首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperthermia is under intensive investigation as a treatment for tumors both alone and in combination with other therapeutic agents. Hyperthermia has a profound effect on the function and structural integrity of tumor microvasculature; this has often been cited as a reason for its effectiveness in treatment of tumors. To test the role of hyperthermia in cytotoxic effects of active oxygen species, Chinese hamster, V79, and bovine endothelial cells were treated by the active oxygens, O not equal to 2 and H2O2, generated from the hypoxanthine/purine and xanthine oxidase reactions. It was found that cytotoxicity to V79 cells depends on the concentrations of purine and xanthine oxidase. A high level of cytotoxicity may be initiated in hyperthermia-treated tumors because high xanthine oxidase activity is known to be associated with tumors and endothelial cells, and degradation processes produce high concentrations of xanthine oxidase substrates in tumors. Since the cytotoxic effect can be reduced by the xanthine oxidase inhibitor, allopurinol, and the H2O2 removal enzyme, catalase, the cytotoxic effect in this experimental system is dependent on xanthine oxidase and H2O2. Adding erythrocytes at the same time as purine and xanthine oxidase could also prevent the cytotoxicity. Elevated temperatures stimulated the reaction of purine and xanthine oxidase and resulted in an increased cytotoxic effect. A similar effect is observed in growth inhibition and colony formation in endothelial cells without adding xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Quantification of intracellular and extracellular levels and production rates of reactive oxygen species is crucial to understanding their contribution to tissue pathophysiology. We measured basal rates of oxidant production and the activity of xanthine oxidase, proposed to be a key source of O2- and H2O2, in endothelial cells. Then we examined the influence of tumor necrosis factor-alpha and lipopolysaccharide on endothelial cell oxidant metabolism, in response to the proposal that these inflammatory mediators initiate vascular injury in part by stimulating endothelial xanthine oxidase-mediated production of O2- and H2O2. We determined a basal intracellular H2O2 concentration of 32.8 +/- 10.7 pM in cultured bovine aortic endothelial cells by kinetic analysis of aminotriazole-mediated inactivation of endogenous catalase. Catalase activity was 5.72 +/- 1.61 U/mg cell protein and glutathione peroxidase activity was much lower, 8.13 +/- 3.79 mU/mg protein. Only 0.48 +/- 0.18% of total glucose metabolism occurred via the pentose phosphate pathway. The rate of extracellular H2O2 release was 75 +/- 12 pmol.min-1.mg cell protein-1. Intracellular xanthine dehydrogenase/oxidase activity determined by pterin oxidation was 2.32 +/- 0.75 microU/mg with 47.1 +/- 11.7% in the oxidase form. Intracellular purine levels of 1.19 +/- 1.04 nmol hypoxanthine/mg protein, 0.13 +/- 0.17 nmol xanthine/mg protein, and undetectable uric acid were consistent with a low activity of xanthine dehydrogenase/oxidase. Exposure of endothelial cells to 1000 U/ml tumor necrosis factor (TNF) or 1 microgram/ml lipopolysaccharide (LPS) for 1-12 h did not alter basal endothelial cell oxidant production or xanthine dehydrogenase/oxidase activity. These results do not support a casual role for H2O2 in the direct endothelial toxicity of TNF and LPS.  相似文献   

3.
We hypothesized that neutralization of TNF-alpha at the time of reperfusion exerts a salubrious role on endothelial function and reduces the production of reactive oxygen species. We employed a mouse model of myocardial ischemia-reperfusion (I/R, 30 min/90 min) and administered TNF-alpha neutralizing antibodies at the time of reperfusion. I/R elevated TNF-alpha expression (mRNA and protein), whereas administration of anti-TNF-alpha before reperfusion attenuated TNF-alpha expression. We detected TNF-alpha expression in vascular smooth muscle cells, mast cells, and macrophages, but not in the endothelial cells. I/R induced endothelial dysfunction and superoxide production. Administration of anti-TNF-alpha at the onset of reperfusion partially restored nitric oxide-mediated coronary arteriolar dilation and reduced superoxide production. I/R increased the activity of NAD(P)H oxidase and of xanthine oxidase and enhanced the formation of nitrotyrosine residues in untreated mice compared with shams. Administration of anti-TNF-alpha before reperfusion blocked the increase in activity of these enzymes. Inhibition of xanthine oxidase (allopurinol) or NAD(P)H oxidase (apocynin) improved endothelium-dependent dilation and reduced superoxide production in isolated coronary arterioles following I/R. Interestingly, I/R enhanced superoxide generation and reduced endothelial function in neutropenic animals and in mice treated with a neutrophil NAD(P)H oxidase inhibitor, indicating that the effects of TNF-alpha are not through neutrophil activation. We conclude that myocardial ischemia initiates TNF-alpha expression, which induces vascular oxidative stress, independent of neutrophil activation, and leads to coronary endothelial dysfunction.  相似文献   

4.
The generation of oxidants in reperfused ischemic tissues by xanthine oxidase (XO) may contribute to tissue damage. We exposed bovine pulmonary microvascular endothelial (BPMVE) cells to hypoxia and subsequent reoxygenation and examined alterations in intracellular and extracellular XO activities. BPMVE cells incubated 24 h under hypoxic conditions (less than 1% O2) showed a twofold increase in intracellular xanthine dehydrogenase activity and a smaller increase in intracellular XO activity compared to normoxic BPMVE. Both normoxic and hypoxic BPMVE cells constitutively released XO activity into their culture media. Incubation of hypoxic or normoxic BPMVE cells with oxygenated medium (95% O2) stimulated the release of XO activity into the extracellular medium within 5 min. The XO activity could not be detected in the oxygenated medium after 60 min incubation with 95% O2. These results indicate that endothelial cells in culture constitutively release XO and that oxygenation rapidly enhances XO release. The released XO activity may play an important role in generation of oxidants in the extracellular milieu during reperfusion.  相似文献   

5.
Endothelial dysfunction/activation underlies the development of long-term cardiovascular complications and atherosclerosis. The aim of this study was to examine a direct role for exogenous sublethal flux of superoxide on endothelial cell dysfunction. Human umbilical vein endothelial cells (HUVEC) were exposed to superoxide generated by 0.1 mM xanthine and 4 mU/ml xanthine oxidase for 15 min and essential endothelial functions were examined. Superoxide dismutase and/or catalase was used as scavenger for O(2)(-)/H(2)O(2) to determine the key culprit. HUVEC detachment was determined by neutral red uptake and apoptosis by annexin V binding. Inflammation was estimated by IL-8 mRNA expression and cellular adhesion molecules (CAM). eNOS and iNOS message and eNOS protein served as an indirect measure for NO. Procoagulable state was evaluated by estimating the intracellular tissue factor. Activation of endothelial NADPH oxidase was determined by lucigenin chemiluminescence. Sublethal superoxide dose evoked: (1) proinflammatory state manifested by increased IL-8 mRNA expression and CAM on the endothelial surface, (2) HUVEC apoptosis and activated endothelial NADPH oxidase, (3) increase in intracellular tissue factor, and (4) decrease in eNOS mRNA and protein and up-regulation of iNOS mRNA. We conclude that extracellular low flux of superoxide exhibits pleiotropic characteristics, triggering activation/dysfunction of endothelial cells.  相似文献   

6.
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.  相似文献   

7.
Clinical and experimental data indicate that activated oxygen species interfere with vascular endothelial cell function. Here, the impact of extracellular oxidant injury on the fibrinolytic response of cultured human umbilical vein endothelial (HUVE) cells was investigated at the protein and mRNA levels. Xanthine (50 microM) and xanthine oxidase (100 milliunits), which produces the superoxide anion radical (O2-) and hydrogen peroxide (H2O2), was used to sublethally injure HUVE cells. Following a 15-min exposure, washed cells were incubated for up to 24 h in serum-free culture medium. Tissue-type plasminogen activator (t-PA) antigen, plasminogen activator inhibitor-1 (PAI-1) antigen, and PAI-1 activity were determined in 1.25 ml of conditioned medium and t-PA and PAI-1 mRNA in the cell extracts of 2 x 10(6) HUVE cells. Control cells secreted 3.9 +/- 1.3 ng/ml (mean +/- S.D., n = 12) within 24 h. Treatment with xanthine/xanthine oxidase for 15 min induced a 2.8 +/- 0.4-fold increase (n = 12, p less than 0.05) of t-PA antigen secretion after 24 h. The t-PA antigen was recovered predominantly in complex with PAI-1. The oxidant injury caused a 3.0 +/- 0.8-fold increase (n = 9, p less than 0.05) in t-PA mRNA within 2 h. Total protein synthesis was unaltered by xanthine/xanthine oxidase. The oxidant scavengers superoxide dismutase and catalase, in combination, abolished the effect of xanthine/xanthine oxidase on t-PA secretion and t-PA mRNA synthesis. Xanthine/xanthine oxidase treatment of HUVE cells did not affect the PAI-1 secretion in conditioned medium nor the PAI-1 mRNA levels in cell extracts. Thus extracellular oxidant injury induces t-PA but not PAI-1 synthesis in HUVE cells.  相似文献   

8.
The effect of hypoxia on subsequent susceptibility of porcine pulmonary artery endothelial cells (PAEC) to hydrogen peroxide (H2O2) injury was studied. Preexposure of PAEC to hypoxia for 3 or more h significantly increased susceptibility to subsequent H2O2 challenge. Analysis of the activities of antioxidant enzymes and xanthine oxidase/dehydrogenase suggested that changes in these enzymes in hypoxic PAEC were not responsible for the increased susceptibility. However, hypoxia resulted in significant time-dependent decreases in total glutathione at 12 h or more. The rate of glutathione regeneration in diethylmaleate-treated PAEC and the rate of uptake of cystine and glycine were significantly lower during hypoxia. Hypoxia also caused depletion of ATP and NADPH levels in PAEC, but these did not occur until well after hypoxia-enhanced susceptibility to H2O2 injury was demonstrable. Alterations in glutathione levels and enhanced susceptibility were reversible when hypoxic PAEC were returned to normoxia. These results indicate that hypoxia increased the susceptibility to H2O2 injury by decreasing the ability of PAEC to maintain and regenerate cellular glutathione content in response to H2O2 challenge.  相似文献   

9.
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

10.
In the feline intestine studies have implicated superoxide (O.-) and other oxygen derived free radicals as initiators of injury as measured by increased capillary permeability during the reperfusion period. Biochemical mechanisms of this free radical generation include: xanthine oxidase dependent O.- production, hydrogen peroxide (H2O2) formation by superoxide dismutase (SOD), hydroxyl radical (OH-) production via the Haber-Weiss reaction, and lipid radical formation from membrane peroxidation. Pathological consequences of these events include inflammatory neutrophil infiltration, damage to the collagen and mucosal basement membrane, increased capillary permeability, edema, cell degeneration and necrosis. Animal models of neonatal necrotizing enterocolitis (NNEC) indicate that intestinal injury occurs after the etiologic factors (hypothermia, hypoxia) are removed. In order to determine the role of active oxygen species in the pathogenesis of NNEC, weanling hamsters and neonatal piglets were cold stressed and activities of pro/antioxidant enzymes were determined, and histopathologic and ultrastructural studies were performed. Cold stressed weanling hamsters showed a 55.7% (P less than 0.05) decrease in xanthine dehydrogenase/xanthine oxidase activity ratio. Light microscopy revealed scattered colonic mucosal erosions and submucosal edema in 50% of cold stressed animals. Transmission electron microscopy demonstrated degeneration of colonic mucosal epithelial cells, enlarged intracellular spaces, cytoplasmic vacuolization, and nuclear membrane swelling. The colonic serosa was also edematous and infiltrated with bacteria. Large intestinal tissue from cold stressed neonatal piglets showed a significant increase (P less than 0.05) in Mn and Cu, Zn, SOD, CAT, GSH-Red, total GSH, and Glc6-PD at 0 and 12 hrs. post stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
《Free radical research》2013,47(1-5):69-78
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

12.
Primary cultures of porcine aortic endothelial cells were used to assess the effects of O2 intermediates produced by 10-40 mU/ml xanthine oxidase (XO; +2 mM hypoxanthine) or 25-100 mU/ml glucose oxidase (GO; +5 mM glucose). A 60-min incubation in the presence of the enzyme systems resulted in a dose-dependent toxic effect with evidence of cytolysis (increased LDH release) and cell loss (decrease in DNA and protein content), when these indexes were measured 24 hr after completion of the enzyme reaction. Decreased [3H]thymidine incorporation into DNA was the most sensitive index of cell dysfunction for both enzyme systems. The effects of various scavengers and enzymes indicated that H2O2 was the main O2 intermediate involved in the cytotoxicity resulting from the XO-hypoxanthine reaction. Increased glutathione peroxidase activity associated with the addition of 2 X 10(-7) M selenomethionine to culture medium had a partial protective effect which could be related to an increased rate of H2O2 degradation. Evidence for increased DNA synthesis after injury was found in cells previously exposed to XO-hypoxanthine, the degree of increase in [3H]thymidine incorporation being dependent on the intensity of the initial cytotoxicity. Cultured endothelial cells provide a useful tool to evaluate the role of O2 intermediates in endothelial cell injury, to test the effects of protective agents, and to study the repair process.  相似文献   

13.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O2.- and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-beta-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O2.- -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Xanthine oxidase has been hypothesized to be an important source of biological free radical generation. The enzyme generates the superoxide radical, .O2- and has been widely applied as a .O2- generating system; however, the enzyme may also generate other forms of reduced oxygen. We have applied electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to characterize the different radical species generated by xanthine oxidase along with the mechanisms of their generation. Upon reaction of xanthine with xanthine oxidase equilibrated with air, both DMPO-OOH and DMPO-OH radicals are observed. In the presence of ethanol or dimethyl sulfoxide, alpha-hydroxyethyl or methyl radicals are generated, respectively, indicating that significant DMPO-OH generation occurred directly from OH rather than simply from the breakdown of DMPO-OOH. Superoxide dismutase totally scavenged the DMPO-OOH signal but not the DMPO-OH signal suggesting that .O2- was not required for .OH generation. Catalase markedly decreased the DMPO-OH signal, while superoxide dismutase + catalase totally scavenged all radical generation. Thus, xanthine oxidase generates .OH via the reduction of O2 to H2O2, which in turn is reduced to .OH. In anaerobic preparations, the enzyme reduces H2O2 to .OH as evidenced by the appearance of a pure DMPO-OH signal. The presence of the flavin in the enzyme is required for both .O2- and .OH generation confirming that the flavin is the site of O2 reduction. The ratio of .O2- and .OH generation was affected by the relative concentrations of dissolved O2 and H2O2. Thus, xanthine oxidase can generate the highly reactive .OH radical as well as the less reactive .O2- radical. The direct production of .OH by xanthine oxidase in cells and tissues containing this enzyme could explain the presence of oxidative cellular damage which is not prevented by superoxide dismutase.  相似文献   

15.
16.
The combined effects of ethanol and hypoxia on the conversion of xanthine dehydrogenase (D form) to xanthine oxidase (O form) and on the leakage of the enzyme from isolated rat hepatocytes was studied. Time-dependent death of cells occurred during incubation in hypoxic conditions. Ethanol (40 mM) had only a moderate effect on viability in aerobiosis, but accelerated the loss of hypoxic cells, which was 96% after 3 h of incubation. In hypoxic conditions, the xanthine oxidase was gradually converted from D into O form. The conversion was complete in 3 h, and was accelerated by 1 mM xanthine or by ethanol, in a concentration-related manner. Hypoxia brought about a progressive leakage of xanthine oxidase from hepatocytes, which was accelerated by ethanol in a concentration-dependent manner. The enzyme found outside hepatocytes was mostly in its O form. The xanthine oxidase of hepatocytes cytosol was converted from D into O form by human plasma or serum. In all cases the conversion could be completely reverted by treatment of the extract with dithiothreitol.  相似文献   

17.
Islet transplantation is a promising therapy for Type 1 diabetes, but many attempts have failed due to early graft hypoxia or immune rejection, which generate reactive oxygen species (ROS). In the current study, we determined that transgenic overexpression of the antioxidant metallothionein (MT) in pancreatic beta cells provided broad resistance to oxidative stress by scavenging most kinds of ROS including H2O2, peroxynitrite radical released from streptozotocin, 3-morpholinosydnonimine (SIN-1), and superoxide radical produced by xanthine/xanthine oxidase. MT also reduced nitric oxide-induced beta cell death. A direct test of hypoxia/reperfusion sensitivity was made by exposing FVB and MT islets to hypoxia (1% O2). MT markedly reduced ROS production and improved islet cell survival. Because MT protected beta cells from a broad spectrum of ROS and from hypoxia, we considered it to be an ideal candidate for improving islet transplantation. We first tested syngeneic transplantation by implanting islets under the kidney capsule of the same strain, FVB mice, thereby eliminating the immune rejection component. Under these conditions, MT islets maintained much greater insulin content than control islets. Allotransplantation was then tested. MT transgenic and normal FVB islets were implanted under the kidney capsule of BALB/c mice that were previously treated with streptozotocin to induce diabetes. We found that MT islets extended the duration of euglycemia 2-fold longer than nontransgenic islets. The benefit of MT was due to protection from ROS since nitrotyrosine staining, an indicator of free radical damage, was much lower in MT grafts than in FVB grafts. The time course of protection suggested that the major mode of MT action may have been protection from hypoxia or hypoxia/reperfusion. These data demonstrate that treatment with a broad spectrum antioxidant protects islets from ROS damage such as that produced during the early phase of islet transplantation.  相似文献   

18.
用电镜细胞化学方法,从形态上研究超氧化物自由基的分布。经5、10、20min缺氧灌注和含CeCl3的富氧液再灌注10min的 颈总动脉为样品。结果发现,缺氧时间越长,内皮细胞超微结构改变逐渐明显,甚至脱落。内皮的腔面有电子致密笺出现,缺氧时间越长,致密层越厚。用Q520图像分析仪测量内皮单位长度沉积物的面积,三个时间组分别为150.3±11.4、165.6±9.8%和203.5±6.8nm^2/n  相似文献   

19.
Recent studies have demonstrated that reactive oxygen species (ROS) mediate myocardial ischemia-reperfusion (I/R) and angiogenesis via the mitogen-activated protein kinases and the serine-threonine kinase Akt/protein kinase B pathways. NADPH oxidases are major sources of ROS in endothelial cells and cardiomyocytes. In the present study, we investigated the role of NADPH oxidase-derived ROS in hypoxia-reoxygenation (H/R)-induced Akt and ERK1/2 activation and angiogenesis using porcine coronary artery endothelial cells (PCAECs) and a mouse myocardial I/R model. Our data demonstrate that exposure of PCAECs to hypoxia for 2 h followed by 1 h of reoxygenation significantly increased ROS formation. Pretreatment with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI, 10 microM) and apocynin (Apo, 200 and 600 microM), significantly attenuated H/R-induced ROS formation. Furthermore, exposure of PCAECs to H/R caused a significant increase in Akt and ERK1/2 activation. Exposure of PCAEC spheroids and mouse aortic rings to H/R significantly increased endothelial spheroid sprouting and vessel outgrowth, whereas pharmacological inhibition of NADPH oxidase or genetic deletion of the NADPH oxidase subunit, p47(phox) (p47(phox-/-)), significantly suppressed these changes. With the use of a mouse I/R model, our data further show that the increases in myocardial Akt and ERK1/2 activation and vascular endothelial growth factor (VEGF) expression were markedly blunted in the p47(phox-/-) mouse subjected to myocardial I/R compared with the wild-type mouse. Our findings underscore the important role of NADPH oxidase and its subunit p47(phox) in modulating Akt and ERK1/2 activation, angiogenic growth factor expression, and angiogenesis in myocardium undergoing I/R.  相似文献   

20.
Ischemic preconditioning has shown to reduce apoptosis in the intestinal mucosa during ischemia/reperfusion. This study evaluated if the decrease of apoptotic events found during preconditioning could be related with a reduction of the substrate (i.e., xanthine/hypoxanthine) available for xanthine oxidase (XO). Animals were randomly assigned to the following study groups: C, control; I/R, ischemia/reperfusion; P+I/R, ischemic preconditioning; P+I/R+H/X, ischemic preconditioning plus hypoxanthine/xanthine, and P+I/R+H/X+Allo, ischemic preconditioning plus hypoxanthine/xanthine plus allopurinol. Caspase-3 activity, DNA fragmentation and TUNEL staining increased in the I/R group compared to control. Ischemic preconditioning (P+I/R group) was able to reverse these apoptotic variables to a level similar to that of control rats. The addition of hypoxanthine/xanthine to rats subjected to ischemic preconditioning (P+I/R+H/X group) showed the highest apoptotic activity; however, further addition of allopurinol (P+I/R+H/X+Allo group) decreased significantly apoptotic activity and events. In conclusion, intestinal ischemic preconditioning is able to reduce apoptosis during the following sustained ischemia/reperfusion event because of a reduced accumulation of xanthine/hypoxanthine nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号