共查询到20条相似文献,搜索用时 15 毫秒
2.
The rise kinetics of the absorption changes induced at 515 nm and 480 nm by a flash were studied using two types of xenon flashes of different durations. The ‘slow’ rise of the absorption change ( ) observed by Cox and Delosme (1978 C.R. Acad. Sci. (Paris) Sér. D 282, 775–778) and Joliot P., Delosme, R. and Joliot, A. ((1977) Biochim. Biophys. Acta 459, 47–57) was found to be due to double hits occurring in the reaction centers of System I during the flash.The turnover kinetics of the reaction centers of System I after a short flash were studied by a double flash method. They are in agreement with a second order reaction between P+-700 and its electron donor. 相似文献
3.
A method is reported for the in situ modification of the lipids of isolated spinach chloroplast membranes. The technique is based on a direct hydrogenation of the lipid double bonds in the presence of the catalyst, chlorotris(triphenylphosphine)rhodium (I). The pattern of hydrogenation achieved suggests that the catalyst distributes amongst all of the membranes. The polyunsaturated lipids within the membranes are hydrogenated at a faster rate and at an earlier stage than are the monoenoic lipids. Whilst addition of the catalyst to the chloroplast causes an initial 10--20% decrease in Hill activity, saturation of up to 40% of the double bonds present can be accomplished without causing further significant alterations in photosynthetic electron transport processes or marked morphological changes of the chloroplast structure as observed in the electron microscope. 相似文献
5.
Action spectra were measured for positive changes in variable fluorescence (emission > 665 nm) excited by a beam of 485 nm chopped at 75 Hz. The action of two further beams was compared, one being variable, the other (reference) constant with respect to wavelength and intensity. Comparison was achieved by alternating the reference and the variable wavelength beams at 0.3 Hz and adjusting the intensity of the latter such as to cancel out any 0.3 Hz component in the 75 Hz fluorescence signal. The relative action then was obtained as the reciprocal of the intensity of the variable wavelength beam. Similarly, action spectra were measured for O 2 evolution with ferricyanide/ p-phenylenediamine as electron acceptor, and for O 2 uptake mediated by methyl viologen with ascorbate 3-( p-chlorophenyl)-1,1-dimethylurea as electron donor in the presence of 2,6-dichlorophenolindophenol.Addition of 5 mM MgCl 2 increases the relative action around 480 nm for the change in variable fluorescence and p-phenylenediamine-dependent O 2 evolution, and decreases it for methyl viologen-mediated O 2 uptake with 2,6-dichlorophenolindophenol/ascorbate as electron donor in the presence of 3-( p-chlorophenyl-1,1-dimethylurea. The change in variable fluorescence and O 2 evolution are stimulated by MgCl 2, whereas O 2 uptake is inhibited by it.The results are discussed in terms of a model assuming a tripartite organization. of the photosynthetic pigments (Thornber, J. P. and Highkin, H. R. (1974) Eur. J. Biochem. 41, 109–116; Butler, W. L. and Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72–85). MgCl 2 is thought to promote energy transfer to Photosystem II from a light-harvesting pigment complex serving both photosystems. 相似文献
6.
Rapid light-induced transients in EPR Signal IIf (F ?+) are observed in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated, Tris-washed chloroplasts until the state F P680 Q ? is reached. In the absence of exogenous redox mediators several flashes are required to saturate this photoinactive state. However, the Signal IIf transient is observed on only the first flash following DCMU addition if an efficient donor to Signal IIf, phenylenediamine or hydroquinone, is present. Complementary polarographic measurements show that under these conditions oxidized phenylenediamine is produced only on the first flash of a series. The DCMU inhibition of Signal IIf can be completely relieved by oxidative titration of a one-electron reductant with E′ 08.0 = +480 mV. At high reduction potentials the decay time of Signal IIf is constant at about 300 ms, whereas in the absence of DCMU the decay time is longer and increases with increasing reduction potential.A model is proposed in which Q ?, the reduced Photosystem II primary acceptor, and D, a one-electron 480 mV donor endogenous to the chloroplast suspension, compete in the reduction of Signal IIf (F ?+). At high potentials D is oxidized in the dark, and the ( Q? + F?+) back reaction regenerates the photoactive F P680 Q state. The electrochemical and kinetic evidence is consistent with the hypothesis that the Signal IIf species, F, is identical with Z, the physiological donor to P680. 相似文献
7.
Absorption changes ( ΔA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures.In the microsecond time range the difference spectrum of ΔA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+?700; it decays in a polyphasic manner with half-times of 17 μs, 210 μs and over 1 ms. The oxidized primary donor of Photosystem II (P +II) is not detected with a time resolution of 3 μs. After treatment with 3–10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P +II is observed and decays biphasically (a major phase with , and a minor phase with ), probably by reduction by an accessory electron donor.In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P +II is reduced with a half-time of 25–45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction. 相似文献
9.
Thylakoid membranes were treated with either pancreatic or snake venom phospholipase A 2, and the residual phospholipid content of these membranes was determined and compared to the rates of Photosystem II and/or Photosystem I electron transports. The hydrolysis curves of both phosphatidylglycerol and phosphatidylcholine displayed a first, rapid phase which was almost temperature-insensitive, followed by a second, slower phase which depended strongly on the temperature. When pancreatic phospholipase A 2 had access either to the outer face or to both faces of the thylakoid membrane, either only part of or all the phospholipids, respectively, could be hydrolysed. These results were interpreted as indicating an asymmetric distribution of phospholipids across the thylakoid membrane, phosphatidylglycerol and phosphatidylcholine being preferentially located in the outer and the inner layer, respectively. When acting on uncoupled thylakoid membranes, phospholipase A 2 exerted an inhibitory effect on Photosystem II activity and a stimulatory effect on Photosystem I activity. The involvement of phosphatidylcholine and of phosphatidylglycerol in electron transport activities of Photosystem II and of Photosystem I are discussed with special reference to the role of the external and internal pools of these phospholipids. 相似文献
10.
O 2 uptake in spinach thylakoids was composed of ferredoxin-dependent and -independent components. The ferredoxin-independent component was largely 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) insensitive (60%). Light-dependent O 2 uptake was stimulated 7-fold by 70 μM ferredoxin and both uptake and evolution (with O 2 as the only electron acceptor) responded almost linearly to ferredoxin up to 40 μM. NADP + reduction, however, was saturated by less than 20 μM ferredoxin. The affinity of O 2 uptake for for O 2 was highly dependent on ferredoxin concentration, with of less than 20 μM at 2 μM ferredoxin but greater than 60 μM O 2 with 25 μM ferredoxin. O 2 uptake could be suppressed up to 80% with saturating NADP + and it approximated a competitive inhibitor of O 2 uptake with a Ki of 8–15 μM. Electron transport in these thylakoids supported high rates of photophosphorylation with NADP + (600 μmol ATP/mg Chl per h) or O 2 (280 μmol/mg Chl per h) as electron acceptors, with ratios of 1.15–1.55. Variation in ratios with ferredoxin concentration and effects of antimycin A indicate that cyclic electron flow may also be occurring in this thylakoid system. Results are discussed with regard to photoreduction of O 2 as a potential source of ATP in vivo. 相似文献
11.
Light-dependent H 2 evolution from dithiothreitol as electron donor was observed with cell-free preparations of anaerobically adapted and from spinach chloroplasts mixed with hydrogenase. NADH substituted for dithiothreitol as electron donor only in the preparation. Dibromothymoquinone, an antagonist of plastoquinone, selectively inhibited H 2 photoevolution from NADH. These results are interpreted as indicating that 3-(3,4-dichlorophenyl)-1,1-dimethyl urea insensitive H 2 photoevolution by algae containing hydrogenase is due to the capability of NADH to reduce plastoquinone in the electron transport chain, and to evolve H 2 by a low redox potential carrier of photosystem I. 相似文献
12.
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited.In chloroplasts pre-treated with Tris, the primary donor of Photosystem II ( P-680) is oxidized by the flash, as observed by an absorption increase at 820 nm. After the first flash it is re-reduced in a biphasic manner with half-times of 6 μs (major phase) and 22 μs. After the second flash, the 6 μs phase is nearly absent and P-680 + decays with half-times of 130 μs (major phase) and 22 μs. Exogenous electron donors (MnCl 2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680 +.In untreated chloroplasts the 6 and 22 μs phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine.These results are interpreted in terms of multiple pathways for the reduction of P-680 +: a rapid reduction (<1 μs) by the physiological donor D 1; a slower reduction (6 and 22 μs) by donor D′ 1, operative when O 2 evolution is inhibited; a back-reaction (130 μs) when D′ 1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680 + has the capacity to deliver only one electron.The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors ( P-680, D 1, D′ 1) are located at the internal side of the thylakoid membrane. 相似文献
13.
Flash excitation of isolated intact chloroplasts promoted absorbance transients corresponding to the electrochromic effect ( P-518) and the α-bands of cytochrome b6 and cytochrome f. Under conditions supporting coupled cyclic electron flow, the oxidation of cytochrome b6 and the reduction of cytochrome f had relaxation half-times of 15 and 17 ms, respectively. Optimal poising of cyclic electron flow, achieved by addition of 0.1 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea, increased phosphorylation of endogenous ADP and prolonged these relaxation times. The presence of NH 4Cl, or monensin plus NaCl, decreased the half-times for cytochrome relaxation to approximately 2 ms. Uncouplers also revealed the presence of a slow rise component in the electrochromic absorption shift, with formation half-time of about 2 ms. The inhibitors of cyclic phosphorylation antimycin and 2,5-dibromo-3-methyl-6-isopropyl- p-benzoquinone abolished the slow rise in the electrochromic shift and prolonged the uncoupled relaxation times of cytochromes b6 and f by factors of ten or more.These observations indicate that cytochrome b6, plastoquinone and cytochrome f participate in a coupled electron transport process responsible for cyclic phosphorylation in intact chloroplasts. Estimations of cyclic phosphorylation rates from 40 to 120 μmol ATP/mg chlorophyll per h suggest that this process can provide a substantial fraction of the ATP needed for CO 2 fixation. 相似文献
14.
Light-induced redox changes of plastocyanin, the Rieske iron-sulfur center, and P-700 have been studied in situ in spinach chloroplasts. Plastocyanin and the Rieske center behaved in an analogous manner in that their steady states were fully oxidized in the light in the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea when an electron acceptor is present. After illumination under conditions of non-cyclic electron transfer from water to an electron acceptor, followed by a short dark period, the steady state of both shifted to a more reduced level. A 3-(3,4-dichlorophenyl)-1,1-dimethylurea-sensitive photoreduction of the Rieske center was observed in ferricyanide-washed chloroplast fragments. With reduced ferredoxin as electron donor, it was possible to demonstrate a reduction in the dark of these electron carriers and of P-700; this reduction was insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea but was inhibited by antimycin A. These findings are discussed in relation to a function for these electron carriers in the cyclic electron transport pathway in chloroplasts and to their function in the non-cyclic electron transport pathway. 相似文献
15.
1. Chloroplasts washed with Cl ?-free, low-salt media (pH 8) containing EDTA, show virtually no DCMU-insensitive silicomolybdate reduction. The activity is readily restored when 10 mM Cl ? is added to the reaction mixture. Very similar results were obtained with the other Photosystem II electron acceptor 2,5-dimethylquinone (with dibromothymoquinone), with the Photosystem I electron acceptor FMN, and also with ferricyanide which accepts electrons from both photosystems.2. Strong Cl ?-dependence of Hill activity was observed invariably at all pH values tested (5.5–8.3) and in chloroplasts from three different plants: spinach, tobacco and corn (mesophyll).3. In the absence of added Cl ? the functionally Cl ?-depleted chloroplasts are able to oxidize, through Photosystem II, artificial reductants such as catechol, diphenylcarbazide, ascorbate and H 2O 2 at rates which are 4–12 times faster than the rate of the residual Hill reaction.4. The Cl ?-concentration dependence of Hill activity with dimethylquinone as an electron acceptor is kinetically consistent with the typical enzyme activation mechanism: E(inactive) + Cl ?ag E · Cl ? (active), and the apparent activation constant (0.9 mM at pH 7.2) is unchanged by chloroplast fragmentation.5. The initial phase of the development of inhibition of water oxidation in Cl ?-depleted chloroplasts during the dark incubation with NH 2OH ( H 2SO 4) is 5 times slower when the incubation medium contains Cl ? than when the medium contains NH 2OH alone or NH 2OH plus acetate ion. (Acetate is shown to be ineffective in stimulating O 2 evolution.)6. We conclude that the Cl ?-requiring step is one which is specifically associated with the water-splitting reaction, and suggests that Cl ? probably acts as a cofactor (ligand) of the NH 2OH-sensitive, Mn-containing O 2-evolving enzyme. 相似文献
17.
Removal of coupling factor protein (CF 1) from spinach thylakoid membranes results in an enhancement of proton permeability but has no effect on chloride or potassium permeability. Anion permeability was measured by the rate of thylakoid packed volume changes. Potassium permeability was monitored by turbidity changes, packed thylakoid volume changes and ion flux studies using 86Rb + as a tracer. 45Ca 2+ was used to measure divalent cation fluxes. CF 1-depleted chloroplasts had an unaltered rate of Ca 2+ uptake, but the rate of Ca 2+ efflux appeared to be increased. Calcium efflux rates could also be increased by the addition of a proton specific uncoupler, FCCP. 相似文献
18.
Single-photon timing with picosecond resolution is used to investigate the effect of Mg 2+ on the room-temperature fluorescence decay kinetics in broken spinach chloroplasts. In agreement with an earlier paper (Haehnel, W., Nairn, J.A., Reisberg, P. and Sauer, K. (1982) Biochim. Biophys. Acta 680, 161–173), we find three components in the fluorescence decay both in the presence and in the absence of Mg 2+. The behavior of these components is examined as a function of Mg 2+ concentration at both the F0 and the Fmax fluorescence levels, and as a function of the excitation intensity for thylakoids from spinach chloroplasts isolated in the absence of added Mg 2+. Analysis of the results indicates that the subsequent addition of Mg 2+ has effects which occur at different levels of added cation. At low levels of Mg 2+ (less than 0.75 mM), there appears to be a decrease in communication between Photosystem (PS) II and PS I, which amounts to a decrease in the spillover rate between PS II and PS I. At higher levels of Mg 2+ (about 2 mM), there appears to be an increase in communication between PS II units and an increase in the effective absorption cross-section of PS II, probably both of these involving the chlorophyll light-harvesting antenna. 相似文献
19.
1. 1. Chloroplasts can be suspended in aqueous/organic mixtures which are liquid at sub-zero temperatures with a good retention of the ability to reduce artificial electron acceptors. The reduction of ferricyanide and 2,6-dichlorophenolindophenol at temperatures above 0δC is about 50% inhibited by 50% (v/v) ethylene glycol. Higher concentrations cause more extensive inhibition. 2. 2. Different solvents were compared on the basis of their ability to cause a given depression of the freezing point of an aqueous solution. Ethylene glycol caused less inhibition of electron transport than glycerol, which in its turn was found to be superior to methanol. 3. 3. The reduction of oxidised 2,3,5,6-tetramethyl-p-phenylenediamine could be measured at −25δC in 40% (v/v) ethylene glycol. Using an acceptor with a high extinction coefficient, methyl purple (a derivative of 2,6-dichlorophenolindophenol) it was possible to observe electron flow at temperatures as low as −40δC in 50% (v/v) ethylene glycol. 4. 4. From studies of the effects of the inhibitors 3(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone it is suggested that electron flow from the donor side of Photosystem II to the acceptor side of Photosystem I can occur at temperatures at least as low as −25δC. The ultimate electron donor is presumably water but it was not possible to demonstrate this directly.
Abbreviations: DCIP, 2,6-dichlorophenolindophenol; DAD, 2,3,5,6-tetramethyl-p-phenylenediamine; DCMU, 3(3,4-dichlorophenyl)-1,1-dimethylurea; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DMSO, dimethylsulphoxide 相似文献
20.
- 1.
- 1. Chloroplasts from bean leaves which have been aged in darkness at o °C do not carry out Hill reactions. They reduce NADP with reduced 2,6-dichlorophenolindophenol (DCIP) in a reaction that is insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). They reduce NADP with hydroquinone, p-phenylenediamine or benzidine, and reduce DCIP with hydroxylamine, 1,4-diphenylsemicarbazide, 1,5-diphenylcarbohydrazide or manganous ion in DCMU-sensitive reactions. 相似文献
|