首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suberin from the roots of carrots (Daucus carota), parsnip (Pastinaca sativa), rutabaga (Brassica napobrassica), turnip (Brassica rapa), red beet (Beta vulgaris), and sweet potato (Ipomoea batatas) was isolated by a combination of chemical and enzymatic techniques. Finely powdered suberin was depolymerized with 14% BF3 in methanol, and soluble monomers (20-50% of suberin) were fractionated into phenolic (<10%) and aliphatic (13-35%) fractions. The aliphatic fractions consisted mainly of ω-hydroxyacids (29-43%), dicarboxylic acids (16-27%), fatty acids (4-18%), and fatty alcohols (3-6%). Each fraction was subjected to combined gas-liquid chromatography and mass spectrometry. Among the fatty acids very long chain acids (>C20) were the dominant components in all six plants. In the alcohol fraction C18, C20, C22, and C24 saturated primary alcohols were the major components. C16 and C18 dicarboxylic acids were the major dicarboxylic acids of the suberin of all six plants and in all cases octadec-9-ene-1, 18-dioic acid was the major component except in rutabaga where hexadecane-1, 16-dioic acid was the major dicarboxylic acid. The composition of the ω-hydroxyacid fraction was quite similar to that of the dicarboxylic acids; 18-hydroxy-octadec-9-enoic acid was the major component in all plants except rutabaga, where equal quantities of 16-hydroxyhexadecanoic acid and 18-hydroxyoctadec-9-enoic acid (42% each) were found. Compounds which would be derived from 18-hydroxyoctadec-9-enoic acid and octadec-9-ene-1, 18-dioic acid by epoxidation, and epoxidation followed by hydration of the epoxide, were also detected in most of the suberin samples. The monomer composition of the six plants showed general similarities but quite clear taxonomic differences.  相似文献   

2.
Cutin and suberin polymers from various anatomical regions of grapefruit were analyzed chemically and ultrastructurally. The leaf, fruit peel and juice-sac showed an amorphous cuticular layer. The cutin in the leaf was composed of 10,16-dihydroxy C16 acid and its positional isomers as the major monomers whereas 16-hydroxy-10-oxo C16 acid was a major component in the fruit peel. Juice-sac cutin, on the other hand, contained the dihydroxy C16 acids, hydroxyoxo C16 acids, hydroxyepoxy C18 acids and trihydroxy C18 acids. Ultrastructural examination of the inner seed coat showed that an amorphous cuticular layer encircled the entire seed except in the chalazal region which showed several layers of cells with lamellar suberin structure throughout the cell walls. Consistent with the ultrastructural assignment, the compositions of the aliphatic components of the polymers from the chalazal region and the non-chalazal region indicated the presence of suberin and cutin, respectively. The aliphatic portion of the polymer from the chalazal region of the inner seed coat contained C16, C18:1, C22 and C24 -hydroxy acids (46% combined total) and the corresponding dicarboxylic acids (43%) as the major components. -Hydroxy-9,10-epoxy C18 acids and 9,10,18-trihydroxy C18 acids were the major components (77%) of the polymer from the non-chalazal portion of the inner seed coat. The main portion and the chalazal region of the inner seed coat yielded 17 and 342 g/cm2 of aliphatic monomers, respectively, and the diffusion resistance of these two portions of the inner seed coat were 62 and 192 sec/cm, respectively. The inner seed coat was shown to be the major moisture diffusion barrier influencing imbibition and germination.Scientific Paper No. 5649, Project 2001, College of Agriculture Research Center, Washington State University, Pullman, Washington 99164  相似文献   

3.
Lipid composition and hydrocarbon structure of two colonial green algae of the genus Botryococcus, i.e., a museum strain and a field sample collected for the first time from Lake Shira (Khakasia, Siberia), have been compared. Polar lipids, diacylglycerols, alcohols, triacylglycerols, sterols, sterol esters, free fatty acids and hydrocarbons have been identified among lipids in the laboratory culture. The dominant fraction in the museum strain was formed by polar lipids (up to 50% of the lipids) made up of fatty acids from C12 to C24. Palmitic, oleic, C16 - C18 dienoic and trienoic acids were the main fatty acids of the museum strain. Aliphatic hydrocarbons were found in the lipid of the museum strain. However, these amounted maximally to about 1% of the dry biomass at the end of exponential growth phase. The qualitative and quantitative compositions of FAs and hydrocarbons of the museum strain of Botryococcus, (registered at the Cambridge collection as Botryococcus braunii Kutz No LB 807/1 Droop 1950 H-252) differed from those of the Botryococcus strain described in the literature as Botryococcus braunii. The Botryococcus sp. found in Lake Shira is characterized by a higher lipid content (<40% of the dry weight). Polar lipids, sterols, triacylglycerols, free fatty acids and hydrocarbons have been identified among lipids in the field sample. The main lipids in this sample were dienes and trienes (hydrocarbons <60% of total lipid). Monounsaturated and very long chain monounsaturated fatty acids, including C28:1 and C32:1 acids, were identified in the Botryococcus found in Lake Shira. The chemo-taxonomic criteria allow us to unequivocally characterize the organism collected from Lake Shira as Botryococcus braunii, race A.  相似文献   

4.
Sharma SL  Pant A 《Biodegradation》2000,11(5):289-294
A hydrocarbon degrader isolated from a chronically oil-polluted marine site was identified as Rhodococcus sp. on the basis of morphology, fatty acid methyl ester pattern, cell wall analysis, biochemical tests and G + C content of DNA. It degraded upto 50% of the aliphatic fraction of Assam crude oil, in seawater supplemented with 35 mM nitrogen as urea and 0.1 mM phosphorus as dipotassium hydrogen orthophosphate, after 72 h at 30 ° and 150 revolutions per minute. The relative percentage of intracellular fatty acid was higher in hydrocarbon-grown cells compared to fructose-grown cells. The fatty acids C16 , C1616 :1 C18 and C18 : 1 were constitutively present regardless of the growth substrate. In addition to these constitutive acids, other intracellular fatty acids varied in correlation to the hydrocarbon chain length supplied as a substrate. When grown on odd carbon number alkanes, the isolate released only monocarboxylic acids into the growth medium. On even carbon number alkanes only dicarboxylic acids were produced.  相似文献   

5.
Lipid classes and fatty acid distribution were analysed in the resting sporangium of Synchytrium endobioticum, the causal agent of the potato wart disease. The sporangium contents were shown to have lipid droplets, the major fatty acids there being C16.0, C18.1, and C19.0. The sporangium wall on the other hand was composed of C18.0, C18.1, C18.2, C20.0, and C20.4 fatty acids. A significantly large portion of the sporangium wall lipids contained wax esters with branched chains.  相似文献   

6.
The lipid fraction of the green alga Botryococcuscultured in a batch mode was found to contain polar lipids (more than 50% of the total lipids), di- and triacylglycerols, sterols and their esters, free fatty acids, and hydrocarbons. In aging culture, the content of polar lipids somewhat decreased and that of triacylglycerols increased by more than four times. The content of hydrocarbons in the algal biomass did not exceed 0.9% and depended little on the culture age. Intracellular lipids contained saturated and unsaturated (mono-, di-, and trienoic) fatty acids. The maximum content of C16 : 3and -C18 : 3fatty acids (up to 35% of the total fatty acids) was detected in the phase of active growth. The extracellular and intracellular lipids of the alga differed in the proportion of particular lipids and in the fatty acid pattern.  相似文献   

7.
A. P. Kausch  H. T. Horner 《Planta》1985,164(1):35-43
Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.Abbreviations AMPD 2-amino-2-methyl-1,3-propandiol - CTEM conventional transmission electron microscopy - DAB 3,3-diaminobenzidine tetrahydrochloride - HVEM high-voltage electron microscopy  相似文献   

8.
Pinarosa Avato 《Planta》1984,162(6):487-494
Experimental evidence for a membranebound microsomal ester synthetase from Bonus barley primary leaves is reported. The results are consistent with at least two mechanisms for the synthesis of barley wax esters: an acyl-CoA-fattyalcohol-transacylase-type reaction and an apparent direct esterification of alcohols with fatty acids. Biosynthesis of wax esters was not specific with regard to the chain length of the tested alcohols. The microsomal preparation readily catalyzed the esterification of C16-, C18-, C22- or C24-labelled alcohols with fatty acids of endogenous origin. Exogenous long-chain alcohols were exclusively incorporated into the alkyl moieties of the esters. Addition of ATP, CoA and-or free fatty acids was not effective in stimulating or depressing the esterifying activity of the microsomal fraction. Partial solubilization of the ester synthetase was obtained using phosphate-buffered saline.Abbreviations P pellet - PBS phosphate-buffered saline - S supernatant - SDS sodium dodecyl sulphate  相似文献   

9.
The phospholipid fatty acid composition and poly--hydroxybutyrate (PHB) content of initially adhered and free-living cells of a Pseudomonas sp. isolated from the rape plant Brassica napus were examined with gas chromatography (GC). Five different adhesion experiments were made including variations in surface charge (hydrophilic and lipophilic), temperature, media composition and time of adhesion. Lipids and poly--hydroxybutyrate (PHB) were extracted with a chloroform-methanol-water mixture, hydrolyzed and esterified with pentafluorobenzyl bromide. Analysis was performed with capillary gas chromatography and flame ionization detection. A pronounced difference in both the ratio saturated/unsaturated fatty acids and in PHB content between free-living and adhered bacteria were found. The free-living bacteria has a significantly smaller ratio of saturated/unsaturated C16 and C18 fatty acids and also a smaller ratio of total C18/total C16 fatty acids. Bacteria adhered to the lipophilic surface had a higher ratio of saturated to unsaturated C16 fatty acids than at the hydrophilic surface. There were no major differences between the treatments regarding the amount of bacteria adhered to the surface or their lipid composition.  相似文献   

10.
Chlorella fusca can utilize the following substances as sole sulfur sources for growth: C1 to C8 n-alkane-1-sulfonates, linear alkylbenzenes sulfonates (LAS), -sulfonated fatty acid esters, polyethylene glycol sulfate and alkylsulfates. Good sulfur sources are alkylsulfonic acids, which are comparable to sulfate. Ethanesulfonic acid was used for comparison of the growth on sulfate and on a sulfonic acid, because best growth was achieved on this C2-sulfonic acid.Growth data of Chlorella on the enviromental important detergents linear alkylbenzene sulfonic acids, -sulfonated fatty acid methylester, Texapon and Sulfopon are presented. So far only microorganisms have been discussed as a source for degradation of sulfonic acids and detergents. It is suggested that green algae could be of similar importance for the biodegradation of these compounds.Abbreviations LAS Linear alkylbenzene sulfonate - ES -sulfonated fatty acid methylester - DTE dithiocrythritol  相似文献   

11.
Many members ofRanunculaceae contain unusual fatty acids in their seed oils. This leads to rather typical genus-specific fatty acid patterns or fingerprints in these seed oils. The members of theDelphinioideae and/orHelleboroideae, however, do not contain highly unusual fatty acids. Nevertheless, their seed oil fatty acid fingerprints are also fairly typical and genus-specific, and the patterns found are rather consistent throughout several species of one genus. It was found that species ofAconitum do not contain fatty acids with 20 carbon atoms.Delphinium, Consolida, Helleborus, Nigella and others do contain C20 fatty acids. In allHelleborus species, for example, there was a consistent C20 fatty acid pattern of 20:020:120:2>20:3. Species ofNigella andGaridella contain high levels,Helleborus low levels, of 20:2n-6 in their seed oils.Delphinium andAconitum both contain low levels of 18:3n-3, whereasHelleborus spp. consistently show high levels of this fatty acid. The genus-specific fatty acid patterns found are discussed, and a correlation with the subfamily and tribe affiliation of the genera investigated here is attempted.  相似文献   

12.
13.
Newly isolated Acinetobacter (NRRL B-14920, B-14921, B-14923) and coryneform (NRRL B-14922) strains accumulated oleyl oleate and homologous liquid wax esters (C30:2–C36:2) in culture broths. Diunsaturated oleyl oleate preponderated in 75 mg liquid wax esters (280 mg lipid extract) recovered from 100-ml cultures of Acinetobacter B-14920 supplemented with 810 mg oleic acid–oleyl alcohol. With soybean oil instead of oleic acid, wax esters (260 mg) were increased to approximately 50% of the lipid extract. Production of wax esters by cultures supplemented with combined fatty (C8–C18) alcohols and acids suggests a coordinated synthesis whereby the exogenous alcohol remains unaltered, and the fatty acid is partially oxidized with removal of C2 units before esterification. Consequently, C8–C18 primary alcohols control chain lengths of the wax esters. Exogenous fatty acids are presumed to enter an intracellular oxidation pool from which is produced a homologous series of liquid wax esters.  相似文献   

14.
Poddar‐Sarkar, M., Raha, P., Bhar, R., Chakraborty, A. and Brahmachary, R.L. 2011. Ultrastructure and lipid chemistry of specialized epidermal structure of Indian porcupines and hedgehog. —Acta Zoologica (Stockholm) 92 : 134–140. In the present study, we investigated the ultrastructural variations of specialized epidermal structure of Indian porcupines (Hystrix indica and Atherurus macrourus) and hedgehog (Hemiechinus collaris) as well as the variation in the fatty acid composition of total lipid fraction. Scanning electron microscope images reveal the usual scaly structure in surface view and network of channels in cross‐section but with different orientation of partition walls. The lipid profile reveals the presence of free sterol, long‐chain alcohol, free fatty acids, wax ester and sterol ester in all the three cases and trace amount of triglyceride, diglyceride and monoglyceride. Gas chromatography–mass spectrometry analysis of fatty acid methyl ester of total lipid fraction indicates the presence of C8‐C22 fatty acids in Hystrix indica, C8‐C18 in Atherurus macrourus and C8‐C20 fatty acids in Hemiechinus collaris. It is interesting to note that the total lipid fraction of hedgehog shows no branched‐chain, unsaturated and odd‐carbon fatty acids. Odd‐carbon fatty acid and branched‐chain fatty acids detected in the adult H. indica but were absent in juvenile H. indica as well as in A. macrourus. With the exception of C18:1, the other unsaturated fatty acids were also absent in both juvenile H. indica and A. macrourus.  相似文献   

15.
During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40–50 mg·d–1·(g fresh weight)–1) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-14C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2–3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60–80% in this lipid fraction.Abbreviations ACP acyl carrier protein - FW fresh weight This work was supported by the Bundesminister für Forschung und Technologie. The authors thank S. Borchert for her suggestions for plastid preparation.  相似文献   

16.
Epicuticular and intracuticular waxes from both adaxial and abaxial surfaces of the leaves of Kalanchoe daigremontiana were analyzed. All wax mixtures were found to contain approximately equal amounts of triterpenoids and very long chain fatty acid (VLCFA) derivatives. The triterpenoid fraction consisted of glutinol (8-19% of the total wax) and friedelin (4-9%), together with smaller amounts of glutanol, glutinol acetate, epifriedelanol, germanicol and β-amyrin. The VLCFA derivatives comprised C27-C35 alkanes (19-37% of the total wax), C32-C34 aldehydes (3-7%), C32 and C34 fatty acids (0.2-3%), C26-C36 primary alcohols (4-8%), and C42-C52 alkyl esters (2-9%). The wax layers were found to differ in triterpenoid amounts, with the intracuticular wax containing higher percentages of most triterpenoids than the epicuticular wax. Friedelin, the only triterpenoid ketone present, showed the opposite distribution with higher proportions in the epicuticular wax. VLCFA derivatives also accumulated to higher percentages in the epicuticular than in the intracuticular wax layer. Epicuticular wax crystals were observed on both the adaxial and abaxial leaf surfaces.  相似文献   

17.
The mycolic acid compositions of Nocardia rubra and related bacteria grown in media containing different concentrations of antituberculous isonicotinic acid hydrazide (INH) were determined in detail by gas chromatography-mass spectrometry. On the basis of molecular species composition, average carbon numbers of mycolic acids were calculated. In Nocardia rubra, N. lutea and Rhodococcus rhodochrous IFO-13161, the ratio of mycolic to non-mycolic fatty acids and the average carbon numbers of mycolic acids were decreased at the INH concentrations of higher than 1 g/ml, paralleling with the significant inhibition of growth. In above three species the synthesis of longer chain mycolic acids (longer than C44 or C46) was inhibited more significantly than shorter homologues such as C38 or C40. In contrast, neither growth inhibition nor change in corynomycolic acid composition was observed in Corynebacteria xerosis and Rhodococcus rhodochrous IFO-13165 at the concentration region of INH up to 100 g/ml. The direct mass fragmentographic analysis of the trimethylsilylated (TMS) derivatives of mycolic acid methyl esters, monitoring [M-15] ions of individual molecular species, revealed that the chain shortening of total mycolic acid molecule by INH occurred more greatly in more highly unsaturated subclasses than in less unsaturated subclasses. Furthermore, mass fragmentographic analysis, monitoring fragment ions (A) and (B), due to straight chain and branched chain alkyl units, respectively, demonstrated the inhibition of mycolic acids was not attributed to the shortening of -alkyl chain, but to the inhibition of chain elongation of C28 to C32 straight chain meromycolic acids. It was also indicated the amounts of trehalose mono- and di-mycolate (cord factor) decreased significantly with the addition of INH (1 to 20 g/ml) in the above strains. From the results obtained above, INH appeared to inhibit the synthesis of mycolic acids longer than C44 or C46 specifically by inhibiting chain elongation or desaturation of precursor long chain fatty acids longer than C28 or C30.  相似文献   

18.
In the transition phase of Candida apicola IMET 43747 from logarithmic to stationary growth a pyridine-nucleotide-independent alcohol oxidase was induced coinciding with the beginning of sophorose lipid production. This enzyme was not repressed by glucose and was measurable in stationary cells grown on glucose or on a mixture of n-hexadecane and glucose. An NAD+-dependent aldehyde dehydrogenase behaved in the same way. Both enzymes were localized in the microsomal fraction. The alcohol oxidase accepted long-chain (fatty) aliphatic alcohols (C8 to at least C16) and diols starting from decanediol. Trace activities were found with -hydroxy fatty acids. Aromatic, secondary and tertiary alcohols were not oxidized. In the stationary growth phase the substrate specificity of the alcohol oxidase tends to be changed to more hydrophobic substrates. The physiological role of both enzymes, the alcohol oxidase and aldehyde dehydrogenase, is discussed including their possible involvement in the synthesis of sophorose lipid. Correspondence to: R. K. Hommel  相似文献   

19.
Seed oils of meadowfoam (Limnanthes douglasii, L. alba) contain very long-chain fatty acids of strategic importance for a number of industrial applications. These include the monoene 20 15 and the diene 22:25,13. Engineering of meadowfoam-type oils in other oilseed crops is desirable for the production of these fatty acids as industrial feedstocks. Accordingly, we have targeted Brassica carinata and soybean (Glycine max) to trangenically engineer the biosynthesis of these unusual fatty acids. An L. douglasii seed-specific cDNA (designated Lim Des5) encoding a homolog of acyl-coenzyme A desaturases found in animals, fungi and cyanobacteria was expressed in B. carinata, which resulted in the accumulation of up to 10% 22:25,13 in the seed oil. In soybean, co-expression of Lim Des5 with a cDNA (Lim FAE1) encoding an FAEl (elongase complex condensing enzyme) homolog from L. douglasii resulted in the accumulation of 20:15 to approximately 10% of the total fatty acids of seeds. The content of C20 and C22 fatty acids was also increased from <0.5% in non-transformed soybean seeds to >25% in seeds co-expressing the Lim. douglasii Des5 and FAE1 cDNAs. In contrast, expression of the Lim Des5 in Arabidopsis did not produce the expected 20:25,11 in the seed oil. Cumulatively, these results demonstrate the utility of soybean and B. carinata for the production of vegetable oils containing novel C20 and C22 fatty acids, and confirm that the preferred substrates of the Lim Des5 are 20:0 and 22:13, respectively.  相似文献   

20.
The structure and composition of the aliphatic monomers of the polymeric material deposited during wound-healing of tomato fruit, bean pods, and Jade leaves were examined. After removing the cuticle-containing layer of tissue, the wounds were healed for 14 days and the resulting surface layer was excised, lyophilized, solvent-extracted, and depolymerized by hydrogenolysis with LiAlH4 or transesterified with BF3 in methanol. The products obtained by the chemical depolymerization were subjected to thin layer chromatography and combined gas chromatography and mass spectrometry. The major aliphatic components isolated from the hydrogenolysate of the wound polymer produced by tomato fruit were hexadecane-1,16-diol and octadec-9-ene-1,18-diol, which were shown to be derived from a 1:1 mixture of ω-hydroxy and dicarboxylic acids of the appropriate chain length by LiAlH4 reduction. Also identified in the wound polymer were long chain (>C20) fatty acids and alcohols. This monomer composition is typical of suberin polymers and is in sharp contrast with that of the cutin of tomato fruit which contains dihydroxy C16 acid as the major aliphatic component. The hydrogenolysis of the wound material from bean pods gave octadecene-1,18-diol as the major aliphatic component, and smaller amounts of hexadecane-1,16-diol and long chain alcohols. Similar treatment of the normal cuticular tissue of these pods gave hexadecane triol, as well as C16 and C18 alcohols. Hydrogenolysis of wound material from the Jade leaves gave octadecene-1,18-diol, C16 and C22 diols, as well as alcohols from C16 to C26, whereas similar treatment of the cutin-containing tissue from these leaves gave C16 triol as the major aliphatic component. Thus, the major aliphatic monomers of the polymeric material deposited during the wound-healing of bean pods and Jade leaves are very similar to those of suberin, although the natural protective polymer of these tissues is cutin. From these results, it is concluded that suberization is a fundamental process involved in wound-healing in plants, irrespective of the chemical nature of the natural protective polymer of the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号