首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Light -induced absorbance changes at 560 nm in dark-adapted intact chloroplasts of the green alga, Bryopsis maxima were studied in the time range of 200 ms. The initial rise of the 560 nm signals consists of two major components which are both electrochromic absorbance changes of the carotenoids, siponein and/or siphonaxanthin, but different in mechanisms of the field formation. The first component (component S) is related to electron transport since it was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and showed at light-intensity dependence similar to that of electron transport in chloroplasts. In the presence of DCMU, component S could be restored on addition of proton-transporting electron donors such as reduced 2.6-dichlorophenol indophenol and phenazine methosulfate, but not on addition of N,N,N',N'-tetramethyl-p-phenylenediamine which does not carry protons with electrons (Trebst, A. (1974) Annu. Rev. Plant Physiol. 25, 423--458). We propose that component S is due to the electric field set up by the proton translocation across the thylakoid membrane. The second component (component R) was resistant to DCMU and DBMIB. The light-intensity dependency of component R was similar to that of cytochrome f photooxidation which showed saturation at a relatively low light intensity. The magnitude of component R was markedly reduced by phenylmercuric acetate, suggesting the participation of ferredoxin and ferredoxin-NADP oxidoreductase in the mechanism of the field formation responsible for this component. In the presence of DCMU and phenylmercuric acetate, time courses of the 560 nm changes paralleled those of cytochrome f changes. These results indicate that component R is due to the electric field formed between oxidized cytochrome f and other intersystem electron carriers located in the inner part of the thylakoid membrane and reduced electron acceptors of Photosystem I situated on the membrane surface. The complex natures of the 560 nm changes, as well as the contributions of Photosystems I and II to the absorbance changes, are explained in terms of the two electrogenic mechanisms.  相似文献   

2.
Light-induced absorbance changes at 560 nm, and electrochromicshifts in absorption of carotenoids responding to membrane potentialacross the thylakoid membrane, were studied, comparing themwith the kinetics of cytochrome f photooxidation, in the dark-adaptedintact chloroplasts of the green alga Bryopis maxima. The 560nm changes showed transient variations, characterized by a sharpinitial peak followed by a second, lower peak, within a fewseconds of illumination. The time course of the 560 nm changesis parallel to that of light-induced transient changes of cytochromef. Inhibitors and redox substances which selectively influenceddifferent transient phases of the cytochrome f induction alsospecifically affected corresponding transient phases of the560 nm changes. These results indicate that the two inductionphenomena are closely related to each other and that the inductionof the 560 nm change is due to light-dependent changes in electrontransfer on the reducing side of photosystem I. A possible mechanismfor the electric field formation by electron transfer associatedwith photosystem I will be discussed. (Received May 9, 1977; )  相似文献   

3.
Xian-De Liu 《BBA》2005,1706(3):215-219
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl2, an inhibitor of cytochrome b6f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b6f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

4.
Joseph T. Warden 《BBA》1976,440(1):89-97
A 300 μs decay component of ESR Signal I (P-700+) in chloroplasts is observed following a 10 μs actinic xenon flash. This transient is inhibited by treatments which block electron transfer from Photosystem II to Photosystem I (e.g. 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), KCN and HgCl2). The fast transient reduction of P-700+ can be restored in the case of DCMU or DBMIB inhibition by addition of an electron donor couple (2,6-dichlorophenol indophenol (Cl2Ind)/ascorbate) which supplies electrons to cytochrome f. However, this donor couple is inefficient in restoring electron transport in chloroplasts which have been inhibited with the plastocyanin inactivators, KCN and HgCl2. Oxidation-reduction measurements reveal that the fast P-700+ reduction component reflects electron transfer from a component with Em = 375±10 mV (pH = 7.5). These data suggest the assignment of the 300-μs decay kinetics to electron transfer from cytochrome f (Fe2+) to P-700+, thus confirming the recent observations of Haehnel et al. (Z. Naturforsch. 26b, 1171–1174 (1971)).  相似文献   

5.
(1) Using asolectin (mixed soybean phospholipids) liposomes, extra lipid, with or without additional plastoquinone, has been introduced into isolated thylakoid membranes of pea chloroplasts. (2) Evidence for this lipid enrichment was obtained from freeze-fracture which indicated that a decrease in the numbers of EF and PF particles per unit area of membrane occurred with increasing lipid incorporation. The decrease was not due to loss of integral membrane polypeptides as judged by assay of cytochrome present or SDS-polyacrylamide gel electrophoresis of lipid-enriched membrane fractions. Moreover, the enrichment procedure did not lead to extraction of low molecular weight lipophilic membrane components or of thylakoid membrane lipids. (3) The introduction of phospholipids into the membrane affected steady-state electron transport. Inhibition of electron transport was observed when either water (Photosystem (PS) II + PS I) or duroquinol (PS I) was used as electron donor with methyl viologen as electron acceptor, and the degree of inhibition increased with higher enrichment levels. Introduction of exogenous plastoquinone with the additional lipid had little effect on whole-chain electron transport, but caused an increase in the 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)-sensitive rate of PS I electron transport. The inhibition was also detected by flash-induced oxidation-reduction changes of cytochrome f.  相似文献   

6.
The effects of dibromothymoquinone (DBMIB) and methylviologen (MV) on the Chl a fluorescence induction transient (OJIP) were studied in vivo. Simultaneously measured 820-nm transmission kinetics were used to monitor electron flow through photosystem I (PSI). DBMIB inhibits the reoxidation of plastoquinol by binding to the cytochrome b6/f complex. MV accepts electrons from the FeS clusters of PSI and it allows electrons to bypass the block that is transiently imposed by ferredoxin-NADP+-reductase (FNR) (inactive in dark-adapted leaves). We show that the IP phase of the OJIP transient disappears in the presence of DBMIB without affecting Fm. MV suppresses the IP phase by lowering the P level compared to untreated leaves. These observations indicate that PSI activity plays an important role in the kinetics of the OJIP transient. Two requirements for the IP phase are electron transfer beyond the cytochrome b6/f complex (blocked by DBMIB) and a transient block at the acceptor side of PSI (bypassed by MV). It is also observed that in leaves, just like in thylakoid membranes, DBMIB can bypass its own block at the cytochrome b6/f complex and donate electrons directly to PC+ and P700+ with a donation time τ of 4.3 s. Further, alternative explanations of the IP phase that have been proposed in the literature are discussed.  相似文献   

7.
8.
Fraction 2 (grana-stack) particles prepared with the French press showed absorbance changes, at room temperature and with sodium ascorbate and methyl-viologen, that were produced by the oxidation of cytochrome b-559. This oxidation was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and sensitized by system II of photosynthesis. The oxidation is too slow to account for the rates of the Hill reaction that have been observed with nicotinamide-adenine dinucleotide phosphate (NADP+). It appears that this cytochrome is not functioning in the main pathway of electron transport. In the presence of 2,3,5,6-tetramethyl-p-phenylene-diamine (DAD) and ascorbate, light-induced oxidation of cytochrome f took place within 3 msec (or faster) in the grana-stack particles. Treatment with the detergent Triton X-100 disrupted this rapid cytochrome f oxidation as well as the oxidation of cytochrome b-559. Subsequent plastocyanin addition did not restore the rapid oxidation of cytochrome f (nor of cytochrome b-559) but only slow changes of cytochrome f. In view of the fact that these particles contain almost no plastocyanin, it is unlikely that plastocyanin functions in electron transport between cytochrome f and P-700 in the particles derived from the grana-stack regions of the chloroplast.  相似文献   

9.
The effects of several electron transport inhibitors on themagnitude and kinetics of cytochrome f oxidation induced byflash illumination were studied in the - and -band regions.On the flash excitation only a fraction of cytochrome f presentin the chloroplasts was oxidized with a half time of 0.1 to0.3 msec and then reduced with a half time of 10 to 25 msec. Dibromothymoquinone (DBMIB) at concentrations which severelysuppressed the reduction of cytochrome f approximately doubledthe magnitude of cytochrome f oxidation caused by a flash, mainlyby inducing an additional slow oxidation of cytochrome f witha half time longer than 1 msec. Enhancement of the cytochromef oxidation was also observed in the presence of bathophenanthroline.Such enhanced oxidation in duced by the two inhibitors was largelydiminished with the addition of reduced 2,6-dichlorophenolindophenolwhich accelerated cytochrome f reduction. In contrast, the inhibitionof cytochrome f reduction by 3-(3,4-dichlorophenyl)-1,1-dimethylurea(DCMU) was not associated with an increase in the magnitudeof cytochrome f oxidation. However, addition of DBMIB to theDCMU-poisoned chloroplasts enhanced cytochrome f oxidation,suggesting that this is related to a block of the electron transportbetween plastoquinone and cytochrome f. The results are explainedby assuming the occurrence of an electron carrier between plastoquinoneand cytochrome f. (Received May 10, 1978; )  相似文献   

10.

1. 1. The kinetics of light-induced absorbance changes due to oxidation and reduction of cytochromes were measured in a suspension of intact cells of the unicellular red alga Porphyridium aerugineum. Absorbance changes in the region 540–570 nm upon alternating far-red light and darkness indicated the oxidation of cytochrome ƒ and reduction of cytochrome b563 upon illumination. The relative efficiencies of far-red and orange light indicated that both reactions were driven by Photosystem I.

2. 2. Experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with anaerobic cells and in alternating far-red and orange light indicated that cytochrome b563 reacts in a cyclic chain around Photosystem I, and that the reduced cytochrome does not react with oxygen or with another oxidized product of Photosystem II. The quantum requirement for the photoreduction was about 6 quanta/equiv at 700 nm. A low concentration of N-methylphenazonium methosulphate (PMS) enhanced the rate of reoxidation of cytochrome b563 in the dark. In the presence of higher concentrations of PMS a photooxidation, driven by Photosystem I, instead of reduction was observed. These observations suggest that PMS enhances the rate of reactions between reduced cytochrome b563 and oxidized products of Photosystem I.

3. 3. In the presence of carbonylcyanide m-chlorophenylhydrazone (CCCP) a light-induced decrease of absorption at 560 nm occurred. Spectral evidence suggested the photooxidation of cytochrome b559 under these conditions. Inhibition by DCMU and a relatively efficient action of orange light suggested that this photooxidation is driven by Photosystem II.

Abbreviations: DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; CCCP, carbonylcyanide m-chlorophenylhydrazone; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; P700, chlorophyllous pigment absorbing at 700 nm, primary electron donor of Photosystem I; PMS, N-methylphenazonium methosulphate  相似文献   


11.
The effect of NADP+ on light-induced steady-state redox changes of membrane-bound cytochromes was investigated in membrane fragments prepared from the blue-green algae Nostoc muscorum (Strain 7119) that had high rates of electron transport from water to NADP+ and from an artificial electron donor, reduced dichlorophenolindophenol (DCIPH2) to NADP+. The membrane fragments contained very little phycocyanin and had excellent optical properties for spectrophotometric assays. With DCIPH2 as the electron donor, NADP+ had no effect on the light-induced redox changes of cytochromes: with or without NADP+, 715- or 664-nm illumination resulted mainly in the oxidation of cytochrome f and of other component(s) which may include a c-type cytochrome with an α peak at 549 nm. With 664 nm illumination and water as the electron donor, NADP+ had a pronounced effect on the redox state of cytochromes, causing a shift toward oxidation of a component with a peak at 549 nm (possibly a c-type cytochrome), cytochrome f, and particularly cytochrome b559. Cytochrome b559 appeared to be a component of the main noncyclic electron transport chain and was photooxidized at physiological temperatures by Photosystem II. This photooxidation was apparent only in the presence of a terminal acceptor (NADP+) for the electron flow from water.  相似文献   

12.
The flash-induced absorbance change measured at 518 nm (P515) in intact chloroplasts consists of at least 4 kinetically different components. Here the non-electrochromic component, either called phase d or reaction 3, is studied in some detail. The effect of DCMU, DQH2 and DBMIB on the amplitude of reaction 3 and the turnover of cytochrome f and P700 have been monitored, suggesting an involvement of photosystem 1 in the activation of the non-electrochromic absorbance change. This is confirmed by the parallel oscillation pattern found in P700 rereduction and the amplitude of reaction 3.  相似文献   

13.
The flash-induced P515 absorbance change in intact chloroplasts consists of a fast and a slow phase. There is disagreement in the literature over the origin of the slow phase. Here we argue that the flash-induced slow phase in P515 absorbance change is composed of two different components. One component is most probably due to the electrogenic Q-cycle associated with the cytochrome b/f complex. The second component has decay kinetics that are much slower than the electrogenic reactions. We suggest that the second component is due to a non-electrogenic reaction.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DQH2 durohydroquinone - MV methylviologen - P515 Absorbance change at 518 nm  相似文献   

14.
Cytochrome f: Structure,function and biosynthesis   总被引:1,自引:1,他引:0  
Cytochrome f is an intrinsic membrane component of the cytochrome bf complex, transferring electrons from the Rieske FeS protein to plastocyanin in the thylakoid lumen. The protein is held in the thylakoid membrane by a single transmembrane span located near its C-terminus with a globular hydrophilic domain extending into the lumen. The globular domain of the turnip protein has recently been crystallised, offering the prospect of a detailed three-dimensional structure. Reaction with plastocyanin involves localised positive charges on cytochrome f interacting with the acidic patch on plastocyanin and electron transfer via the surface-exposed tyrosine residue (Tyr83) of plastocyanin. Apocytochrome f is encoded in the chloroplast genome and is synthesised with an N-terminal presequence which targets the protein to the thylakoid membrane. The synthesis of cytochrome f is coordinated with the synthesis of the other subunits of the cytochrome bf complex.  相似文献   

15.
Stomatal conductance is coupled to leaf photosynthetic rate over a broad range of environmental conditions. We have investigated the extent to which chloroplasts in guard cells may contribute to this coupling through their photosynthetic activity. Guard cells were isolated by sonication of abaxial epidermal peels of Vicia faba. The electrochromic band shift of isolated guard cells was probed in vivo as a means of studying the electric field that is generated across the thylakoid membranes by photosynthetic electron transport and dissipated by photophosphorylation. Both guard cells and mesophyll cells exhibited fast and slow components in the formation of the flash-induced electrochromic change. The spectrum of electrochromic absorbance changes in guard cells was the same as in the leaf mesophyll and was typical of that observed in isolated chloroplasts. This observation indicates that electron transport and photophosphorylation occur in guard cell chloroplasts. Neither the fast nor the slow component of the absorbance change was observed in the presence of the uncoupler carbonylcyanide p-trifluoromethoxy-phenylhydrazone which confirms that the absorbance change was caused by the electric field across the thylakoid membranes. The magnitude of the fast rise was reduced by half in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Therefore, photosystem II is functional and roughly equal in concentration to photosystem I in guard cell chloroplasts. The slow rise was abolished by 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone indicating the involvement of the cytochrome b6/f complex in electron transport between the two photosystems. Relaxation of the absorbance change was irreversibly retarded in cells treated with the energy transfer inhibitor, N,N′-dicyclohexylcarbodiimide. The slowing of the rapid decay kinetics by N,N′-dicyclohexylcarbodiimide confirms that the electrical potential across the thyalkoid membrane is dissipated by photophosphorylation. These results show that guard cell chloroplasts conduct photosynthetic electron transport in a manner similar to that in mesophyll cells and provide the first evidence that photophosphorylation occurs in guard cells in vivo.  相似文献   

16.
J. Amesz  B.G. De Grooth 《BBA》1976,440(2):301-313
Spinach chloroplasts, suspended in a liquid medium containing ethyleneglycol, showed reversible absorbance changes near 700 and 518 nm due to P-700 and “P-518” in the region from ?35 to ?50 °C upon illumination. The kinetics were the same at both wavelengths, provided absorbance changes due to Photosystem II were suppressed. At both wavelengths, the decay was slowed down considerably, not only by the System I electron acceptor methyl viologen, but also by silicomolybdate. The effect of the latter compound is probably not due to the oxidation of the reduced acceptor of Photosystem I by silicomolybdate, but to the enhanced accessibility of the acceptor to some other oxidant.In the presence of both an electron donor and acceptor for System I, a strong stimulation of the extent of the light-induced absorbance increase at 518 nm was observed. The most effective donor tested was reduced N-methylphenazonium methosulphate (PMS). The light-induced difference spectrum was similar to spectra obtained earlier at room temperature, and indicated electrochromic band shifts of chlorophylls a and b and carotenoid, due to a large potential over the thylakoid membrane, caused by sustained electron transport. It was estimated that steady-state potentials of up to nearly 500 mV were obtained in this way; the potentials reversed only slowly in the dark, indicating a low conductance of the membrane. This decay was accelerated by gramicidin D. The absorbance changes were linearly proportional to the membrane potential.  相似文献   

17.
Wolfgang Haehnel 《BBA》1982,682(2):245-257
Signal I, the EPR signal of P-700, induced by long flashes as well as the rate of linear electron transport are investigated at partial inhibition of electron transport in chloroplasts. Inhibition of plastoquinol oxidation by dibromothymoquinone and bathophenanthroline, inhibition of plastocyanin by KCN and HgCl2, and inhibition by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide are used to study a possible electron exchange between electron-transport chains after plastoquinone. (1) At partial inhibition of plastocyanin the reduction kinetics of P-700+ show a fast component comparable to that in control chloroplasts and a new slow component. The slow component indicates P-700+ which is not accessible to residual active plastocyanin under these conditions. We conclude that P-700 is reduced via complexed plastocyanin. (2) The rate of linear electron transport at continuous illumination decreases immediately when increasing amounts of plastocyanin are inhibited by KCN incubation. This is not consistent with an oxidation of cytochrome f by a mobile pool of plastocyanin with respect to the reaction rates of plastocyanin being more than an order of magnitude faster than the rate-limiting step of linear electron transport. It is evidence for a complex between the cytochrome b6 - f complex and plastocyanin. The number of these complexes with active plastocyanin is concluded to control the rate-limiting plastoquinol oxidation. (3) Partial inhibition of the electron transfer between plastoquinone and cytochrome f by dibromothymoquinone and bathophenanthroline causes decelerated monophasic reduction of total P-700+. The P-700 kinetics indicate an electron transfer from the cytochrome b6 - f complex to more than ten Photosystem I reaction center complexes. This cooperation is concluded to occur by lateral diffusion of both complexes in the membrane. (4) The proposed functional organization of electron transport from plastoquinone to P-700 in situ is supported by further kinetic details and is discussed in terms of the spatial distribution of the electron carriers in the thylakoid membrane.  相似文献   

18.
Pierre Joliot  Anne Joliot 《BBA》1984,765(2):219-226
(1) The equilibrium constants for the redox reactions occurring between Photosystem (PS) I donors were measured on chloroplasts, dark-adapted in the presence of sodium ascorbate and 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) and then illuminated by d.c. light. The equilibrium constant for the electron transfer between plastocyanin and P-700 is close to 1 and the overall equilibrium constant between cytochrome f and P-700 is about 2.3. As these equilibrium constants do not depend upon the intensity of the d.c. beam, the low values we measured cannot be due to kinetic limitations. (2) The equilibrium constants were measured also in the absence of DCMU using chloroplasts in oxidizing conditions (ferricyanide or far red illumination) illuminated by a saturating flash. During the course of the reduction of PS I donors by plastoquinol molecules formed by the flash, the equilibrium constants are higher than in the preceding conditions: the value for plastocyanin to P-700 is close to 5, and that for cytochrome f to P-700 is about 25. (3) The variations of these equilibrium constants are tentatively interpreted as being due to mutual electrostatic interactions between cytochrome b and f which are included in the same complex. This model implies that the perturbation of the redox properties of cytochrome f by a positive charge located on cytochrome b is identical to the perturbation of the redox properties of cytochrome b by a positive charge located on cytochrome f.  相似文献   

19.
Electron transport of normal and photobleachedAnabaena cylindrica was studied using spectral and kinetic analyses of absorbance transients induced by single turnover flashes. Between 500 and 600 nm two positive bands (540 and 566 nm) and two negative bands (515 and 554 nm) were found. Absorbance changes at 515 and 540 nm were partly characterized. None of these absorbance changes represent an electrochromic shift. Absorbance changes at 554 and 566 nm correspond to the oxidation of cytochromef and the reduction of cytochromeb 563, respectively. We found a very slight 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) sensitivity of cytochromef in normal cells, while DCMU was completely ineffective for cytochromef reduction in photobleached cells. The absorbance change of cytochromeb 563 increased, while the absorbance change of cytochromef was smaller than in normal cells. The increased O2 evolution in photobleached cells and the negligible electron transport via cytochromef suggest the participation of other electron acceptor(s) in the electron-transport chain of photobleachedAnabaena cylindrica.  相似文献   

20.
The photoacoustic technique was used to measure energy storage by cyclic electron transfer around photosystem I in intact Chlamydomonas reinhardtii cells illuminated with far-red light (>715 nm). The in-vivo cyclic pathway was characterized by investigating the effects of various chemicals on energy storage. Participation of plastoquinone and ferredoxin in the cyclic electron flow was confirmed by the complete suppression of energy storage in the presence of the plastoquinol antagonist 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and the ferredoxin inhibitors/competitors methylviologen, phenylmercuric acetate and p-benzoquinone. Two alternative electron cycles are demonstrated to operate in vivo. One cycle is sensitive to antimycin A, myxothiazol and 2-(n-heptyl)-4-hydroxyquinoline N-oxide (HQNO) and is catalyzed by ferredoxin which reduces plastoquinone through a route involving cytochrome b 6 and its protonmotive Q-cycle. The other cycle is unaffected by the above-mentioned inhibitors but is sensitive to N-ethylmaleimide (NEM), an inhibitor of the ferredoxin-NADP reductase, and 2-monophosphoadenosine-5-diphosphoribose (PADR), an analogue of NADP, showing that the electron recycling was mediated by NADPH. Possibly, electrons enter the plastoquinone pool through the action of a NAD(P)H dehydrogenase, which is insensitive to classical inhibitors of the mitochondrial NADH dehydrogenase. Loss of energy storage by photosystem-I-driven cyclic electron transfer in farred light was observed only when antimycin A, myxothiazol or HQNO was used in combination with NEM or PADR. Analysis of the light-intensity dependence and the rate of in-vivo cyclic electron transfer in the presence of various inhibitors indicates that the NADPH-dependent electron-cycle is the preferential cyclic pathway in Chlamydomonas cells illuminated with far-red light.Abbreviations Amax maximal photothermal signal - Cyt cytochrome - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ES photochemical energy storage - FNR ferredoxin NADP+ reductase - HQNO 2-(n-heptyl)-4-hydroxyquinoline N-oxide - NEM N-ethylmaleimide - P700 reaction-center pigment of PSI - PADR 2-monophosphoadenosine-5-diphosphoribose - pBQ p-benzoquinone - PMA phenylmercuric acetate We are very grateful to Dr. M.-H. Montane (Cadarache, Saint-Paul-lez-Durance, France) for her advice in the electroporation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号