首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using fourth derivative analysis, differences between room and low temperature absorption spectra were studied. The positions of most absorption bands of the water-soluble, accessory pigment complex, the phycobilisome, remained unchanged after cooling. The stability of the wavelength positions of chlorophyll a forms in vivo as a function of temperature (Gulyaev, B.A. and Litvin, F.F. (1967) Biofizika 12, 845--854) was generally confirmed. The wavelength positions of all chlorophyll a forms in the P-700 chlorophyll a protein complex were unchanged when the preparations were cooled to -196 degrees C. Likewise, with other chlorophyll-containing materials: the light-harvesting chlorophyll a/b protein complex and the thylakoids of higher plants, algae, and cyanobacteria, the wavelengths positions of most chlorophyll a forms were stable upon cooling. An exception was a 680 nm chlorophyll a band which was generally split at low temperature into two bands with the materials investigated. An interpretation of the multiplicity of chlorophyll spectral forms and the spectral changes induced by cooling for these forms is given using exciton theory and the energy-coupling variation of chlorophyll a molecules.  相似文献   

2.
J. Hladík  P. Pančoška  D. Sofrová 《BBA》1982,681(2):263-272
Thylakoid membranes of the cyanobacterium Plectonema boryanum solubilized with Triton X-100 can be resolved into three fractions of pigment-protein complexes (Hladík, J. and Sofrová, D. (1981) Photosynthetica 15, 490–503). Fraction I contained relatively the highest amount of carotenoids as well as monomeric forms of chlorophyll a, Fractions II and III contained chlorophyll-protein complexes with a characteristic exciton-split circular dichroism in the red region. It has been shown that fraction III is an oligomeric form of the chlorophyll-protein complex of fraction II. Circular dichroism spectra indicate that, different from fraction II, fraction III contains specifically oriented and space-fixed molecules of carotenoids. Thermal dissociation of fracion III to fraction II is accompanied by disappearance of the positive circular dichroism effect of carotenoids in the 500–550 nm region, thus causing deorganization of the carotenoids, proceeding in parallel to the geometrical rearrangement of chlorophyll molecules. Extraction of the carotenoids of fraction III with heptane is acompanied by dissociation of fraction III. We assume that the observed effects are due to binding of the two pigments to the protein component of the complex and that carotenoids can mediate a part of the interactions which stabilize the structure of pigment-protein complexes. Thus, besides the light-harvesting and protective functions, carotenoids can also play a structural role.  相似文献   

3.
The low-temperature linear dichroism spectrum of thylakoids oriented in polyacrylamide gel can be adequately described by a linear combination of the corresponding spectra of particles of light-harvesting complex, Photosystem I and Photosystem II, isolated by Triton X-100 extraction. The main conclusions which can be derived from this observation are: (1) The in vivo orientation of the pigments within each of the three complexes is not significantly affected by the extraction and purification procedures. (2) The various photosynthetic pigments are oriented roughly to the same extent in each of the three main biochemical constituents of the thylakoid. (3) All the complexes investigated behave like ellipsoids, the largest dimensions of which are lying in the plane of the photosynthetic membrane.  相似文献   

4.
The absorption and linear dichroism (LD) spectra (380–780 nm) of isolated light-harvesting complex (LHC), Photosystem I (PS I), Photosystem II (PS II), as well as intact thylakoids have been determined at 300 and 100 K. The samples were oriented in squeezed polyacrylamide gel. The low-temperature spectra of LHC and PS I present LD signals which are characteristic enough to be recognized in the LD spectrum of thylakoids. Tentative assignments of the various features of the LD spectra to the major photosynthetic pigments are discussed. A shoulder in the low-temperature absorption spectra is observed at about 673 nm in all the systems under investigation. The absence of an associated LD signal suggests that this ubiquitous chlorophyll (Chl) a form is non-dichroic. Furthermore, in the three isolated chlorophyll-protein complexes described in this study the sign of the LD signal indicates that both the Qy transition of the Chl a and the carotenoid molecules are preferentially oriented parallel to the largest dimension(s) of the particles.  相似文献   

5.
Using a polyacrylamide gel squeezing technique, linear dichroism spectra of thylakoids from wild-type and chlorophyll-b less barley have been obtained at 100 K. The calculated difference linear dichroism spectra, based on normalization at 690–695 nm, are identical to those of the light-harvesting complex (LHC) isolated by Triton solubilization. This observation is in agreement with previous conclusions (Tapie, P., Haworth, P., Hervo, G. and Breton, J. (1982) Biochim. Biophys. Acta 682, 339–344) regarding: (i) scattering artifacts are absent in linear dichroism spectra determined using polyacrylamide gels, (ii) the in vivo orientation of LHC pigments is maintained in the isolated complex and (iii) the largest dimension(s) of the isolated LHC is (are), in vivo, parallel to the plane of the photosynthetic membrane.  相似文献   

6.
The energy transfer between C-phycocyanin chromophores in intact phycobilisomes of Synechococcus 6301 is shown to lead to an anisotropy relaxation with a lifetime of 10 ± 2 ps. However, due to the molecular order within the hexameric units of C-phycocyanin the anisotropy does not decay to zero. The Förster dipole-dipole mechanism of energy transfer can qualitatively explain these data provided that there is no back transfer of excitation energy and that the chromophore distribution is non-random. The rate of energy transfer in phycobilisomes between C-phycocyanin and allophycocyanin can best be described by a double exponential with lifetimes of 12 ± 3 and 84 ± 8 ps.  相似文献   

7.
Jeanette S. Brown 《BBA》1980,591(1):9-21
A spectroscopic study of chlorophyll-protein complexes isolated from Euglena gracilis membranes was carried out to gain information about the state of chlorophyll in vivo and energy transfer in photosynthesis. The membranes were dissociated by Triton X-100 and separated into fractions by sucrose gradient centrifugation and hydroxyapatite chromatography. Four different types of chlorophyll-protein complexes were distinguished from each other and from detergent-solubilized chlorophyll in these fractions by examination of their absorption, fluorescence excitation (400–500 nm) and emission spectra at low temperature. These types were: (1). A mixture of antenna chlorophyll a- and chlorophyll ab-proteins with an absorption maximum at 669 and emission at 682 nm; (2) a P-700-chlorophyll a-protein (chlorophyll: P-700 = 30 : 1), termed CPI with an absorption maximum at 676 nm and emission maxima at 698 and 718 nm; (3) a second chlorophyll a-protein (CPI-2) less enriched in P-700, with an absorption maximum at 676 nm and emission maxima at 680, 722 and 731 nm; (4) a third chlorophyll a-protein (CPa1) with no P-700, absorption maxima at 670 and 683 nm, and an unusually sharp emission maximum at 687 nm. Treatment of CPa1 with sodium dodecyl sulfate drastically altered its spectroscopic properties indicating that at least some chlorophyll-proteins isolated with this detergent are partially denatured. The results suggest that the complex absorption spectra of chlorophyll in vivo are caused by varying proportions of different chlorophyll-protein complexes, each with different groups of chlorophyll molecules bound to it and making up a unique entity in terms of electronic transitions.  相似文献   

8.
Dvorah Ish-Shalom  Itzhak Ohad 《BBA》1983,722(3):498-507
The polypeptide pattern, chlorophyll-protein complexes, fluorescence emission spectra and light intensity required for saturation of electron flow via Photosystem (PS) II and PS I in a pale-green photoautotrophic mutant, y-lp, were compared to those of the parent strain, Chlamydomonas reinhardii y-1 cells. The mutant exhibits a 686 nm fluorescence yield at 25°C and 77 K 2–6-fold higher than that of the parent strain cells, and is deficient in thylakoid polypeptides 14, 17.2, 18 and 22 according to the nomenclature of Chua (Chua, N.-H. (1980) Methods Enzymol. 60C, 434–446). All chlorophyll-protein complexes ascribed to PS II and the CP I complex were present in both type of cells. However, a chlorophyll-protein complex CP Ia containing — in the parent strain — the 66–68 kDa polypeptides of CP I and the four above-mentioned polypeptides, was absent in the mutant. It was previously reported that a chlorophyll-protein complex, CP O, obtained from C. reinhardii contains five polypeptides, namely, 14, 15, 17.2, 18 and 22 (Wollman, F.A. and Bennoun, P. (1982) Biochim. Biophys. Acta 680, 352–360). A CP O-like complex was present also in the mutant y-lp cells but it contains only one polypeptide, 15. Energy transfer from PS II to PS I was not impaired in the mutant, although a 4-fold higher light intensity was required for the saturation of PS I electron flow in the y-lp cells as compared with the parent strain. No difference was found in the light saturation curves for PS II activity between the mutant and parent strain cells. Based on these and additional data (Gershoni, J.M., Shochat, S., Malkin, S. and Ohad, I. (1982) Plant Physiol. 70, 637–644), it is concluded that the chlorophyll-protein complexes of PS I in Chlamydomonas comprise a reaction center-core antenna complex containing the 66–68 kDa polypeptides (CP I), a connecting antenna consisting of four polypeptides (14, 17.2, 18 and 22), and a light-harvesting antenna containing one polypeptide, 15. These appear to be organized as a complex, CP Ia. The interconnecting antenna is deficient in the y-lp mutant and thus the CP Ia complex is unstable and energy is not transferred from CP O to CP I. The effective cross-section of PS I antenna is thus reduced and a high fluorescence is emitted at 686 nm.  相似文献   

9.
Yeda press disruption of thylakoids in the presence of magnesium followed by aqueous polymer two-phase partitioning fractionated the total thylakoid membrane material into two distinctly different fractions. One fraction comprised approx. 60% of the material on a chlorophyll basis and contained inside-out vesicles while the other fraction (40%) contained right-side-out vesicles. The sidedness of the vesicles was determined from the direction of their light-induced proton translocation. The inside-out vesicles showed a pronounced Photosystem (PS) II enrichment as judged by their high PS II and low PS I activities. Moreover, they showed a high ratio between the PS II reaction centre chlorophyll-protein complex and the PS I reaction centre chlorophyll-protein complex (CP I). The chlorophyll ab ratio was as low as 2.3 compared to 3.2 for the starting material. In contrast, the right-side-out vesicles showed a pronounced PS I enrichment. Their chlorophyll ab ratio was 4.3–4.9. The tight stacking induced by Mg2+ allows a quantitative formation of inside-out vesicles from the appressed thylakoid regions while mainly non-appressed thylakoids turn right-side-out. The possibility of fractionating all of the thylakoid material into two sub-populations with markedly different composition with respect to PS I and PS II argues against a close physical association between the two photosystems and in favour of their spatial separation in the plane of the membrane. This fractionation procedure, which can be completed within 1 h and gives high yields of both PS II inside-out thylakoids and PS I right-side-out thylakoids, should be very useful for facilitating and improving studies on both the transverse and lateral organization of the thylakoid membrane.  相似文献   

10.
J. Barrett  Jan M. Anderson 《BBA》1980,590(3):309-323
Acrocarpia paniculata thylakoids were fragmented with Triton X-100 and the pigment-protein complexes so released were isolated by sucrose density gradient centrifugation. Three main chlorophyll-carotenoid-protein complexes with distinct pigment compositions were isolated.

1. (1) A P-700-chlorophyll a-protein complex, with a ratio of 1 P-700: 38 chlorophyll a: 4 ta-carotene molecules, had similar absorption and fluorescence characteristics to the chlorophyll-protein complex 1 isolated with Triton X-100 from higher plants, green algae and Ecklonia radiata.

2. (2) An orange-brown complex had a chlorophyll a : c2 : fucoxanthin molar ratio of 2 : 1 : 2. This complex had no chlorophyll c1 and contained most of the fucoxanthin present in the chloroplasts. This pigment complex is postulated to be the main light-harvesting complex of brown seaweeds.

3. (3) A green complex had a chlorophyll a : c1 : c2 : violaxanthin molar ratio of 8 : 1 : 1 : 1. This also is a light-harvesting complex.

The absorption and fluorescence spectral characteristics and other physical properties were consistent with the pigments of these three major complexes being bound to protein. Differential extraction of brown algal thylakoids with Triton X-100 showed that a chlorophyll c2-fucoxanthin-protein complex was a minor pigment complex of these thylakoids.  相似文献   


11.
Changes in chloroplast structure and rearrangement of chlorophyll-protein (CP) complexes were investigated in detached leaves of bean (Phaseolus vulgaris L. cv. Eureka), a chilling-sensitive plant, during 5-day dark-chilling at 1 °C and subsequent 3-h photoactivation under white light (200 μmol photons m−2 s−1) at 22 °C. Although, no change in chlorophyll (Chl) content and Chl a/b ratio in all samples was observed, overall fluorescence intensity of fluorescence emission and excitation spectra of thylakoid membranes isolated from dark-chilled leaves decreased to about 50%, and remained after photoactivation at 70% of that of the control sample. Concomitantly, the ratio between fluorescence intensities of PSI and PSII (F736/F681) at 120 K increased 1.5-fold upon chilling, and was fully reversed after photoactivation. Moreover, chilling stress seems to induce a decrease of the relative contribution of LHCII fluorescence to the thylakoid emission spectra at 120 K, and an increase of that from LHCI and PSI, correlated with a decrease of stability of LHCI-PSI and LHCII trimers, shown by mild-denaturing electrophoresis. These effects were reversed to a large extent after photoactivation, with the exception of LHCII, which remained partly in the aggregated form. In view of these data, it is likely that dark-chilling stress induces partial disassembly of CP complexes, not completely restorable upon photoactivation. These data are further supported by confocal laser scanning fluorescence microscopy, which showed that regular grana arrangement observed in chloroplasts isolated from control leaves was destroyed by dark-chilling stress, and was partially reconstructed after photoactivation. In line with this, Chl a fluorescence spectra of leaf discs demonstrated that dark-chilling caused a decrease of the quantum yield PSII photochemistry (Fv/Fm) by almost 40% in 5 days. Complete restoration of the photochemical activity of PSII required 9 h post-chilling photoactivation, while only 3 h were needed to reconstruct thylakoid membrane organization and chloroplast structure. The latter demonstrated that the long-term dark-chilled bean leaves started to suffer from photoinhibition after transfer to moderate irradiance and temperature conditions, delaying the recovery of PSII photochemistry, independently of photo-induced reconstruction of PSII complexes.  相似文献   

12.
Beverley R. Green  Edith L. Camm 《BBA》1982,681(2):256-262
Reelectrophoresis of the oligomer form (CP II1) of the chlorophyll ab light-harvesting complex (LHC) from the green alga Acetabularia yields two green bands which run at the position typical of the monomer (CP II). The upper green band (CP II1) is enriched in the 27 kDa polypeptide of the LHC, while the lower is enriched in the 26 kDa polypeptide. The fact that both bands have both chlorophyll (Chl) a and b, and in the same ratio, implies that the LHC is made up of two Chl ab proteins. Neither of these bands can be attributed to the Chl ab complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432). Resolution of CP II1 and CP II2 of spinach can be obtained if sucrose gradient fractions of an octylglucoside extract are subjected to SDS-polyacrylamide gel electrophoresis. CP II1 and CP II2 are interpreted as being fundamental subunits of the light-harvesting complex as it is defined on SDS-polyacrylamide gels.  相似文献   

13.
By mixing chlorophyll (Chl) a or b with a dense bovine serum albumin solution, the water-soluble Chl-bovine serum albumin complexes were prepared. These complexes, eluted near the void volume on a gel filtration, were separated well from unreacted bovine serum albumin, indicating an aggregation of such molecules in the complexes. Preparation of chlorophyllide (Chlide) a- or Chlide b-bovine serum albumin complex was unsuccessful, while the phytol-, and β-carotene-bovine serum albumin complexes could be obtained. Chls in the Chl-bovine serum albumin complexes had the following characteristics. (i) Main absorption peak of Chl a or b in the red region occurred at 675 nm or 652 nm, respectively. The Chl a-bovine serum albumin complex having absorption peak at 740 nm was also prepared. As compared with the stabilities of Chl a and b in Triton X-100. (ii) Both Chls in the bovine serum albumin-complexes were stable against oxidative stresses, such as photobleaching, Fenton reagent, peroxidase-H2O2 system. But (iii) they were easily hydrolyzed by chlorophyllase. These properties of Chls in the bovine serum albumin-complexes were similar to those of Chls in the isolated light-harvesting Chl a/b protein complex. A possible localization of Chls within the bovine serum albumin complexes was suggested that the porphyrin moiety of Chl was buried in bovine serum albumin; however, the hydrophilic edge of porphyrin ring, adjacent to the phytol group, occurred in the hydrophilic region of a bovine serum albumin molecule.  相似文献   

14.
The thermophilic blue-green alga Synechococcus lividus was grown at 38 and 55°C. The reaction center chlorophyll-protein complexes (CP) of Photosystem (PS I) and PS II, CP aI and CP aII, were isolated by sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis at 4°C. SDS solubilization of thylakoids was performed in the temperature range 0–65°C. The low-temperature absorption and fluorescence emission spectral properties of the isolated chlorophyll-protein complexes were analyzed. Only traces of CP aI were solubilized at temperatures below the lipid phase transition temperature. Instead, a minor PS I component, CP aI, was obtained that had absorption and fluorescence characteristics similar to those of CP aI. CP aI had a slightly lower mobility than CP aI in SDS-polyacrylamide gel electrophoresis. The amount of CP aI in the gel scan profile increased dramatically when solubilization was carried out above the phase transition temperatures, but started to decrease above 60°C. CP aII, on the other hand, could be efficiently extracted even at 0°C and was stable in the scan profile up to extraction temperatures of 30–40°C. Low-temperature absorption and fluorescence emission spectra were typical for CP aI and CP aII and no specific effects of the two growth temperatures on these properties were observed. The phase transition temperature was considered to be critical for the solubilization of CP aI, either because of the difficulties of SDS (especially as it forms micelles at low temperatures) in penetrating the solidified membrane lipids at temperatures below that of the phase transition or because the CP aI monomers of the PS I antennae are so strongly bound to each other that they cannot be dissociated by SDS before thermal agitation has reached a certain level that is achieved above the phase transition temperature. We consider both the difficulties in solubilizing CP aI at sub-transition temperatures and the heat stability of the two complexes as adaptations which enable Synechococcus to grow under extreme high-temperature regimes.  相似文献   

15.
Lowering the pH of the incubation medium to pH 5.4 leads to grana formation morphologically similar to that induced by metal cations. The same phenomenon is observed in EDTA-washed chloroplasts, indicating that it is not due in part to electrostatic ‘masking’ by residual cations associated with the membranes. Digitonin fractionation studies have indicated that the distribution of the major chlorophyll-protein complexes between granal and stromal membrane regions is similar at pH 5.4 in the absence of Mg2+, and at pH 7.4 in the presence of Mg2+. Chlorophyll fluorescence induction studies have indicated that the primary photochemistry of Photosystem II (PS II) is stimulated by lowering the pH to 5.4, just as it is upon metal cation addition at higher pH values. The failure to observe such an increase at pH 5.4 by measuring electron transport to ferricyanide is attributed to a combination of an inhibition by this pH of electron transport at a site after Q reduction and an increase in the number of PS II centres detached from the plastoquinone pool. We conclude that the stacked configuration of chloroplast membranes leads to increased PS II primary photochemistry, which is most simply explained in terms of a redistribution of excitation energy towards PS II.  相似文献   

16.
Jan M. Anderson 《BBA》1983,724(3):370-380
Eight chlorophyll-protein complexes were isolated from thylakoid membranes of a Codium species, a marine green alga, by mild SDS-polyacrylamide gel electrophoresis. CP 1a1, CP 1a2, CP 1a3 and CP 1a4 were partially dissociated Photosystem (PS) I complexes, which in addition to the core reaction centre complex, CP 1, possessed PS I light-harvesting complexes containing chlorophyll (Chl) a, Chl b and siphonaxanthin. LHCP1 and LHCP3 are orange-brown green chlorophyll ab-proteins (Chl aChl b ratios of 0.66) that contain siphonaxanthin and its esterified form, siphonein. CP a and CP 1, the core reaction centre complexes of PS II and PS I, respectively, had similar spectral properties to those isolated from other algae or higher plants. These P-680- or P-700-Chl a-proteins are universally distributed among algae and terrestrial plants; they appear to be highly conserved and have undergone little evolutionary adaptation. Siphonaxanthin and siphonein which are present in the Codium light-harvesting complexes of PS II and PS I are responsible for enhanced absorption in the green region (518 and 538 nm). Efficient energy transfer from both xanthophylls and Chl b to only Chl a in Codium light-harvesting complexes, which have identical fluorescence emission spectra at 77 K to those of the lutein-Chl ab-proteins (Chl aChl b ratios of 1.2) of most green algae and all higher plants, proved that the molecular arrangement of these light-harvesting pigments was maintained in the isolated Codium complexes. The siphonaxanthin-Chl ab-proteins allow enhanced absorption of blue-green and green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats. Since there is a variable distribution of lutein, siphonaxanthin and siphonein in marine green algae and siphonaxanthin is found in very ancient algae, these novel siphonein-siphonaxanthin-Chl ab-proteins may be ancient light-harvesting complexes which were evolved in deep water algae.  相似文献   

17.
(1) Five minor chlorophyll-protein complexes were isolated from thylakoid membranes of the green alga Acetabularia by SDS-polyacrylamide gel electrophoresis, after SDS or octylglucoside solubilization. None of them were related to CP I (Photosystem I reaction center core) or CP II (chlorophyll ab light-harvesting complex). (2) Two complexes (CPa-1 and CPa-2) contained only chlorophyll (Chl) a, with absorption maxima of 673 and 671 nm, and fluorescence emission maxima of 683 nm compared to 676 nm for CP II. The complexes had apparent molecular masses of 43–47 and 38–40 kDa, and contained a single polypeptide of 41 and 37 kDa, respectively. They each account for about 3% of the total chlorophyll. (3) Three complexes had identical spectra, with Chl ab ratios of 3–4 compared to 2 for thylakoid membranes, and a pronounced shoulder around 485 nm indicating enrichment in carotenoids. One of them was the complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432) and the other two were slightly different oligomeric forms of CP 29. They could be formed from CP 29 during reelectrophoresis; but about half the complex was isolated originally in an oligomeric form. Together they account for at least 7% of the total chlorophyll. Their function is unknown.  相似文献   

18.
The chromatophore of a novel thermophilic purple photosynthetic bacterium, Chromatium tepidum, had light-harvesting BChl proteins which gave absorption maxima at 917, 855 and 800 nm at 20°C. These antenna complexes were found to have BChl of the a type [4]. This is, therefore, the first example of a BChl a antenna complex which shows a long-wavelength absorption up to 917 nm. Treatment by Triton X-100 and successive sodium dodecyl sulfate polyacrylamide gel electrophoresis separated these antenna complexes into two groups. One of them has one antenna component which absorbs around 917 nm (B917). The other contains at least an antennae which absorb maximally at 800 and 855 nm (B800–855). The temperature-dependent changes of absorption, circular dichroism and emission spectra were reversible up to 70°C in the intact chromatophore and in the isolated B800–855 complex. On the contrary, the isolated complex B917 lost its absorption irreversibly over the temperature of 50°C. These results suggest a membrane structure which is essential for the thermostability of chromatophores from C. tepidum.  相似文献   

19.
A membrane-bound phycobilisome complex has been isolated from the cyanobacterium Fremyella diplosiphon grown in green light, thus containing phycoerythrin in addition to phycocyanin and allophycocyanin. The complex was dissociated by lowering the salt concentration. In the mixture obtained, no energy transfer from phycoerythrin to chlorophyll (Chl) a was observed. Reassociation of the phycobiliproteins and membrane mixture was carried out by a gradual increase of the salt concentration. The complex obtained after reassociation was characterized by polypeptide composition, absorbance and fluorescence emission spectra and electron microscopy. These analyses revealed similar composition and structure for the original and reconstituted membrane-bound phycobilisomes. Fluorescence emission spectra and measurements of Photosystem II activity demonstrated energy transfer from phycoerythrin to Chl a (Photosystem II) in the reconstituted complex. Reassociation of mixtures with varying phycoerythrin / Chl ratio showed that the phycobiliprotein concentration was critical in the reassociation process. Measurements of the amount of phycobilisomes reassociated with the photosynthetic membrane did not show saturation of binding when increasing the phycobiliprotein concentration. The ratio phycoerythrin / Chl a in the native complex was 7:1 (mg / mg). When the phycobiliprotein concentration was increased during the reassociation process, a ratio of 13–15 mg phycoerythrin / mg Chl a could be obtained. Under these conditions, only part of the phycobilisomes attached to the thylakoids was able to transfer energy to Photosystem II.  相似文献   

20.
The chlorophyll-protein complexes of the yellow alga Synura petersenii (Chrysophyceae) and the yellow-green alga Tribonema aequale (Xanthophyceae) were studied. The sodiumdodecylsulfate/sodiumdesoxycholate solubilized photosynthetic membranes of these species yielded three distinct pigment-protein complexes and a non-proteinuous zone of free pigments, when subjected to SDS polyacrylamid gel electrophoresis. The slowest migrating protein was identical to complex I (CP I), the P-700 chlorophyll a-protein, which possessed 60 chlorophyll a molecules per reaction center in Tribonema and 108 in Synura. The zone of intermediate mobility contained chlorophyll a and carotenoids. The absorption spectrum of this complex was very similar to the chlorophyll a-protein of photosystem II (CP a), which is known from green plants. The fastest migrating pigment protein zone was identified as a light-harvesting chlorophyll-protein complex. In Synura this protein was characterized by the content of chlorophyll c and of fucoxanthin. Therefore this complex will be named as LH Chl a/c-fucocanthin protein. In addition to the separation of the chlorophyll-protein complexes the cellular contents of P-700, cytochrome f (bound cytochrome) and cytochrome c-553 (soluble cytochrome) were measured. The stoichiometry of cytochrome f: cytochrome c-553:P-700 was found to be 1:4:2.4 in Tribonema and 1:6:3.4 in Synurá.Abbreviations CP a chlorophyll a-protein of photosystem II - CP I P-700 chlorophyll a-protein - FP free pigment - LH Chl a/c light-harvesting chlorophyll a/c-protein - PAGE polyacrylamidgelelectrophoresis - SDS Sodiumdodecylsulfate - SDOC sodium-desoxycholate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号