首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tisné C  Hartmann B  Delepierre M 《Biochemistry》1999,38(13):3883-3894
We present the solution structure of the nonpalindromic 16 bp DNA 5'd(CTGCTCACTTTCCAGG)3'. 5'd(CCTGGAAAGTGAGCAG)3' containing a mutated kappaB site for which the mutation of a highly conserved GGG tract of the native kappaB HIV-1 site to CTC abolishes NF-kappaB binding. 1H and 31P NMR spectroscopies have been used together with molecular modeling to determine the fine structure of the duplex. NMR data show evidence for a BI-BII equilibrium of the CpA.TpG steps at the 3'-end of the oligomer. Models for the extreme conformations reached by the mutated duplex (denoted 16M) are proposed in agreement with the NMR data. Since the distribution of BII sites is changed in the mutated duplex compared to that of the native duplex (denoted 16N), large differences are induced in the intrinsic structural properties of both duplexes. In particular, in BII structures, 16M shows a kink located at the 3'-end of the duplex, and in contrast, 16N exhibits an intrinsic global curvature toward the major groove. Whereas 16N can reach a conformation very favorable for the interaction with NF-kappaB, 16M cannot mimic such a conformation and, moreover, its deeper and narrower major groove could hinder the DNA-protein interactions.  相似文献   

2.
3.
4.
5.
6.
A kappaB sequence code for pathway-specific innate immune responses   总被引:1,自引:0,他引:1       下载免费PDF全文
The Toll and Imd pathways induce humoral innate immune responses in Drosophila by activating NF-kappaB proteins that bind kappaB target sites. Here, we delineate a kappaB site sequence code that directs pathway-specific expression of innate immune loci. Using bioinformatic analysis of expression and sequence data, we identify shared properties of Imd- and Toll-specific response elements. Employing synthetic kappaB sites in luciferase reporter and in vitro binding assays, we demonstrate that the length of the (G)(n) element in the 5' half-site and of the central (A,T)-rich region combine to specify responsiveness to one or both pathways. We also show that multiple sites function to enhance the response to either or both pathways. Together, these studies elucidate the mechanism by which kappaB motifs direct binding by particular Drosophila NF-kappaB family members and thereby induce specialized innate immune repertoires.  相似文献   

7.
We describe here the X-ray crystal structure of NF-kappaB p50/RelB heterodimer bound to a kappaB DNA. Although the global modes of subunit association and kappaB DNA recognition are similar to other NF-kappaB/DNA complexes, this complex reveals distinctive features not observed for non-RelB complexes. For example, Lys274 of RelB is removed from the protein-DNA interface whereas the corresponding residues in all other subunits make base-specific contacts. This mode of binding suggests that RelB may allow the recognition of more diverse kappaB sequences. Complementary surfaces on RelB and p50, as revealed by the crystal contacts, are highly suggestive of assembly of multiple p50/RelB heterodimers on tandem kappaB sites in solution. Consistent with this model our in vitro binding experiments reveal optimal assembly of two wild-type p50/RelB heterodimers on tandem HIV kappaB DNA with 2 bp spacing but not by a mutant heterodimer where one of the RelB packing surface is altered. We suggest that multiple NF-kappaB dimers assemble at diverse kappaB promoters through direct interactions utilizing unique protein-protein interaction surfaces.  相似文献   

8.
9.
The crystal structure of human NF-kappaB p52 in its specific complex with the natural kappaB DNA binding site MHC H-2 has been solved at 2.1 A resolution. Whereas the overall structure resembles that of the NF-kappaB p50-DNA complex, pronounced differences are observed within the 'insert region'. This sequence segment differs in length between different Rel proteins. Compared with NF-kappaB p50, the compact alpha-helical insert region element is rotated away from the core of the N-terminal domain, opening up a mainly polar cleft. The insert region presents potential interaction surfaces to other proteins. The high resolution of the structure reveals many water molecules which mediate interactions in the protein-DNA interface. Additional complexity in Rel protein-DNA interaction comes from an extended interfacial water cavity that connects residues at the edge of the dimer interface to the central DNA bases. The observed water network might acount for differences in binding specificity between NF-kappaB p52 and NF-kappaB p50 homodimers.  相似文献   

10.
11.
12.
13.
Lipopolysaccharide (LPS) increases the production of interleukin-12 (IL-12) from mouse macrophages via a kappaB site within the IL-12 p40 promoter. In this study, we found that oxidized low density lipoprotein (oxLDL) inhibited this LPS-stimulated production of IL-12 in a dose-dependent manner while native LDL did not. OxLDL inhibited p40 promoter activation in monocytic RAW264.7 cells transiently transfected with p40 promoter/reporter constructs, and the repressive effect mapped to a region in the p40 promoter containing a binding site for nuclear factor-kappaB (NF-kappaB) (p40-kappaB). Activation of macrophages by LPS in the presence of oxLDL resulted in markedly reduced binding to the kappaB site, as demonstrated by the electrophoretic mobility shift assays. In contrast, native LDL did not inhibit the IL-12 p40 promoter activation and NF-kappaB binding to the kappaB sites, suggesting that oxidative modification of LDL was crucial for the inhibition of NF-kappaB-mediated IL-12 production. 9-Hydroxyoctadecadienoic acid, a major oxidized lipid component of oxLDL, significantly inhibited IL-12 production in LPS-stimulated mouse macrophages and also suppressed NF-kappaB-mediated activation in IL-12 p40 promoter. The NF-kappaB components p50 and p65 directly bound peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in vitro. In cotransfections of CV-1 and HeLa cells, PPAR-gamma inhibited the NF-kappaB transactivation in an oxLDL-dependent manner. From these results, we propose that oxLDL-mediated suppression of the IL-12 production from LPS-activated mouse macrophages may, at least in part, involve both inhibition of the NF-kappaB-DNA interactions and physical interactions between NF-kappaB and PPAR-gamma.  相似文献   

14.
15.
16.
We have identified a rice gene encoding a DNA-binding protein that specifically recognizes the telomeric repeat sequence TTTAGGG found in plants. This gene, which we refer to as RTBP1 (rice telomere-binding protein 1), encodes a polypeptide with a predicted molecular mass of 70 kDa. RTBP1 is ubiquitously expressed in various organs and binds DNA with two or more duplex TTTAGGG repeats. The predicted protein sequence includes a single domain at the C terminus with extensive homology to Myb-like DNA binding motif. The Myb-like domain of RTBP1 is very closely related to that of other telomere-binding proteins, including TRF1, TRF2, Taz1p, and Tbf1p, indicating that DNA-binding domains of telomere-binding proteins are well conserved among evolutionarily distant species. To obtain precise information on the sequence of the DNA binding site recognized by RTBP1, we analyzed the sequence-specific binding properties of the isolated Myb-like domain of RTBP1. The isolated Myb-like domain was capable of sequence-specific DNA binding as a homodimer. Gel retardation analysis with a series of mutated telomere probes revealed that the internal GGGTTT sequence in the two-telomere repeats is critical for binding of Myb-like domain of RTBP1, which is consistent with the model of the TRF1.DNA complex showing that base-specific contacts are made within the sequence GGGTTA. To the best of our knowledge, RTBP1 is the first cloned gene in which the product is able to bind double-stranded telomeric DNA in plants. Because the Myb-like domain appears to be a significant motif for a large class of proteins that bind the duplex telomeric DNA, RTBP1 may play important roles in plant telomere function in vivo.  相似文献   

17.
18.
Bifunctional DNA alkylating agents form a diverse assortment of covalent DNA interstrand cross-linked (ICL) structures that are potent cytotoxins. Because it is implausible that cells could possess distinct DNA repair systems for each individual ICL, it is believed that common structural and dynamic features of ICL damage are recognized, rather than specific structural characteristics of each cross-linking agent. Investigation of the structural and dynamic properties of ICLs that might be important for recognition has been complicated by heterogeneous incorporation of these lesions into DNA. To address this problem, we have synthesized and characterized several homogeneous ICL DNAs containing site-specific staggered N4-cytosine-ethyl-N4-cytosine cross-links. Staggered cross-links were introduced in two ways, in a manner that preserves the overall structure of B-form duplex DNA and in a manner that highly distorts the DNA structure, with the goal of understanding how structural and dynamic properties of diverse ICL duplexes might flag these sites for repair. Measurements of base pair opening dynamics in the B-form ICL duplex by (1)H NMR line width or imino proton solvent exchange showed that the guanine base opposite the cross-linked cytosine opened at least 1 order of magnitude more slowly than when in a control matched normal duplex. To a lesser degree, the B-form ICL also induced a decrease in base pair opening dynamics that extended from the site of the cross-link to adjacent base pairs. In contrast, the non-B-form ICL showed extensive conformational dynamics at the site of the cross-link, which extended over the entire DNA sequence. Because DNA duplexes containing the B-form and non-B-form ICL cross-links have both been shown to be incised when incubated in mammalian whole cell extracts, while a matched normal duplex is not, we conclude that intrinsic DNA dynamics is not a requirement for specific damage incision of these ICLs. Instead, we propose a general model in which destabilized ICL duplexes serve to energetically facilitate binding of DNA repair factors that must induce bubbles or other distortions in the duplex. However, the essential requirement for incision is an immobile Y-junction where the repair factors are stably bound at the site of the ICL, and the two DNA strands are unpaired.  相似文献   

19.
The binding kinetics of NF-kappaB p50 to the Ig-kappaB site and to a DNA duplex with no specific binding site were determined under varying conditions of potassium chloride concentration using a surface plasmonresonance biosensor. Association and dissociation rate constants were measured enabling calculation of the dissociation constants. Under previously established high affinity buffer conditions, the k a for both sequences was in the order of 10(7) M-1s-1whilst the k d values varied 600-fold in a sequence-dependent manner between 10(-1) and 10(-4 )s-1, suggesting that the selectivity of p50 for different sequences is mediated primarily through sequence-dependent dissociation rates. The calculated K D value for the Ig-kappaB sequence was 16 pM, whilst the K D for the non-specific sequence was 9.9 nM. As the ionic strength increased to levels which are closer to that of the cellular environment, the binding of p50 to the non-specific sequence was abolished whilst the specific affinity dropped to nanomolar levels. From these results, a mechanism is proposed in which p50 binds specific sequences with high affinity whilst binding non-specific sequences weakly enough to allow efficient searching of the DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号