首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
H. Conjeaud  P. Mathis  G. Paillotin 《BBA》1979,546(2):280-291
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited.In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash, as observed by an absorption increase at 820 nm. After the first flash it is re-reduced in a biphasic manner with half-times of 6 μs (major phase) and 22 μs. After the second flash, the 6 μs phase is nearly absent and P-680+ decays with half-times of 130 μs (major phase) and 22 μs. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+.In untreated chloroplasts the 6 and 22 μs phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine.These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (<1 μs) by the physiological donor D1; a slower reduction (6 and 22 μs) by donor D′1, operative when O2 evolution is inhibited; a back-reaction (130 μs) when D′1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron.The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D′1) are located at the internal side of the thylakoid membrane.  相似文献   

3.
4.
The degree of fluoresence polarization, P, of unoriented and magnetically oriented spinach chloroplasts as a function of excitation (400–680 nm) and emission wavelengths (675–750 nm) is reported. For unoriented chloroplasts P can be divided into two contributions, PIN and PAN. The latter arises from the optical anisotropy of the membranes which is due to the orientation with respect to the membrane plane of pigment molecules in vivo. The intrinsic polarization PIN, which reflects the energy transfer between different pigment molecules and their degree of mutual orientation, can be measured unambiguously only if (1) oriented membranes are used and the fluorescence is viewed along a direction normal to the membrane planes, and (2) the excitation is confined to the Qy (≈ 660−680 nm) absorption band of chlorophyll in vivo. With 670–680 nm excitation, values of P using unoriented chloroplasts can be as high as +14%, mostly reflecting the orientational anisotropy of the pigments. Using oriented chloroplasts, PIN is shown to be +5±1%. The excitation wavelength dependence studies of PIN indicate that the carotenoid and chlorophyll Qy transition moments tend to be partially oriented with respect to each other on a local level (within a given photosynthetic unit or its immediate neighbors).  相似文献   

5.
6.
Jan W.T. Fiolet  Karel Van Dam 《BBA》1973,325(2):230-239
1. The inhibitory action of tetraphenylboron, a lipid-soluble anion, on the proton uptake, the photophosphorylation and the light-induced quenching of the fluorescence of 9-aminoacridine by spinach chloroplasts was studied.2. The inhibition of the three processes by tetraphenylboron was transient; the proton uptake was affected to a much smaller extent than either the photophosphorylation or the fluorescence quenching.3. The inhibitory effects of tetraphenylboron on the proton uptake and the fluorescence quenching of 9-aminoacridine were qualitatively the same in CF1-depleted chloroplasts, that were recoupled with N,N′-dicyclohexylcarbodiimide (DCCD).4. The reversal of the fluorescence quenching of 9-aminoacridine upon addition of tetraphenylboron in the light was found to be very fast, being completed within the response time of the apparatus.5. The presence of tetraalkylammonium salts in the incubation medium prevented the inhibitory effect of tetraphenylboron.6. Tetraphenylboron disappeared from the chloroplast suspension in a light-dependent irreversible way; in the dark no ‘ptake’ of tetraphenylboron could be detected.7. The effects of tetraphenylboron may be explained by the presence of groups with a high affinity for tetraphenylboron in the membrane; these groups become protonated upon illumination of the chloroplasts.  相似文献   

7.
A method is reported for the in situ modification of the lipids of isolated spinach chloroplast membranes. The technique is based on a direct hydrogenation of the lipid double bonds in the presence of the catalyst, chlorotris(triphenylphosphine)rhodium (I). The pattern of hydrogenation achieved suggests that the catalyst distributes amongst all of the membranes. The polyunsaturated lipids within the membranes are hydrogenated at a faster rate and at an earlier stage than are the monoenoic lipids. Whilst addition of the catalyst to the chloroplast causes an initial 10--20% decrease in Hill activity, saturation of up to 40% of the double bonds present can be accomplished without causing further significant alterations in photosynthetic electron transport processes or marked morphological changes of the chloroplast structure as observed in the electron microscope.  相似文献   

8.
The rise kinetics of the absorption changes induced at 515 nm and 480 nm by a flash were studied using two types of xenon flashes of different durations. The ‘slow’ rise of the absorption change (t12 = 15–20 μs) observed by Cox and Delosme (1978 C.R. Acad. Sci. (Paris) Sér. D 282, 775–778) and Joliot P., Delosme, R. and Joliot, A. ((1977) Biochim. Biophys. Acta 459, 47–57) was found to be due to double hits occurring in the reaction centers of System I during the flash.The turnover kinetics of the reaction centers of System I after a short flash were studied by a double flash method. They are in agreement with a second order reaction between P+-700 and its electron donor.  相似文献   

9.
1. Incubation of chloroplasts with HgCl2 at a molar ratio of HgCl2 to chlorophyll of about unity, induced a complete inhibition of the methyl viologen Hill reaction, as well as methyl viologen photoreduction with reduced 2,6-dichlorophenolindophenol (DCIP) as electron donor. Photooxidation of cytochrome ? was similarly sensitive towards HgCl2, whereas photooxidation of P700 was resistant to the poison. Photoreduction of cytochrome ? and light-induced increase in fluorescence yield were enhanced by the HgCl2 treatment of chloroplasts.  相似文献   

10.
The effects of lowering the pH on Photosystem II have been studied by measuring changes in absorbance and electron spin resonance in spinach chloroplasts.At pH values around 4 a light-induced dark-reversible chlorophyll oxidation by Photosystem II was observed. This chlorophyll is presumably the primary electron donor of system II. At pH values between 5 and 4 steady state illumination induced an ESR signal, similar in shape and amplitude to signal II, which was rapidly reversed in the dark. This may reflect the accumulation of the oxidized secondary donor upon inhibition of oxygen evolution. Near pH 4 the rapidly reversible signal and the stable and slowly decaying components of signal II disappeared irreversibly concomitant with the release of bound manganese.The results are discussed in relation to the effects of low pH on prompt and delayed fluorescence reported earlier (van Gorkom, H. J., Pulles, M. P. J., Haveman, J. and den Haan, G. A. (1976) Biochim. Biophys. Acta 423, 217–226).  相似文献   

11.
S. Izawa  R. Kraayenhof  E.K. Ruuge  D. Devault 《BBA》1973,314(3):328-339
Treatment of chloroplasts with high concentrations of KCN inhibits reactions which involve Photosystem I (e.g. electron transport from water or diaminodurene to methylviologen), but not those assumed to by-pass Photosystem I (e.g. electron transport from water to quinonediimides). The spectrophotometric experiments described in this paper showed that KCN inhibits the oxidation of cytochrome f by far-red light without blocking its reduction by red light. Both optical and EPR experiments indicated that KCN does not inhibit the photooxidation of P700 but markedly slows down the subsequent dark decay (reduction). Reduction of P700 by Photosystem II is prevented by KCN. It is concluded that KCN blocks electron transfer between cytochrome f and P700, i.e. the reaction step which is believed to be mediated by plastocyanin. In KCN-poisoned chloroplasts the slow dark reduction of P700 following photooxidation is greatly accelerated by reduced 2,6-dichlorophenolindophenol or by reduced N-methylphenazonium methosulfate (PMS), but not by diaminodurene. It appears that the reduced indophenol dye and reduced PMS are capable of donating electrons directly to P700, at least partially by-passing the KCN block.  相似文献   

12.
13.
Rita Barr  Frederick L. Crane 《BBA》1982,681(1):139-142
A 120 min incubation period with sulfhydryl reagents, such as p-chloromercuribenzoic acid, shows greater than 50% loss of electron-transport activity in Photosystem (PS) II of spinach chloroplasts. Since p-chloromercuriphenylsulfonic acid, a nonpenetrating sulfhydryl reagent, and 4,4′-dithiopyridine, a bifunctional sulfhydryl reagent, show greater inhibition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive silicomolybdate reduction than of dibromothymoquinone-insensitive indophenol reduction, it is postulated that two different sulfhydryl reagent-sensitive sites are involved in the PS II electron-transport chain of spinach chloroplasts.  相似文献   

14.
E. Tel-Or  W.D.P. Stewart 《BBA》1976,423(2):189-195
Isolated heterocysts of the N2-fixing blue-green alga Anabaena cylindrica contain the Photosystem I components P-700, bound and soluble ferredoxins and ferredoxin-NADP reductase. They also show Photosystem I activity being able to photoreduce both methylviologen and NADP when ascorbate+dichlorophenol-indophenol acts as reductant. They photophosphorylate (64 μmol ATP produced/mg chlorophyll ah) and carry out oxidative phosphorylation (8.7 μmol ATP produced/mg chlorophyll ah). Ninety per cent of the total cell-free extract nitrogenase activity is located in the heterocyst fraction of aerobic cultures.  相似文献   

15.
Eckhard Loos 《BBA》1976,440(2):314-321
Action spectra were measured for positive changes in variable fluorescence (emission > 665 nm) excited by a beam of 485 nm chopped at 75 Hz. The action of two further beams was compared, one being variable, the other (reference) constant with respect to wavelength and intensity. Comparison was achieved by alternating the reference and the variable wavelength beams at 0.3 Hz and adjusting the intensity of the latter such as to cancel out any 0.3 Hz component in the 75 Hz fluorescence signal. The relative action then was obtained as the reciprocal of the intensity of the variable wavelength beam. Similarly, action spectra were measured for O2 evolution with ferricyanide/p-phenylenediamine as electron acceptor, and for O2 uptake mediated by methyl viologen with ascorbate 3-(p-chlorophenyl)-1,1-dimethylurea as electron donor in the presence of 2,6-dichlorophenolindophenol.Addition of 5 mM MgCl2 increases the relative action around 480 nm for the change in variable fluorescence and p-phenylenediamine-dependent O2 evolution, and decreases it for methyl viologen-mediated O2 uptake with 2,6-dichlorophenolindophenol/ascorbate as electron donor in the presence of 3-(p-chlorophenyl-1,1-dimethylurea. The change in variable fluorescence and O2 evolution are stimulated by MgCl2, whereas O2 uptake is inhibited by it.The results are discussed in terms of a model assuming a tripartite organization. of the photosynthetic pigments (Thornber, J. P. and Highkin, H. R. (1974) Eur. J. Biochem. 41, 109–116; Butler, W. L. and Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72–85). MgCl2 is thought to promote energy transfer to Photosystem II from a light-harvesting pigment complex serving both photosystems.  相似文献   

16.
Gerald T. Babcock  Kenneth Sauer 《BBA》1975,376(2):329-344
Rapid light-induced transients in EPR Signal IIf (F?+) are observed in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated, Tris-washed chloroplasts until the state F P680 Q? is reached. In the absence of exogenous redox mediators several flashes are required to saturate this photoinactive state. However, the Signal IIf transient is observed on only the first flash following DCMU addition if an efficient donor to Signal IIf, phenylenediamine or hydroquinone, is present. Complementary polarographic measurements show that under these conditions oxidized phenylenediamine is produced only on the first flash of a series. The DCMU inhibition of Signal IIf can be completely relieved by oxidative titration of a one-electron reductant with E08.0 = +480 mV. At high reduction potentials the decay time of Signal IIf is constant at about 300 ms, whereas in the absence of DCMU the decay time is longer and increases with increasing reduction potential.A model is proposed in which Q?, the reduced Photosystem II primary acceptor, and D, a one-electron 480 mV donor endogenous to the chloroplast suspension, compete in the reduction of Signal IIf (F?+). At high potentials D is oxidized in the dark, and the (Q? + F?+) back reaction regenerates the photoactive F P680 Q state. The electrochemical and kinetic evidence is consistent with the hypothesis that the Signal IIf species, F, is identical with Z, the physiological donor to P680.  相似文献   

17.
J.A. Van Best  P. Mathis 《BBA》1978,503(1):178-188
Absorption changes (ΔA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures.In the microsecond time range the difference spectrum of ΔA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+?700; it decays in a polyphasic manner with half-times of 17 μs, 210 μs and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 μs. After treatment with 3–10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t12 = 20–40 μs, and a minor phase with t12 ? 200 μs), probably by reduction by an accessory electron donor.In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25–45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.  相似文献   

18.
19.
Thylakoid membranes were treated with either pancreatic or snake venom phospholipase A2, and the residual phospholipid content of these membranes was determined and compared to the rates of Photosystem II and/or Photosystem I electron transports. The hydrolysis curves of both phosphatidylglycerol and phosphatidylcholine displayed a first, rapid phase which was almost temperature-insensitive, followed by a second, slower phase which depended strongly on the temperature. When pancreatic phospholipase A2 had access either to the outer face or to both faces of the thylakoid membrane, either only part of or all the phospholipids, respectively, could be hydrolysed. These results were interpreted as indicating an asymmetric distribution of phospholipids across the thylakoid membrane, phosphatidylglycerol and phosphatidylcholine being preferentially located in the outer and the inner layer, respectively. When acting on uncoupled thylakoid membranes, phospholipase A2 exerted an inhibitory effect on Photosystem II activity and a stimulatory effect on Photosystem I activity. The involvement of phosphatidylcholine and of phosphatidylglycerol in electron transport activities of Photosystem II and of Photosystem I are discussed with special reference to the role of the external and internal pools of these phospholipids.  相似文献   

20.
The effect of salt addition on the rate of reduction of P-700 oxidized by flash illumination was analyzed. In broken chloroplasts, the rate of P-700 reduction was accelerated by salts of mono-, di- and trivalent cations, with the increasing effectiveness in this order, in the presence of various artificial electron donors or acceptors. The rate was not dependent on the concentration and the valence of anions. On the other hand, in Photosystem I-enriched subchloroplast particles, added KCl did not induce the acceleration of direct reduction of P-700 by reduced DCIP.At low KCl concentrations (below 10 mM), the rate of P-700 reduction was also accelerated by added KCl in sonicated chloroplasts to which purified plastocyanin was added. The curves of dependence of the reduction rate on plastocyanin concentration were not of the Michaelis-Menten type, but sigmoidal. The maximal of P-700 reduction was higher at higher salt concentrations and the half-maximal plastocyanin concentration for P-700 reduction became lower with increasing NaCl concentrations.In broken chloroplasts treated with 50 mM glutaraldehyde, the rate of P-700 reduction was not accelerated by added KCl.The Debye-Hückel theory and the Gouy-Chapman theory were applied to our data to analyze the electrostatic interaction between electron tranfer components on thylakoid membranes. It is suggested that the major factor determining the rate of P-700 reduction is the donation of electrons from plastocyanin to P-700. Most of the observed effect is probably due to the increase in the local concentration or accessibility of plastocyanin to the site of P-700 reduction which is expected when the negative surface potential rises when salt is added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号