholesterol sulphate present in the vesicle membrane. The interaction of calcium and cholesterol sulphate, which causes membrane destabilization and fusion in phosphatidylethanolamine containing model systems, may play a role in the acrosome reaction in human sperm.  相似文献   

4.
The effect of the positive surface charge of unilamellar liposomes on the kinetics of their interaction with rat peritoneal macrophages was investigated using three sizes of liposomes: small unilamellar vesicles (approx. 25 nm diameter), prepared by sonication, and large unilamellar vesicles (100 nm and 160 nm diameter), prepared by the Lipoprep dialysis method. Charge was varied by changing the proportion of stearylamine added to the liposomal lipids (egg phosphatidylcholine and cholesterol, molar ratio 10:2.5). Increasing the stearylamine content of large unilamellar vesicles over a range of 0-25 mol% enhanced the initial rate of vesicle-cell interaction from 0.1 to 1.4 microgram lipid/min per 10(6) cells, and the maximal association from 5 to 110 micrograms lipid/10(6) cells. Cell viability was greater than 90% for cells incubated with large liposomes containing up to 15 mol% stearylamine but decreased to less than 50% at stearylamine proportions greater than 20 mol%. Similar results were obtained with small unilamellar vesicles except that the initial rate of interaction and the maximal association were less sensitive to stearylamine content. The initial rate of interaction, with increasing stearylamine up to 25 mol%, ranged from 0.5 to 0.7 microgram lipid/min per 10(6) cells, and the maximal association ranged from 20 to 70 micrograms lipid/10(6) cells. A comparison of the number and entrapped aqueous volume of small and large vesicles containing 15 mol% stearylamine revealed that although the number of large vesicles associated was 100-fold less than the number of small vesicles, the total entrapped aqueous volume introduced into the cells by large vesicles was 10-fold greater. When cytochalasin B, a known inhibitor of phagocytosis, was present in the medium, the cellular association of C8-LUV was reduced approx. 25% but association of SUV increased approx. 10-30%. Modification of small unilamellar vesicles with an amino mannosyl derivative of cholesterol did not increase their cellular interaction over that of the corresponding stearylamine liposomes, indicating that cell binding induced by this glycolipid may be due to the positive charge of the amine group on the sugar moiety. The results demonstrate that the degree of liposome-cell interaction with macrophages can be improved by increasing the degree of positive surface charge using stearylamine. Additionally, the delivery of aqueous drugs to cells can be further improved using large unilamellar vesicles because of their greater internal volume. This sensitivity of macrophages to vesicle charge and size can be used either to increase or reduce liposome uptake significantly by this cell type  相似文献   

5.
Many drugs exhibit lipophilic and cationic (basic) characteristics. Previous studies have shown that lipophilic cations can be accumulated into model membrane 'liposomal' (vesicular) systems in response to establishing a membrane potential (inside negative) across the vesicle membrane. We demonstrate here that the anticancer drugs, adriamycin and vinblastine, can be rapidly accumulated into egg phosphatidylcholine large unilamellar vesicles in response to a valinomycin-dependent K+ diffusion potential (delta psi) to achieve high effective interior concentrations. Further, trapping efficiencies approaching 100% can be easily achieved. The influence of lipid composition and the requirement for valinomycin have been examined for adriamycin. Equimolar cholesterol levels inhibit the uptake process at 20 degrees C. However, incubation at higher temperature results in enhanced uptake. Similarly, the presence of egg phosphatidylserine or incubation at elevated temperatures results in significant adriamycin uptake in the absence of valinomycin. It is shown that the adriamycin retention time in the vesicles is enhanced by an order of magnitude or more when actively trapped by the presence of a membrane potential in comparison to passive trapping procedures. It is suggested that such active trapping procedures may be of use for loading liposomal systems for drug delivery applications, and may provide avenues for controlled release of encapsulated material.  相似文献   

6.
The effects of lipid composition on the relaxivity of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) entrapped in lipid vesicles has been examined for vesicles of different sizes composed of egg phosphatidylcholine and cholesterol in various molar ratios, as well as the stability of those same vesicles in human serum at 37 degrees C. It is found that the incorporation of cholesterol decreases the apparent relaxivity of the entrapped Gd-DTPA, concomitant with an increase in vesicle stability in serum. Cholesterol has little effect on relaxivity when incorporated at ratios up to 20 mole percent, but has an increasing effect at higher mole percentages. These results correlate with the known effects of cholesterol on the osmotic water permeability coefficients of various model membrane systems and suggest that it is the water flux across the vesicle bilayer that is limiting to the T1 relaxivity of the entrapped Gd-DTPA. The incorporation of up to 20 mole percent cholesterol has little effect on the stability of the vesicles in serum, whereas vesicles containing more than 20 mole percent cholesterol show greater increases in stability. It was also found that the stability of vesicles depends upon the size of the vesicles; smaller vesicles are less stable in human serum at 37 degrees C than larger vesicles.  相似文献   

7.
Cholesterol readily exchanges between human skin fibroblasts and unilamellar phospholipid vesicles. Only a fraction of the exchangeable cholesterol and only 10–15% of the total cellular free cholesterol is available for net movement or depletion to cholesterol-free phosphatidylcholine vesicles. [14C]Cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles does not readily equilibrate with fibroblast cholesterol labelled endogenously from [3H]mevalonic acid. While endogenously-synthesized [3H]cholesterol readily becomes incorporated into a pool of esterified cholesterol, little, if any, of the [14C]cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles becomes available for esterification. We interpret these findings as suggesting that: (1) net cholesterol movement from fibroblasts to an acceptor membrane is limited to a small percentage of the plasma membrane cholesterol, and (2) separate pools of cholesterol exist in human skin fibroblasts, one associated with the plasma membrane and the second associated with intracellular membranes, and equilibration of cholesterol between the two pools is a very limited process.  相似文献   

8.
Cultures of newborn rat heart myocytes undergo major age-related alterations as demonstrated by comparing 5-6-day-old cells ("young cells") and 14-15-day-old cells ("old cells"). This includes: changes from spherical to elongated shape; sphingomyelin and cholesterol level/cell increase by 100% and 50%, respectively, while the phosphatidylcholine is reduced by 15-20% with almost no change in content of total phospholipids. There is a 50% increase in total protein content/cell while DNA content remain constant. The specific activity of seven marker enzymes representing most subcellular organelles is increased. Beating rate is reduced from 160 +/- 20 to 20 +/- 20 beats min-1. All the above age-dependent alterations are affected by modification of cellular polar lipid composition. Small unilamellar vesicles of egg phosphatidylcholine added to the growth medium of old cells serve as donor of egg phosphatidylcholine to the cells and as acceptor of cellular sphingomyelin and cholesterol. Sphingomyelin-phospholipid exchange can be separated from cholesterol depletion either by using vesicles of egg phosphatidylcholine/cholesterol mixtures which serve only in the phospholipid exchange process, or by small unilamellar vesicles of sphingomyelin which act only as efficient cholesterol acceptors. Such experiments indicated that the major response of old cells is to alteration in the phosphatidylcholine to sphingomyelin mole ratio, while changes in the cholesterol level induce smaller effects. Thus, reversal of phosphatidylcholine to sphingomyelin mole ratio to the values shown by young cells reverse cellular functions and features which were altered by cell aging to levels found in young cells. This includes: increase in the beating rate back to 160 +/- 20, reduction in the total protein level and in the specific activity per DNA content of seven marker enzymes and reappearance of spherical cell shape. These results suggest that membrane lipid composition has major influence on cellular properties which as described in the accompanying paper (Yechiel, E., Barenholz, Y., and Henis, Y. I. (1985) J. Biol. Chem. 260, 9132-9136), may be mediated through the organization and dynamics of the cell membranes.  相似文献   

9.
[14C]Cholesterol movement between egg phosphatidylcholine-cholesterol lipid vesicles and vesicles prepared from monkey small intestinal brush border membrane (BBMV) was studied in physiological buffer at 37 degrees C. The rate of cholesterol transfer from sonicated unilamellar vesicles (ULV) to BBMV follows apparently first-order kinetics. Intermembrane cholesterol movement was strikingly similar in both the directions. However, from BBMV to ULV, the transfer rate was three times faster than that of ULV to brush border membrane (BBM). Similarity in the rate constant was observed when cholesterol transfer was studied using either large multilamellar lipid vesicles or ULV as the donor and BBMV as the acceptor membrane. Rate constant was also the same when the acceptor membrane used was either intact BBMV or ULV prepared from BBM lipids. The rate of transfer of label was not affected even when the acceptor vesicle concentration was increased over fivefold, indicating the first-order nature of the reaction. Transfer of cholesterol from ULV to BBMV was accelerated by the presence of acetone, dimethyl sulfoxide (DMSO), deoxycholate, and papain. Partially purified nonspecific lipid-exchange protein increased the rate of cholesterol transfer by about threefold. Reduction in BBM cholesterol and phospholipid content was noted by DMSO, acetone, and deoxycholate, while papain caused a small depletion of membrane protein. Cholesterol transfer is temperature dependent with an activation energy of 31 kJ X mol-1, which is almost identical in the presence or absence of nonspecific lipid-exchange protein. The molecular mechanism of intermembrane cholesterol movement is discussed in view of the kinetic data obtained.  相似文献   

10.
The distribution of cholesterol between vesicles of different lipid composition at equilibrium has been determined. Small, sonicated unilamellar vesicles and large unilamellar vesicles were incubated at a defined temperature, and aliquots were then obtained at selected times for analysis. Inclusion of a small amount of phosphatidylserine or phosphatidylinositol in the membrane does not appreciably affect the distribution of cholesterol at equilibrium by these measurements. A membrane in the gel state is a poor acceptor of cholesterol. The length of the hydrocarbon chain on the phospholipid may also play a role. Bovine brain sphingomyelin dramatically slows the kinetics of cholesterol transfer, and the equilibrium distribution of cholesterol among vesicles containing sphingomyelin is therefore not observable in these experiments. Data obtained with vesicles containing phosphatidylethanolamine indicate a preference of cholesterol for vesicles composed of phosphatidylcholine compared to vesicles consisting primarily of phosphatidylethanolamine, at equilibrium. Experiments with a chaotropic agent indicate that the nature of the surface of the phosphatidylethanolamine bilayer, and its hydration, are important factors in the distribution of cholesterol among membranes in which phosphatidylethanolamine is present. These data suggest that membrane lipid content may play a role in the distribution of cholesterol among the membranes of a cell.  相似文献   

11.
The rates of exchange of [4-14C]cholesterol between lipid vesicles prepared with different phospholipids and with different sizes have been measured. The first-order rate constants were higher using vesicles prepared from phosphatidylcholines with highly branched or polyunsaturated fatty acyl chains than with saturated diacyl or di-O-alkyl chains. The rate measurements indicate that the affinity of cholesterol for phospholipid does not vary significantly on change of the type of linkage (ether or ester) in phosphatidylcholine (PC) or of the positions of the fatty acyl chains in 1,2-diacyl-PC bearing one saturated and one unsaturated chain; furthermore, egg phosphatidylglycerol and egg phosphatidylethanolamine appear to have comparable affinities for cholesterol. However, the molecular packing in the bilayer and nearest-neighbor interactions involving cholesterol appear tightened more by N-palmitoylsphingomyelin than by dipalmitoyl-PC; on incorporation of 44 mol % of these phospholipids (which have the same fatty acyl chain composition) into either small or large unilamellar vesicles prepared with egg phosphatidylglycerol, the exchange rates were strikingly slower when the donor species contained sphingomyelin compared with PC. The rate of cholesterol exchange was 100% faster with small unilamellar vesicles than with large unilamellar vesicles as donors, suggesting that the looser packing in the highly curved small vesicles facilitates cholesterol desorption. The cholesterol exchange rate did not vary with the size of the acceptor vesicles, which indicates that desorption is the rate-limiting step in the exchange process in the presence of excess acceptors.  相似文献   

12.
The distribution of free fatty acids at equilibrium after incubation of small sonicated unilamellar vesicles (SUV) with large unilamellar vesicles (LUV) of different lipid composition has been determined. Stearic acid (SA) and oleic acid (OA) showed similar preferences for SUV and LUV of egg yolk phosphatidylcholine (EYPC). Both ionized and protonated forms of the free fatty acids (FFAs) behaved similarly with respect to the equilibrium distribution between EYPC of different size. The charge of the vesicles was found, however, to be important, since both FFAs in their ionized form preferentially associated to vesicles of phosphatidylcholine (PC) as compared with vesicles of phosphatidylglycerol (PC). While SA preferred membranes in the gel state, OA showed preference for the membrane in fluid state. The insertion of both OA and SA in phosphatidylethanolamine (PE)/phosphatidylcholine vesicles is less favourable than in vesicles of pure PC. All these data suggest that membrane lipid content may play a role in determining the distribution of free fatty acids among the membranes of a cell.  相似文献   

13.
Amphotericin B transfer between single-walled vesicles of dipalmitoylphosphatidylcholine (DPPC) and of egg phosphatidylcholine, both containing 10 mol% cholesterol, has been studied concurrently by circular dichroism spectroscopy and permeability measurements. At 22°C amphotericin B is rapidly transferred from DPPC to DPPC vesicles as well as from egg phosphatidylcholine to egg phosphatidylcholine vesicles. On the other hand, although amphotericin B is rapidly transferred from egg phosphatidylcholine to DPPC vesicles, it is not transferred from DPPC to egg phosphatidylcholine vesicles. At 48°C, above the transition temperature of DPPC, transfer occurs rapidly both ways. These results are interpreted in terms of difference of association constant of amphotericin B with vesicle membranes in the gel and liquid-crystalline state.  相似文献   

14.
The purpose of this study was to examine the effects of cholesterol surface transfer between lipid vesicles and rat arterial smooth muscle cells on endogenous synthesis of cholesterol and phosphatidylcholine. Lipid vesicles containing cholesterol and egg phosphatidylcholine in different proportions were used as the extracellular lipid source. The rate of cellular cholesterol and phosphatidylcholine synthesis was determined from the [14C]acetate incorporation into these lipid classes. [3H]Cholesterol in lipid vesicles, with a cholesterol/phospholipid (C/P) mole ratio of 1:1, was rapidly transferred into rat smooth muscle cells, with a half-time of about 3.6 hours in the absence of serum proteins. Incubation of cells for 5 hours with vesicles of a high C/P mole ratio (i.e. 1.5:1) at vesicle-cholesterol concentrations above 100 micrograms/ml resulted in a marked reduction of cellular cholesterol synthesis, whereas the rate of phosphatidylcholine synthesis was increased. Cells incubated with lipid vesicles of C/P 1:2 did not show any change in cellular cholesterol or phosphatidylcholine synthesis. Incubation of cells with egg phosphatidylcholine vesicles at concentrations above 300 micrograms/ml, on the other hand, stimulated endogenous synthesis of cholesterol without affecting cellular phosphatidylcholine synthesis. The main conclusion is that cholesterol surface transfer may influence cellular lipid metabolism in the absence of mediating serum lipoproteins in a model system with cultured cells and lipid vesicles.  相似文献   

15.
N E Gabriel  M F Roberts 《Biochemistry》1986,25(10):2812-2821
Stable unilamellar vesicles formed spontaneously upon mixing aqueous suspensions of long-chain phospholipid (synthetic, saturated, and naturally occurring phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin) with small amounts of short-chain lecithin (fatty acid chain lengths of 6-8 carbons) have been characterized by using NMR spectroscopy, negative staining electron microscopy, differential scanning calorimetry, and Fourier transform infrared (FTIR) spectroscopy. This method of vesicle preparation can produce bilayer vesicles spanning the size range 100 to greater than 1000 A. The combination of short-chain lecithin and long-chain lecithin in its gel state at room temperature produces relatively small unilamellar vesicles, while using long-chain lecithin in its liquid-crystalline state produces large unilamellar vesicles. The length of the short-chain lecithin does not affect the size distribution of the vesicles as much as the ratio of short-chain to long-chain components. In general, additional short-chain decreases the average vesicle size. Incorporation of cholesterol can affect vesicle size, with the solubility limit of cholesterol in short-chain lecithin micelles governing any size change. If the amount of cholesterol is below the solubility limit of micellar short-chain lecithin, then the addition of cholesterol to the vesicle bilayer has no effect on the vesicle size; if more cholesterol is added, particle growth is observed. Vesicles formed with a saturated long-chain lecithin and short-chain species exhibit similar phase transition behavior and enthalpy values to small unilamellar vesicles of the pure long-chain lecithin prepared by sonication. As the size of the short-chain/long-chain vesicles decreases, the phase transition temperature decreases to temperatures observed for sonicated unilamellar vesicles. FTIR spectroscopy confirms that the incorporation of the short-chain lipid in the vesicle bilayer does not drastically alter the gauche bond conformation of the long-chain lipids (i.e., their transness in the gel state and the presence of multiple gauche bonds in the liquid-crystalline state).  相似文献   

16.
The intestinal brush-border membrane contains one or several membrane proteins that mediate fusion and/or aggregation of small unilamellar egg phosphatidylcholine vesicles. The fusion is accompanied by a partial loss of vesicle contents. Proteolytic treatment of the brush-border membrane with proteinase K abolishes the fusogenic property. This finding suggests that the fusogenic activity is associated with a membrane protein exposed on the external or luminal side of the brush-border membrane. Activation of intrinsic proteinases of the brush-border membrane liberates water-soluble proteins (supernate proteins). These proteins behave in an analogous way to intact brush-border membrane vesicles; they induce fusion of egg phosphatidylcholine vesicles and render the egg phosphatidylcholine bilayer permeable to ions and small molecules (Mr less than or equal to 5000). Furthermore, supernate proteins mediate phosphatidylcholine and cholesterol exchange between two populations of small, unilamellar phospholipid vesicles. Supernate proteins are fractionated on Sephadex G-75 SF yielding three protein peaks of apparent Mr greater than or equal to 70,000, Mr = 22,000 and Mr = 11,500. All three protein fractions show similar phosphatidylcholine-exchange activity, but they differ in their effects on the stability of egg phosphatidylcholine vesicles. The protein fraction with an apparent Mr greater than or equal to 70,000 has the highest fusogenic activity while the protein fraction of apparent Mr = 11,500 appears to be most effective in rendering the egg phosphatidylcholine bilayer permeable.  相似文献   

17.
The size and size distribution of unilamellar phospholipid vesicles present in unsonicated phosphatidic acid and mixed phosphatidic acid/phosphatidylcholine dispersions were determined by gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy. The vesiculation in these dispersions was induced by a transient increase in pH as described previously (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683–1687). The resulting phospholipid dispersions are heterogeneous consisting of small unilamellar vesicles (average radius r < 50 nm) and large unilamellar vesicles (average r ranging from about 50 to 500 nm). The smallest vesicles with r = 11 ± 2 nm are observed with dispersions of pure phosphatidic acid, the population of these vesicles amounting to about 80% of the total lipid. With increasing phosphatidylcholine content the radius of the small unilamellar vesicles increases and at the same time the population of small unilamellar vesicles decreases. The average radius of small unilamellar vesicles present in phosphatidic acid/phosphatidylcholine dispersions (mole ratio, 1:1) is 17.5 ± 2 nm, the population of these vesicles amounting to about 70% of the total lipid. By a combination of gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy it was possible to characterize the large unilamellar vesicles. This population is heterogeneous with its mean radius also increasing with increasing phosphatidylcholine content. After separating the large unilamellar vesicles from small unilamellar vesicles on Sepharose 4B it can be shown by quasi-elastic light scattering that in pure phosphatidic acid dispersions 80–90% of the large unilamellar vesicle population consist of vesicles with a mean radius of 170 nm. In mixed phosphatidic acid/phosphatidylcholine dispersions this radius increases to about 265 nm as the phosphatidylcholine content is raised to 90 mol%.  相似文献   

18.
Cholesterol absorption by small intestinal brush border membrane vesicles from taurocholate mixed micelles is a second-order reaction. From a comparison of reaction rates and order before and after proteinase K treatment of brush-border membrane vesicles, it is concluded that cholesterol absorption is protein-mediated. It is shown that the desorption of cholesterol from taurocholate mixed micelles is by a factor of about 10(4) faster than that from egg phosphatidylcholine bilayers. When brush border membrane vesicles are stored at room temperature, intrinsic proteinases are activated and proteins are liberated from the brush border membrane. These proteins collected in the supernatant catalyze cholesterol and phosphatidylcholine exchange between two populations of small unilamellar phospholipid vesicles. One of the active proteins present in the supernatant is purified by a two-step procedure involving gel filtration on Sephadex G-75 SF and affinity chromatography on a Nucleosil-phosphatidylcholine column. The protein thus obtained is pure by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. It has an apparent molecular weight of slightly less than 14,000 as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and a value of 11,500 determined by gel filtration on Sephadex G-75 SF.  相似文献   

19.
Small unilamellar phosphatidylcholine vesicles, formed by solubilizing phosphatidylcholine with sodium cholate and removing the detergent by gel filtration, have been studied in their interaction with phospholipid exchange protein. The exchange of phosphatidylcholine between the vesicles and erythrocyte ghosts was greatly stimulated by the phosphatidylcholine-specific exchange protein from bovine liver. It was found that 95% of the phosphatidylcholine was readily available for exchange within 3 h at 37°C. In similar vesicles prepared by sonication only 70% of the phosphatidylcholine was rapidly exchangeable. Our results indicate that the transmembrane movement of phosphatidylcholine across the bilayer of vesicles prepared by the cholate technique is a relatively fast process. The results are discussed with respect to the presence of trace amounts of lipid-associated cholate which may facilitate the transbilayer exchange of phosphatidylcholine.  相似文献   

20.
The effects of myelin basic protein on the aggregation, lipid bilayer merging, intercommunication of aqueous compartments and leakage of small unilamellar vesicles of egg phosphatidylcholine containing different proportions of galactocerebroside and sulfatide were investigated. This was performed employing light scattering, absorbance changes and fluorescence assays (resonance energy transfer, Terbium/dipicolinic acid assay and carboxyfluorescein release). The apposition of membranes rapidly induced by myelin basic protein is enhanced by sulfatide but reduced by galactocerebroside compared to vesicles of egg phosphatidylcholine alone. On the other hand, the presence of either glycosphingolipid in the membrane interferes with the induction by myelin basic protein of lipid bilayer merging, subsequent fusion and changes of the membrane permeability. Our results support an important modulation by sulfatide and galactocerebroside on the interactions among membranes induced by myelin basic protein, depending on the relative proportions of the glycosphingolipids and phosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号