首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
U. Schreiber 《BBA》1980,591(2):361-371
Phycobilin fluorescence of Anacystis nidulans grown at 28°C increases substantially upon cooling below 10°C. A maximal increase is found around ?5°C and amounts to 300%, with almost complete reversibility upon re-warming. Illumination with actinic light leads to considerable stimulation of the cold-induced phycobilin fluorescence increase. Analysis of the light stimulation phenomenon reveals: (1) Actinic illumination shifts the fluorescence-temperature characteristic by about 3°C upwards on the T-axis. At temperatures below 5°C the light stimulating effect becomes smaller again and fluorescence-temperature characteristics measured at high and low light intensity converge around ?5°C. (2) In the 13-8°C region a large (up to 100%) light-induced phycobilin fluorescence increase is observed, while only negligible changes occur in the dark. (3) 3-(3,4-Dichlorophenyl)-1,1-dimethyl urea (DCMU) as well as uncouplers inhibit the light stimulation, which hence depends on coupled electron transport.In agreement with previous work (Schreiber, U. (1979) FEBS Lett. 107, 4–9) it is concluded that illumination enhances cold-induced phycobilisome detachment by increasing the net negative charge at the outer surface of the thylakoid membrane. The possible role of a fluid → ordered transition of membrane lipids (Murata, N. and Fork, D.C. (1975) Plant Physiol. 56, 791–796) is discussed.  相似文献   

2.
The kinetics of the chlorophyll fluorescence rise induced by adding 20 mM MgCl2 to a suspension of isolated pea chloroplasts treated with 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) have been examined experimentally and theoretically as a function of temperature. The application of similarity arguments and particle aggregation theory to the experimental results suggests that at the first approximation, the salt-induced time-dependent fluorescence changes may be described by the diffusion-controlled lateral movement of Photosystem II pigment-protein complexes. From an analysis of the temperature dependence of the fluorescence changes, estimates obtained for the lateral diffusion coefficients were 1.85 · 10?12–3.08 · 10?11 cm2/s over the temperature range 10°C ? T?30°C.  相似文献   

3.
Pierre Bennoun  Yung-sing Li 《BBA》1973,292(1):162-168
Simultaneous measurements of hydroxylamine photo-oxidation and fluorescence induction were performed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). The results provide a justification for the common use of fluorescence data to estimate the concentration of active System II centers in the presence of inhibitors.The addition of DCMU to dark-adapted chloroplasts under special conditions induces a large increase of the initial yield of fluorescence. A reversible inactivation of part of the System II centers is responsible for this effect. Similar data were obtained with other classical inhibitors of oxygen evolution.  相似文献   

4.
The effect of ultraviolet light on thermoluminescence, oxygen evolution and the slow component of delayed light has been investigated in chloroplasts and Pothos leaves. All peaks including peak V (48°C) were inhibited by UV. However, the peak at 48°C which was induced by DCMU was enhanced following UV irradiation of chloroplasts at ambient temperature (23°C) whereas peak II (-12°C) and peak III (10°C) which were also induced by DCMU were inhibited. Chloroplasts treated with DCMU and dark incubated for several minutes at ambient temperature prior to recording of glow curves have also shown enhancement of peak at 48°C. A slow component of delayed light and photosystem II activity of chloroplasts were inhibited by UV whereas photosystem I activity was marginally affected. These results corroborate involvement of photosystem II in generating thermoluminescence and slow components of delayed light in photosynthetic materials.Abbreviations DCIP Dichlorophenol Indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCQ 2,6 Dichloro-p-benzoquinone - DLE delayed light emission - MOPS Morpholino propane sulfonic acid - PSI Photosystem I - PS II Photosystem II - TL thermoluminescence  相似文献   

5.
The purification and properties of a new oxygen-evolving Photosystem (PS) II particle from the thermophilic blue-green alga Phormidium laminosum are described. The activity of the lauryldimethylamine N-oxide PS II-enriched supernatant described previously (Stewart, A.C. and Bendall, D.S. (1979) FEBS Lett. 107, 308–312) was found to be stabilized for several days at 4°;C by the addition of a second detergent, dodecyl-β-d-maltoside (lauryl maltoside). The lauryl maltoside/lauryldimethylamine N-oxide extract could be fractionated by sucrose density gradient centrifugation. Very high rates of oxygen evolution, typically 1900–2400 μmol O2/mg chlorophyll a per h at pH 7 with dimethylbenzoquinone and ferricyanide as acceptors, were observed for the lowest green band from the gradient. This fraction contained cytochromes b-559 (high-potential) and c-549, but was completely devoid of P-700 and cytochromes b-563 and f. The purified oxygen-evolving particles comprised seven major polypeptides (Mr 58 900, 52 400, 43 200, 33 900, 30 000, 16 000 and 15 000) and approximately five minor polypeptides. The particles contained 3–4 Mn atoms per reaction centre and had a chlorophyll antenna of approx. 50 chlorophyll a. The fast phase of fluorescence induction curves in the presence of hydroxylamine and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) could be described by an exponential, suggesting that no energy transfer was occurring between the PS II units responsible for this phase. Comparison of the area above the fluorescence induction curves in the absence and presence of DCMU suggested an acceptor pool size of 2–3 equivalents per centre.  相似文献   

6.
Nitrogenase Activity and Photosynthesis in Plectonema boryanum   总被引:3,自引:1,他引:2       下载免费PDF全文
Nitrogen-starved Plectonema boryanum 594 cultures flushed with N(2)/CO(2) or A/CO(2) (99.7%/0.3%, vol/vol) exhibited nitrogenase activity when assayed either by acetylene reduction or hydrogen evolution. Oxygen evolution activities and phycocyanin pigments decreased sharply before and during the development of nitrogenase activity, but recovered in the N(2)/CO(2) cultures after a period of active nitrogen fixation. Under high illumination, the onset of nitrogenase activity was delayed; however, the presence of 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU) eliminated this lag. Oxygen was a strong and irreversible inhibitor of nitrogenase activity at low (>0.5%) concentrations. In the dark, low oxygen tensions (0.5%) stimulated nitrogenase activity (up to 60% of that in the light), suggesting a limited but significant respiratory protection of nitrogenase at low oxygen tensions. DCMU was not a strong inhibitor of nitrogenase activity. A decrease in nitrogenase activity after a period of active nitrogen fixation was observed in the N(2)/CO(2-), but not in the A/CO(2-), flushed cultures. We suggest that this decrease in nitrogenase activity is due to exhaustion of stored substrate reserves as well as inhibition by the renewed oxygen evolution of the cultures. Repeated peaks of alternating nitrogenase activity and oxygen evolution were observed in some experiments. Our results indicate a temporal separation of these basically incompatible reactions in P. boryanum.  相似文献   

7.
O. Lumpkin  Z. Hillel 《BBA》1973,305(2):281-291
Using a simple He-Ne (632.8-nm) laser phosphoroscope steady-state luminescence from Chlorella pyrenoidosa was studied from 50 μs to 1.1 ms between 1 ms long exciting flashes. The following results were obtained: (1) prior freezing or ultraviolet irradiation changed the time course of the luminescence to a rapid decay with a half-time of about 110 μs; (2) 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) suppressed the 110-μs luminescence; (3) spectrally, all observed luminescence was, within possible error, identical to fluorescence; (4) no effect on the luminescence intensity from pulsed magnetic fields up to 30 kgauss was observed; (5) the relative fluorescence yield, measured simultaneously with luminescence, was found to be constant.Our principal conclusions, supported mainly by experiments with DCMU, are: (1) the 110-μs decay is a distinct component of the total steady-state luminescence; (2) prior freezing or ultraviolet irradiation isolates this component of the luminescence by suppressing all other components; (3) the half-time and intensity of this component are temperature independent in the interval 0–22 °C.  相似文献   

8.
Exponentially growing cultures of Thalassiosira fluviatilis Hustedt and Dunaliella tertiolecta Butcher were exposed to 4 min temperature shocks of 5° to 20°C above ambient (20°C). Photosynthetic carbon fixation, changes in in vivo fluorescence and fluorescence on the addition of the herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) were measured over the subsequent 24 h. The fluorescence ratio (R, DCMU-enhanced fluorescence/in vivo fluorescence) paralleled changes in photosynthesis over this period; both were significantly reduced (P < 0.05) by temperature shocks of +15° and +20° C, but +5° and +10° C treatments had no inhibitory effect on either relative to the control. The instantaneous response obtained with the fluorescence ratio indicates that the technique might be applicable to routine bioassay procedures and thus replace the time consuming methods now used for the estimation of 14C-incorporation and growth rates.  相似文献   

9.
Detailed absorbance difference spectra are reported for the Photosystem II acceptor Q, the secondary donor Z, and the donor involved in photosynthetic oxygen evolution which we call M. The spectra of Z and Q could be resolved by analysis of flash-induced kinetics of prompt and delayed fluorescence, EPR signal IIf and absorbance changes in Tris-washed system II preparations in the presence of ferricyanide and 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). The spectrum of Z oxidation consists mainly of positive bands at 260, 300 and 390–450 nm on which a chlorophyll a band shift around 438 nm is superimposed, and is largely pH-independent as is also the case for the spectrum of Q reduction. The re-reduction of Z+ occurred in the millisecond time range, and could be explained by a competition between back reaction with Q? (120 ms at pH 6.0) and reduction by ferrocyanide. When the Tris treatment is omitted the preparations evolve oxygen, and the photoreduction of Q (with DCMU present) is accompanied by the oxidation of M. The Q spectrum being known, the spectrum of the oxidation of M could be determined as well. It consists of a broad, asymmetric increase peaking near 305 nm and of a Chl a band shift, which is about the same as that accompanying Z in Tris-washed system II. Comparison with spectra of model compounds suggests that Z is a bound plastoquinol which is oxidized to the semiquinone cation and that the oxidation of M is an Mn(III) → Mn(IV) transition.  相似文献   

10.
The kinetics of the photoreduction of C-550, the photooxidation of cytochrome b559 and the fluorescence yield changes during irradiation of chloroplasts at ?196 °C were measured and compared. The photoreduction of C-550 proceeded more rapidly than the photooxidation of cytochrome b559 and the fluorescence yield increase followed the cytochrome b559 oxidation. These results suggest that fluorescence yield under these conditions indicates the dark reduction of the primary electron donor to Photosystem II, P680+, by cytochrome b559 rather than the photoreduction of the primary electron acceptor.The photoreduction of C-550 showed little if any temperature dependence over the range of ?196 to ?100 °C. The amount of cytochrome b559 photooxidized was sensitive to temperature decreasing from the maximal change at temperatures between ?196 to ?160 °C to no change at ?100 °C. To the extent that the reaction occurred at temperatures between ?160 and ?100 °C the rate was largely independent of temperature. The rate of the fluorescence increase was dependent on temperature over this range being 3–4 times more rapid at ?100 than at ?160 °C. At ?100 °C the light-induced fluorescence increase and the photoreduction of C-550 show similar kinetics. The temperature dependence of the fluorescence induction curve is attributed to the temperature dependence of the dark reduction of P680+.The intensity dependence of the photoreduction of C-550 and of the photooxidation of cytochrome b559 are linear at low intensities (below 200 μW/cm2) but fall off at higher intensities. The failure of reciprocity in the photoreduction of C-550 at the higher intensities is not explained by the simple model proposed for the Photosystem II reaction centers.  相似文献   

11.
A study was made with a modulated oxygen electrode of the effect of variations of oxygen concentration on photosynthetic oxygen evolution from algal cells. When Chlorella vulgaris is examined with a modulated 650 nm light at 22°C, both the oxygen yield and the phase lag between the modulated oxygen signal and the light modulations have virtually constant values between 800 and 120 ergs · cm?1 · s?1 if the bathing medium is in equilibrium with the air. Similar results are obtained at 32°C between 1600 and 120 ergs · cm?2 · s?1. Under anerobic conditions both the oxygen yield and the phase lag decrease if the light intensity is lowered below about 500 ergs · cm?2 · s?1 at 22°C or about 1000 ergs · cm?2 · s?1 at 32°C. A modulated 706 nm beam also gives rise to these phenomena but only at significantly lower rates of oxygen evolution. The cells of Anacystis nidulans and Porphyridium cruentum appear to react in the same way to anaerobic conditions as C. vulgaris. An examination of possible mechanisms to explain these results was performed using a computer simulation of photosynthetic electron transport. The simulation suggests that a backflow of electrons from a redox pool between the Photosystems to the rate-limiting reaction between Photosystem II and the water-splitting act can cause a decrease in oxygen yield and phase lag. If the pool between the Photosystems is in a very reduced state a significant cyclic flow is expected, whereas if the pool is largely oxidized little or no cyclic flow should occur. It is shown that the effects of 706 nm illumination and removal of oxygen can be interpreted in accordance with these proposals. Since a partial inhibition of oxygen evolution by 3-(3.4-dichlorophenyl)-1,1-dimethylurea (10?8 M) magnifies the decreases in oxygen yield and phase lag, it is proposed that the pool which cycles back electrons is in front of the site of 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition and is probably the initial electron acceptor pool after Photosystem II.  相似文献   

12.
The divalent-cation-specific ionophore A23187 is used to define two components of the slow fluorescence quenching of type a spinach chloroplasts: ionophore-reversible and ionophore-resistant quenching. Ionophore-reversible quenching predominates at relatively low light intensities and approaches saturation as light levels are increased. It is sensitive to uncouplers and to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and is dark reversible. At high light intensities the bulk (> 80%) of slow fluorescence quenching is ionophore-resistant. Ionophore-resistant quenching is stimulated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) at pH 7.6 and by both CCCP and methylamine at pH 9.0. It is insensitive to DCMU and is not reversed in subsequent darkness. Taken together, the two components account for all quenching observed in Type A chloroplasts.Ionophore-reversible quenching is identified with the Mg2+-mediated fluorescence quenching described by Krause (Biochim. Biophys. Acta (1974) 333, 301–313) and by Barber and Telfer (in Membrane Transport in Plants (Dainty, J., and Zimmermann, U., eds.), pp. 281–288, Springer-Verlag, Berlin, 1974). Ionophore-resistant quenching, a first-order process requiring high light, resembles the quenching reported by Jennings et al. (Biochim. Biophys. Acta (1976) 423, 264–274).The resolution of the fluorescence quenching phenomenon into two distinct components reconciles the apparently contradictory observations of these earlier investigations.  相似文献   

13.
In this study, chlorophyll fluorescence parameters (?F/F m′, F v/F m) and oxygen evolution of female vegetative tissues of Porphyra katadai var. hemiphylla in unisexual culture (FV) and in mixed culture with male vegetative tissues (FV-M) were followed at 5–20 °C, 10 and 80 μmol photons m?2 s?1. The formation of reproductive tissues was closely correlated with decreasing photosynthetic activities. At the same temperature the tissues cultured under 80 μmol photons m?2 s?1 showed a greater extent of maturation than those under 10 μmol photons m?2 s?1, and their decrease in photosynthesis was also larger. Under the same light intensity the extent of maturation increased with increasing temperature, and both cultures showed higher values of ?F/F m′ and F v/F m at 10 and 15 °C, while their oxygen evolution became negative at 15–20 °C during the later period. Under the same culture condition the maturation of FV-M culture was relatively faster than that of FV culture, while their photosynthetic activity, especially ?F/F m′, was lower.  相似文献   

14.
P. Mathis  A.W. Rutherford 《BBA》1984,767(2):217-222
Phenolic herbicides were added to suspensions of spinach chloroplasts or to oxygen-evolving Photosystem II membranes. Flash absorption spectroscopy at 21°C around 1000 nm reveals that these chemicals lead to a flash-induced absorption increase attributed to the radical-cation of a carotenoid. The herbicides studied can be arranged in the following order of decreasing efficiency for the reported effect: i-dinoseb, bromonitrothymol, trinitrophenol, ioxynil, dinitroorthocresol, 2,4-dinitrophenol. A similar effect was not observed with atrazine, DCMU or o-phenanthroline. For a given herbicide concentration, the amount of flash-induced carotenoid cation increases sharply when the pH is lowered below 5.5. A similar effect does not take place with other molecules which induce the formation of a carotenoid cation: tetraphenylboron, FCCP, 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT-2p). The previous effects are observed in both oxygen-evolving Photosystem II and in preparations in which oxygen evolution is inhibited with alkaline Tris. In untreated material, the carotenoid cation is formed with a half-time of 10–35 μs. After Tris treatment, this half-time is a little longer at low than at high pH. These results indicate the existence of a specific site where phenolic inhibitors interact in the oxygen-evolving site of Photosystem II  相似文献   

15.
Chlorophyll degradation in Cucumis leaf discs was measured at different temperatures between 1 and 25°C in the light and in darkness, and in the presence or absence of sucrose. Two different processes of chlorophyll degradation could be distinguished, a light-requiring process operating at 1 and 5°C and another, light and sucrose enhanced degradation process which was evident at 25°C. Degradation of leaf pigments at low temperatures was of a photo-oxidative nature since there was no degradation in the dark. The chlorophyll a/b ratio was decreased, carotene was degraded at a faster rate than chlorophyll, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and triphenyltetrazolium chloride (TTC) which prevent photo-oxidation, protected against chlorophyll degradation. The light and sucrose enhanced chlorophyll degradation at 25°C was of an enzymatic nature since it occurred in the dark as well as in the light. The chlorophyll a/b ratio was not affected, and carotene and chlorophyll degradation occurred at the same rate. Since DCMU completely inhibited the light enhancement at 25°C and experimentation in a low oxygen atmosphere also protected chlorophyll against the effect of light and sugar application, it is suggested that the enhancement of chlorophyll degradation by light and sucrose at 25°C may be due to increased sugar uptake of the chloroplasts and consequently excessive starch formation in the organelles.  相似文献   

16.
Hydrogen-supported nitrogenase activity was demonstrated in Anabaena cylindrica cultures limited for reductant. Nitrogen-fixing Anabaena cylindrica cultures sparged in the light with anaerobic gases in the presence of the photosynthesis inhibitor DCMU slowly lost their ability to reduce acetylene in the light under argon but exhibited near normal activities in the presence of 11% H2 (balance argon). The hydrogen-supported nitrogenase activity was half-saturated between 2 and 3% H2 and was strongly inhibited by oxygen (50% inhibition at about 5–6% O2). Batch cultures of Anabaena cylindrica approaching stationary growth phase (“old” cultures) lost nitrogenase-dependent hydrogen evolution almost completely. In these old cultures hydrogen relieved the inhibitory effects of DCMU and O2 on acetylene reduction. Our results suggest that heterocysts contain an uptake hydrogenase which supplies an electron transport chain to nitrogenase but which couples only poorly with the respiratory chain in heterocysts and does not function in CO2 fixation by vegetative cells.  相似文献   

17.
A.L. Etienne 《BBA》1974,333(2):320-330
We have studied the 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) action on the different S states by oxygen, fluorescence and luminescence measurements.We show that no oxygen is evolved during a flash following the addition of DCMU to centers in their S3 state. This suggests that oxygen inhibition cannot be attributed solely to a blocking between Q and A. For all the photoinactive states, the only remaining pathway for the quencher reoxidation, in the presence of DCMU, appears to proceed through a back reaction. Therefore, the complete quencher regeneration still occurring when the fourth positive charge is formed in the presence of DCMU is also an indication of an action by DCMU at the donor side.The data well fit the model in which the oscillations of the fluorescence yield and their damping are attributed to a fast equilibrium between two forms of the centers: a photoactive and a photoinactive form, both of which are quenchers. The equilibrium constant depends on the number of positive charges stored and DCMU changes the characteristics of this equilibrium.  相似文献   

18.
Arthrospira (Spirulina) is widely used as human health food and animal feed. In cultures grown outdoors in open ponds, Arthrospira cells are subjected to various environmental stresses, such as high temperature. A better understanding of the effects of high temperature on photosynthesis may help optimize the productivity of Arthrospira cultures. In this study, the effects of heat stress on photosynthetic rate, chlorophyll a fluorescence transients, and photosystem (PS) II, PSI activities in a marine cyanobacterium Arthrospira sp. were examined. Arthrospira cells grown at 25 °C were treated for 30 min at 25 (control), 30, 34, 37, or 40 °C in the dark. Heat stress (30–37 °C) enhanced net photosynthetic O2 evolution rate. Heat stress caused over-reduction PSII acceptor side, damage of donor side of PSII, decrease in the energetic connectivity of PSII units, and decrease in the performance of PSII. When the temperature changed from 25 to 37 °C, PSII activity decreased, while PSI activity increased, the enhancement of photosynthetic O2 evolution was synchronized with the increase in PSI activity. When temperature was further increased to 40 °C, it induced a decrease in photosynthetic O2 evolution rate and a more severe decrease in PSII activity, but an increase in PSI activity. These results suggest that PSI activity was the decisive factor determining the change of photosynthetic O2 evolution when Arthrospira was exposed to a temperature from 25 to 37 °C, but then, PSII activity became the decisive factor adjusting the change of photosynthetic O2 evolution when the temperature was increased to 40 °C.  相似文献   

19.

1. 1. The steady-state fluorescence yield of Chlorella pyrenoidosa is strongly affected by CO2 concentration: the yield is approximately 2-fold higher in the presence than in the absence of CO2. During induction, in the presence of saturating CO2, accelerating oxygen evolution is paralleled by rising fluorescence (M2-P3 transient); in the absence of CO2, fluorescence yield remains at the low M2 level.

2. 2. Both illumination and CO2 content are important in determining the steady-state fluorescence yield: at lower illuminations, lower concentrations of CO2 are required to obtain a maximum fluorescence yield.

3. 3. The slow fluorescence transients are not affected directly by pH but only indirectly through the CO2 concentration.

4. 4. The CO2-dependent fluorescence rise (M2-P3 transient) is most readily observed in cells harvested early in the light period of a synchronous culture, but it can also be elicited in cells harvested during the dark period.

5. 5. Addition of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) to CO2-deprived cells raises the fluorescence yield approximately 4-fold, that is to the same high level as cells supplied with CO2 and DCMU.

6. 6. The effects of CO2 provide a new example of a marked parallelism between photosynthetic electron transport and fluorescence. To explain such parallelism, it seems necessary to postulate large changes in the de-excitation processes within Photosystem II units or in the distribution of excitation between Photosystems I and II.

Abbreviations: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea; FCCP, carbonyl cyanide p-trifluoromethoxyphenylhydrazone; PMS, phenazine methosulfate  相似文献   


20.
The effect of high temperature (HT) and dehydration on the activity of photosynthetic apparatus and its ability to restore membrane properties, oxygen evolution, and energy distribution upon rehydration were investigated in a resurrection plant, Haberlea rhodopensis. Plants growing under low irradiance in their natural habitat were desiccated to air-dry state at a similar light intensity [about 30 μol(photon) m?2 s?1] under optimal day/night (23/20°C) or high (38/30°C) temperature. Our results showed that HT alone reduced the photosynthetic activity and desiccation of plants at 38°C and it had more detrimental effect compared with desiccation at 23°C. The study on isolated thylakoids demonstrated increased distribution of excitation energy to PSI as a result of the HT treatment, which was enhanced upon the desiccation. It could be related to partial destacking of thylakoid membranes, which was confirmed by electron microscopy data. In addition, the surface charge density of thylakoid membranes isolated from plants desiccated at 38°C was higher in comparison with those at 23°C, which was in agreement with the decreased membrane stacking. Dehydration led to a decrease of amplitudes of oxygen yields and to a loss of the oscillation pattern. Following rehydration, the recovery of CO2 assimilation and fluorescence properties were better when desiccation was performed at optimal temperature compared to high temperature. Rehydration resulted in partial recovery of the amplitudes of flash oxygen yields as well as of population of S0 state in plants desiccated at 23°C. However, it was not observed in plants dehydrated at 38°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号