首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major lipids of Tetrahymena membranes have been purified by thin-layer and high pressure liquid chromatography and the phosphatidylethanolamine and aminoethylphosphonate lipids were examined in detail. 31P-NMR, X-ray diffraction and freeze-fracture electron microscopy were employed to describe the phase behavior of these lipids. The phosphatidylethanolamine was found to form a hexagonal phase above 10°C. The aminoethylphosphonate formed a lamellar phase up to 20°C, but converted to a hexagonal phase structure at 40°C. Small amounts of phosphatidylcholine stabilized the lamellar phase for the aminoethylphosphonate. 31P-NMR spectra of the intact ciliary membranes were consistent with a phospholipid bilayer at 30°C, suggesting that phosphatidylcholine in the membrane stabilized the lamellar form, even though most of the lipid of that membrane prefers a hexagonal phase in pure form at 30°C. 31P-NMR spectra also showed a distinctive difference in the chemical shift tensor of the aminoethylphosphonolipid, when compared to that of phosphatidylethanolamine, due to the difference in chemical structure of the polar headgroups of the two lipids.  相似文献   

2.
Fluorescent products of lipid peroxidation accumulate with age in microsomal membranes from senescing cotyledons of Phaseolus vulgaris. The temporal pattern of accumulation is closely correlated with a rise in the lipid phase transition temperature reflecting the formation of gel phase lipid. Increased levels of fluorescent peroxidation products are also detectable in total lipid extracts of senescent cotyledons. Lipoxygenase activity increases with advancing age by about 3-fold on a fresh weight basis and 4-fold on a dry weight basis indicating that the tissue acquires elevated levels of lipid hydroperoxides. As well, levels of glutathione and superoxide dismutase activity decline on a dry weight basis as the cotyledons age, rendering the tissue more susceptible to oxidative damage. Catalase activity rises initially and then declines during senescence, but peroxidase activity rises steeply. Thus, apart from this increase in peroxidase, which would scavenge H2O2 only if appropriate cosubstrates were available, the defense mechanisms for coping with activated oxygen species (O2, H2O2, OH) are less effective in the older tissue. The observations support the contention that formation of gel phase lipid in senescing membranes is attributable to lipid peroxidation and suggest that the reactions of lipid peroxidation are utilized by the cotyledons to mediate deteriorative changes accompanying the mobilization and transport of metabolites from the storage tissue to the developing embryo.  相似文献   

3.
《Biophysical journal》2022,121(10):1789-1798
Purple membrane (PM) is composed of several native lipids and the transmembrane protein bacteriorhodopsin (bR) in trimeric configuration. The delipidated PM (dPM) samples can be prepared by treating PM with CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) to partially remove native lipids while maintaining bR in the trimeric configuration. By correlating the photocycle kinetics of bR and the exact lipid compositions of the various dPM samples, one can reveal the roles of native PM lipids. However, it is challenging to compare the lipid compositions of the various dPM samples quantitatively. Here, we utilize the absorbances of extracted retinal at 382 nm to normalize the concentrations of the remaining lipids in each dPM sample, which were then quantified by mass spectrometry, allowing us to compare the lipid compositions of different samples in a quantitative manner. The corresponding photocycle kinetics of bR were probed by transient difference absorption spectroscopy. We found that the removal rate of the polar lipids follows the order of BPG ≈ GlyC < S-TGD-1 ≈ PG < PGP-Me ≈ PGS. Since BPG and GlyC have more nonpolar phytanyl groups than other lipids at the hydrophobic tail, causing a higher affinity with the hydrophobic surface of bR, the corresponding removal rates are slowest. In addition, as the reaction period of PM and CHAPS increases, the residual amounts of PGS and PGP-Me significantly decrease, in concomitance with the decelerated rates of the recovery of ground state and the decay of intermediate M, and the reduced transient population of intermediate O. PGS and PGP-Me are the lipids with the highest correlation to the photocycle activity among the six polar lipids of PM. From a practical viewpoint, combining optical spectroscopy and mass spectrometry appears a promising approach to simultaneously track the functions and the concomitant active components in a given biological system.  相似文献   

4.
Lipid polymorphism and the roles of lipids in membranes   总被引:7,自引:0,他引:7  
The reasons for lipid diversity in membranes are not understood. Here we review evidence supporting the proposal that factors related to the polymorphic capabilities of lipids provide a rationale for lipid diversity. In particular, the ability of lipids to adopt different polymorphic phases appears to be related to a generalized shape property, where lipids with a cylindrical geometry preferentially adopt the bilayer phase whereas ‘cone’ shaped lipids adopt the hexagonal HII phase. Lipid diversity may then be considered to satisfy three demands. The first is obviously a need for bilayer forming lipids to provide the basic permeability barrier, whereas the second concerns a need for non-bilayer lipids and associated structures for fusion and related membrane contact phenomena to proceed. A third, and less obvious demand satisfied by non-bilayer lipids concerns the ability of lipids of different shapes to modulate the order in the hydrocarbon region when constrained to a bilayer organization. These possibilities are summarized in a metamorphic mosaic model of membranes.  相似文献   

5.
Lipid quantitation is widespread in the algae literature, but popular methods such as gravimetry, gas chromatography and mass spectrometry (GC–MS), and Nile red cell staining suffer drawbacks, including poor quantitation of neutral lipids, expensive equipment, and variable results among algae species, respectively. A high-throughput microplate assay was developed that uses Nile red dye to quantify neutral lipids that have been extracted from algae cells. Because the algal extracts contained pigments that quenched Nile red fluorescence, a mild bleach solution was used to destroy pigments, resulting in a nearly linear response for lipid quantities in the range of 0.75 to 40 μg. Corn oil was used as a standard for quantitation, although other vegetable oils displayed a similar response. The assay was tested on lipids extracted from three species of Chlorella and resulted in close agreement with triacylglycerol (TAG) levels determined by thin layer chromatography. The assay was found to more accurately measure algal lipids conducive to biodiesel production and nutrition applications than the widely used gravimetric assay. Assay response was also consistent among different species, in contrast to Nile red cell staining procedures.  相似文献   

6.
The temperature-induced volume expansion of enzymatically isolated cuticular membranes of twelve plant species was measured. All cuticular membranes exhibited distinct second-order phase transitions in the temperature range of about 40 to 50° C. Increases in the volumes of fruit cuticles (Lycopersicon, Cucumis, Capsicum, Solanum and Malus) were fully reversible, while leaf cuticular membranes (Ficus, Hedera, Nerium, Olea, Pyrus, Picea and Citrus) underwent irreversible structural changes. Below the phase-transition temperature, volumetric expansion coefficients ranged from 0.39·10–6 m3·kg–1·K–1 to 0.62·10–6 m3·kg–1·K–1, and above from 0.60·106 m3·kg–1·K\-1 to 1.41· 10–6 m3·kg–1·K–1. Densities of cuticles at 25° C ranged from 1020 kg·m–3 to 1370 kg·m–3. Expansion coefficients and phase transitions were characteristic properties of the polymer matrix as a composite material, rather than of cutin alone. It is argued that the sudden increase of water permeability above the transition temperature, is caused by an increase of disorder at the interface between the polymer matrix and the soluble cuticular lipids. Possible ecological and physiological consequences of these results for living plants are discussed.Abbreviations CM Cuticular membrane - CU cutin - MX polymer matrix - SCL soluble cuticular lipids (waxes) The authors greatfully acknowledge stimulating discussions with Drs. H. Gruler (Exp. Physik 3, Universität Ulm, FRG) and M. Riederer (Institut für Botanik und Mikrobiologie, Technische Universität München, München, FRG) and financial support by the Deutsche Forschungsgemeinschaft.  相似文献   

7.
The effects of 14 sesquiterpene hydroquinones, including 8 marine sponge-derived avarols (18) and 6 semisynthetic derivatives (914), on lipid droplet accumulation and neutral lipid synthesis in Chinese hamster ovary (CHO) K1 cells were investigated. In intact CHO-K1 cell assays, avarol (1) markedly decreased the number and size of lipid droplets in CHO-K1 cells and exhibited the most potent inhibitory activity on the synthesis of cholesteryl ester (CE) and triglyceride (TG) with IC50 values of 5.74 and 6.80 µM, respectively. In enzyme assays, sterol O-acyltransferase (SOAT), the final enzyme involved in CE biosynthesis, and diacylglycerol acyltransferase (DGAT), the final enzyme involved in TG biosynthesis, were inhibited by 1 with IC50 values of 7.31 and 20.0 µM, respectively, which correlated well with those obtained in the intact cell assay. These results strongly suggest that 1 inhibited SOAT and DGAT activities in CHO-K1 cells, leading to a reduction in the accumulation of CE and TG in lipid droplets.  相似文献   

8.
Freeze fracture electron microscopy studies were performed on samples of Anacystis nidulans quenched from different temperatures. Membrane lipid phase separations were observed to take place over the ranges 15–30°C, 5–25°C and –5–15°C for cultures grown at 38, 28 and 18°C, respectively. Differential scanning calorimetry heating curves showed endotherms which coincided with these temperature ranges. Variations of phase separation temperatures with growth temperature, and hysteresis effects in the calorimetric measurements, were related to changes in the fatty acid composition of membrane lipids.  相似文献   

9.
The phase behaviour of leaf polar lipids from three plants, varying in their sensitivity to chilling, was investigated by differential scanning calorimetry. For the lipids from mung bean (Vigna radiata L. var. Berken), a chilling-sensitive plant, a transition exotherm was detected beginning at 10 ± 2°C. No exotherm was evident above 0°C with polar lipids from wheat (Triticum aestivum cv. Falcon) or pea (Pisum sativum cv. Massey Gem), plants which are insensitive to chilling. The enthalpy for the transition in the mung bean polar lipids indicated that only about 7% w/w of the lipid was in the gel phase at ?8°C. The thermal transition of the mung bean lipids was mimicked by wheat and pea polar lipids after the addition of 1 to 2% w/w of a relatively high melting-point lipid such as dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol or dimyristoylphosphatidylcholine. Analysis of the polar lipids from the three plants showed that a dipalmitoylphosphatidylglycerol was present in mung bean (1.7% w/w) and pea (0.3% w/w) but undetected in wheat, indicating that the transition exotherm temperature of 10°C in mung bean, 0°C in pea and about ?3°C in wheat correlates with the proportion of the high melting-point disaturated component in the polar lipids. The results indicate that the transition exotherm, observed at temperatures above 0°C in the membranes of chilling-sensitive plants, could be induced by small amounts of high melting-point lipids and involves only a small proportion of the membrane polar lipids.  相似文献   

10.
This article proposes a dynamical model of microalgal lipid production under nitrogen limitation. In this model, intracellular carbon is divided between a functional pool and two storage pools (sugars and neutral lipids). The various intracellular carbon flows between these pools lead to a complex dynamic with a strong discrepancy between synthesis and mobilization of neutral lipids. The model has been validated with experiments of Isochrysis aff. galbana (clone T-iso) culture under various nitrogen limitation conditions and under nitrogen starvation. The hysteresis behavior of the neutral lipid quota observed experimentally is accurately predicted.  相似文献   

11.
Summary Protein content, dry weight, cell viability, and the ability of cultures to be subcultured were measured at 4-d intervals beginning on Day 14 when cell division and expansion had stopped. Measurements were continued until the cultures had died. The protein content of senescing cultures decreased from approximately 780 to 500 μg between Days 14 and 18, then remained relatively constant until Day 26 whereupon it declined to approximately 350 μg/culture. The decline in protein content of parent cultures did not correlate well with cell viability and their ability to be subcultured at some ages. In older cultures it was estimated that less than 2000 of the approximately 261×106 cells appeared to be capable of dividing when they were subcultured. This work was supported by National Institute of Health Grant 1 R01 AG01709-02.  相似文献   

12.
13.
Microalgae are considered one of the best candidates for biofuel production due to their high content in neutral lipids, therefore, an accurate quantification of these lipids in microalgae is fundamental for the identification of the better candidates as biodiesel source.Nile red is a fluorescent dye widely employed for the quantification of neutral lipids in microalgae. Usually, the fluorescence intensity of the stained samples is correlated to the neutral lipid content determined with standard methods, in order to draw a standard curve and deduce the neutral lipids concentration of the unknown samples positioning their fluorescence intensity values on the curve.Standard methods used for the neutral lipids determination are laborious and often implying solvent extraction and/or other transformation (i.e. saponification or transesterification) of the sample. These methods are also time consuming and may give rise to an underestimation of the lipid content due to variable extraction yields.The approach described in this paper combines the standard addition method and the fluorometric staining using Nile red, avoiding the association of traditional neutral lipids quantification methods to the fluorometric determination. After optimization of instrument parameters and staining conditions, a linear correlation between the fluorescence intensity of each sample stained with the Nile red and its neutral lipids content deduced with the standard addition method was identified. The obtained curve allowed the direct determination of neutral lipids content maintaining a linearity range from 0.12 to 12 μg of neutral lipids per ml of sample, without need of pre-concentration. This curve was then used in the quantification of the neutral lipids content in culture of Skeletonema marinoi (Bacillariophyceae) at different days from the inoculum. This method was also successfully applied on Chaetoceros socialis (Bacillariophyceae) and Alexandrium minutum (Dinophyceae).  相似文献   

14.
Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22-C24 ceramides. We demonstrate that ablation of CerS2 has different effects on liver and brain, causing a significant alteration in the fluidity of the membrane and affecting the type and/or extent of the phases present in the membrane. These changes are a consequence of the depletion of VLC and unsaturated SLs, which occurs to a different extent in liver and brain. In addition, ablation of CerS2 causes changes in intrinsic membrane curvature, leading to strong morphological alterations that promote vesicle adhesion, membrane fusion, and tubule formation. Together, these results show that depletion of VLC-SLs strongly affects membrane biophysical properties, which may compromise cellular processes that critically depend on membrane structure, such as trafficking and sorting.  相似文献   

15.
16.
We have examined the thermal characteristics and barrier properties of vesicles formed from six analogues of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). These analogues differ from DPPC in that the glycerol backbone has been replaced by each of the diastereoisomeric cyclopentane-1,2,3-triols. All of these compounds have main gel to liquid-crystal phase transition temperatures within 5 Kelvin of DPPC and four possess comparable enthalpies and entropies of transition. For two of the analogous, however, the values of the enthalpy and entropy of transition are more than double that of DPPC. The permeability characteristics and organization (as measured by diphenylhexatriene fluorescence depolarization) of vesicles formed from these two compounds suggest that their large transition enthalpy and entropy result from either a reorganization of the polar head group region during the transition or interdigitation of the acyl chains of opposing monolayers.  相似文献   

17.
A variety of neutral ether lipids was synthesized. A method for the synthesis of 1,3-O-dialkyl-sn-glycerols was developed which involves selective alkylation of 3-O-alkyl-sn-glycerols. The ORD and CD curves of the various glyceryl ethers and their esters were analyzed. The correlation between the CD sign of the acyl residue and its position in the glycerol derivative was clarified.  相似文献   

18.
Defensins promote fusion and lysis of negatively charged membranes.   总被引:8,自引:0,他引:8       下载免费PDF全文
Defensins, a family of cationic peptides isolated from mammalian granulocytes and believed to permeabilize membranes, were tested for their ability to cause fusion and lysis of liposomes. Unlike alpha-helical peptides whose lytic effects have been extensively studied, the defensins consist primarily of beta-sheet. Defensins fuse and lyse negatively charged liposomes but display reduced activity with neutral liposomes. These and other experiments suggest that fusion and lysis is mediated primarily by electrostatic forces and to a lesser extent, by hydrophobic interactions. Circular dichroism and fluorescence spectroscopy of native defensins indicate that the amphiphilic beta-sheet structure is maintained throughout the fusion process. Taken together, these results support the idea that protein-mediated membrane fusion depends not only on hydrophobic and electrostatic forces but also on the spatial arrangement of the amino acid residues to form a three-dimensional amphiphilic structure, which promotes the efficient mixing of the lipids between membranes. A molecular model for membrane fusion by defensins is presented, which takes into account the contributions of electrostatic forces, hydrophobic interactions, and structural amphiphilicity.  相似文献   

19.
When human red cells are treated with the mercurial sulfhydryl reagent, p-chloromercuribenzene sulfonate, osmotic water permeability is suppressed and only diffusional water permeability remains (Macey, R.I. and Farmer, R.E.L. (1970) Biochim. Biophys. Acta 211, 104–106). It has been suggested that the route for the remaining water permeation is by diffusion through the membrane lipids. However, after making allowance for the relative lipid area of the membrane, the water diffusion coefficient through lipid bilayers which contain cholesterol is too small by a factor of two or more. We have measured the permeability coefficient of normal human red cells by proton T1 NMR and obtained a value of 4.0 · 10?3 cm · s?1, in good agreement with published values. In order to study permeation-through red cell lipids we have perturbed extracted red cell lipids with the lipophilic anesthetic, halothane, and found that halothane increases water permeability. The same concentration of halothane has no effect on the water permeability of human red cells, after maximal pCMBS inhibition. In order to compare halothane mobility in extracted red cell membrane lipids with that in red cell ghost membranes, we have studied halothane quenching of N-phenyl-1-naphthylamine by equilibrium fluorescence and fluorescence lifetime methods. Since halothane mobility is similar in these two preparations, we have concluded that the primary route of water diffusion in pCMBS-treated red cells is not through membrane lipids, but rather through a membrane protein channel.  相似文献   

20.
This paper reviews model membrane studies on the modulation of the macroscopic structure of lipids by lipid-protein interactions, with particular emphasis on the gramicidin molecule. This hydrophobic peptide has three main effects on lipid polymorphism: (1) in lysophosphatidylcholine it triggers a micellar to bilayer transition, (2) in phosphatidylethanolamine it lowers the bilayer to hexagonal HII phase transition temperature and (3) in phosphatidylcholine and other bilayer preferring lipids it is able to induce the formation of an HII phase. From experiments in which the gramicidin molecule was chemically modified it can be concluded that the tryptophan residues play a determining role in the peptide-induced changes in polymorphism. The experimental data lead to the proposal that gramicidin molecules have a tendency to self-associate, possibly mediated by tryptophan-tryptophan interactions and organize into tubular structures such as found in the HII phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号