首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells.  相似文献   

3.
The possible role of the peripheral cannabinoid receptor (CB2) in neutrophil migration was investigated by using human promyelocytic HL60 cells differentiated into neutrophil-like cells and human neutrophils isolated from whole blood. Cell surface expression of CB2 on HL60 cells, on neutrophil-like HL60 cells, and on human neutrophils was confirmed by flow cytometry. Upon stimulation with either of the CB2 ligands JWH015 and 2-arachidonoylglycerol (2-AG), neutrophil-like HL60 cells rapidly extended and retracted one or more pseudopods containing F-actin in different directions instead of developing front/rear polarity typically exhibited by migrating leukocytes. Activity of the Rho-GTPase RhoA decreased in response to CB2 stimulation, whereas Rac1, Rac2, and Cdc42 activity increased. Moreover, treatment of cells with RhoA-dependent protein kinase (p160-ROCK) inhibitor Y27632 yielded cytoskeletal organization similar to that of CB2-stimulated cells. In human neutrophils, neither JWH015 nor 2-AG induced motility or morphologic alterations. However, pretreatment of neutrophils with these ligands disrupted N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced front/rear polarization and migration and also substantially suppressed fMLP-induced RhoA activity. These results suggest that CB2 might play a role in regulating excessive inflammatory response by controlling RhoA activation, thereby suppressing neutrophil migration.  相似文献   

4.
In the retinoic acid-differentiated neuroblastoma SH-SY5Y cells, IL-1 induced binding activity of NFkappaB and up-regulated the expression and activity of MnSOD. The IL-1-elicited effects were partly reversed by IL-4 and IL-6. It is proposed that IL-4 and IL-6 may participate in the regulation of the imbalanced oxidant status induced by IL-1 in differentiated neuroblastoma cells. In the SH-SY5Y cell line, TNFalpha neither activated NFkappaB nor induced MnSOD expression and activity, but was capable of modulating the IL-1 effects. Pyrrolidine dithiocarbamate (PDTC), an inhibitor of NFkappaB activation, down-regulated the expression and activity of MnSOD, which may suggest that the regulation of MnSOD by IL-1 in retinoic acid-differentiated neuroblastoma cells was mediated by the nuclear factor kappaB.  相似文献   

5.
Neutrophils play a crucial role in host defence. In response to a variety of inflammatory stimulation, they form neutrophil extracellular traps (NETs). NETs are extracellular structures composed of chromatin fibers decorated with antimicrobial proteins and developing studies indicate that NETs contribute to extracellular microbial killing. While the intracellular signaling pathways that regulate NET formation remain largely unknown, there is growing evidence that generation of reactive oxygen species (ROS) is a key event for NET formation. The Rab family small GTPase Rab27a is an important component of the secretory machinery of azurophilic granules in neutrophils. However, the precise mechanism of NET formation and whether or not Rab27a contributes to this process are unknown. Using neutrophil-like differentiated HL60 cells, we show here that Rab27a plays an essential role in both phorbol myristate acetate (PMA)- and Candida albicans-induced NET formation by regulating ROS production. Rab27a-knockdown inhibited ROS-positive phagosome formation during complement-mediated phagocytosis. To investigate the role of Rab27a in neutrophil function in detail, both primary human neutrophils and neutrophil-like differentiated HL60 cells were treated with PMA, and NET formation process was assessed by measurement of release of histone H3 into the medium, citrullination of the arginine in position 3 of histone H4 and chase of the nuclear change of the living cells in the co-existence of both cell-permeable and -impermeable nuclear indicators. PMA-induced NET formation occured sequentially in both neutrophil-like differentiated HL60 cells and primary neutrophils, and Rab27a-knockdown clearly inhibited NET formation in association with reduced ROS production. We also found that serum-treated Candida albicans triggers NET formation in a ROS-dependent manner, and that Rab27a-knockdown inhibits this process as well. Our findings demonstrate that Rab27a plays an important role in NET formation induced by both Candida albicans infection and PMA treatment by regulating ROS production.  相似文献   

6.
We have established several focal adhesion kinase (FAK) cDNA-transfected HL-60 (HL-60/FAK) cells which were highly resistant to oxidative stress-induced apoptosis. To identify target genes that are involved in HL-60/FAK cells, we performed cDNA microarray screening using apoptosis-chip. There, we identified the decrease of glutathione peroxidase (GPx). This result prompted us to investigate the changes of antioxidant enzymes. Here, we demonstrate that lipid peroxidation was suppressed after treatment with hydrogen peroxide in HL-60/FAK cells but not vector-transfected HL-60 (HL-60/Vect) cells. Furthermore, we demonstrate that HL-60/FAK cells have higher basal reactive oxygen species (ROS) levels than the parental HL-60 or HL-60/Vect cells, while ROS accumulation by hydrogen peroxide treatment was almost the same in these cells. Basal activity and mRNA expression of antioxidant enzymes, particularly of GSH reductase (GRe), phospholipid hydroperoxide glutathione peroxidase (PHGPx) were markedly elevated in HL-60/FAK cells. In contrast, GPx and catalase levels were decreased in HL-60/FAK cells. Further, a Src family kinases inhibitor, PP2, suppressed GRe and PHGPx mRNA by inactivation of FAK and c-Src in HL-60/FAK cells. These results suggest that FAK upregulates antioxidant enzymes and suppresses lipid peroxidation, resulting in the anti-apoptotic state for oxidative stress.  相似文献   

7.
The ectonucleotidase NTPDase1 (CD39) terminates P2 receptor activation by the hydrolysis of extracellular nucleotides (i.e., the P2 receptor ligands). In agreement with that role, exacerbated inflammation has been observed in NTPDase1-deficient mice. In this study, we extend these observations by showing that inhibition of NTPDase1 markedly increases IL-8 production by TLR-stimulated human neutrophils. First, immunolabeling of human blood neutrophils and neutrophil-like HL60 cells displayed the expression of NTPDase1 protein, which correlated with the hydrolysis of ATP at their surface. NTPDase1 inhibitors (e.g., NF279 and ARL 67156) as well as NTPDase1-specific small interfering RNAs markedly increased IL-8 production in neutrophils stimulated with LPS and Pam(3)CSK(4) (agonists of TLR4 and TLR1/2, respectively) but not with flagellin (TLR5) and gardiquimod (TLR7 and 8). This increase in IL-8 release was due to the synergy between TLRs and P2 receptors. Indeed, ATP was released from neutrophils constitutively and accumulated in the medium upon NTPDase1 inhibition by NF279. Likewise, both human blood neutrophils and neutrophil-like HL60 cells produced IL-8 in response to exogenous nucleotides, ATP being the most potent inducer. In agreement, P2Y(2) receptor knockdown in neutrophil-like HL60 cells markedly decreased LPS- and Pam(3)CSK(4)-induced IL-8 production. In line with these in vitro results, injection of LPS in the air pouches of NTPDase1-deficient mice triggered an increased production of the chemokines MIP-2 and keratinocyte-derived chemokine (i.e., the rodent counterparts of human IL-8) compared with that in wild-type mice. In summary, NTPDase1 controls IL-8 production by human neutrophils via the regulation of P2Y(2) activation.  相似文献   

8.
Phospholipid-hydroperoxide glutathione peroxidase (PHGPx) exhibits high specific activity in reducing phosphatidylcholine hydroperoxides (PCOOHs) and thus may play a central role in protecting the skin against UV irradiation-triggered detrimental long term effects like cancer formation and premature skin aging. Here we addressed the role of PHGPx in the protection against UV irradiation-induced expression of matrix metalloproteinase-1 (MMP-1). For this purpose, we created human dermal fibroblast cell lines overexpressing human PHGPx. Overexpression led to a significant increase in PHGPx activity. In contrast to a maximal 4.5-fold induction of specific MMP-1 mRNA levels in vector-transfected cells at 24 h after UVA irradiation, no MMP-1 induction occurred at any studied time point after UVA treatment of PHGPx-overexpressing fibroblasts. As interleukin-6 (IL-6) was earlier shown to mediate the UVA induction of MMP-1, we studied whether PHGPx overexpression might interfere with the NFkappaB-mediated IL-6 induction and downstream signaling. Using transient transfections of IL-6 promoter constructs containing NFkappaB binding sites, we observed a high induction of the reporter gene luciferase in vector-transfected control cells and a significantly lower induction in PHGPx-overexpressing fibroblasts following UVA irradiation. Consistently both UVA irradiation and treatment of fibroblasts with PCOOHs led to phosphorylation and nuclear translocation of the p65 subunit, whereas cells overexpressing PHGPx exhibited impaired NFkappaB activation, p65 phosphorylation, and nuclear translocation. In line with this, the PHGPx-overexpressing fibroblasts showed a reduced constitutive and UVA irradiation-induced IL-6 release. After incubating PHGPx-overexpressing cells with PCOOHs a reduced induction of IL-6 was observed. This together with the suppression of UVA irradiation-induced IL-6 release in the presence of Trolox, a chain breaker of PCOOH-initiated lipid peroxidation, indicates that UVA irradiation-induced PCOOHs and subsequent lipid peroxides initiate the NFkappaB-mediated induction of IL-6, which mediates the induction of MMP-1. Our finding is particularly relevant in light of the already available small molecule mimetics of PHGPx.  相似文献   

9.
Cyclooxygenase-2 (COX-2) expression is up-regulated in colorectal cancer tissue. Peroxisome proliferator-activated receptors (PPARs) are expressed in human colorectal tissue and activation of PPARs can alter COX-2 expression. In macrophages, activation of PPARs down-regulates COX-2 expression. We examined the effect of PPARalpha and PPARgamma ligands on untreated and TNF-alpha-induced COX-2 expression in the human colorectal epithelial cell line HT-29. The expression of PPARalpha and PPARgamma was confirmed in these cells. TNF-alpha, an inflammatory cytokine, increased COX-2 expression via the NFkappaB pathway. In the absence of TNF-alpha, WY14643 (PPARalpha activator) caused an increase, while BRL49653 (PPARgamma activator) did not alter COX-2 expression. When HT-29 cells were incubated with TNF-alpha and WY14643, a further increase in COX-2 expression was detected. Incubation with TNF-alpha and BRL49653 caused an additional twofold increase in COX-2 expression. Our results suggest that both PPARalpha signaling and TNF-alpha signaling increase COX-2 expression by independent pathways, while PPARgamma stimulates COX-2 expression by up-regulation of the TNF-alpha pathway.  相似文献   

10.
11.
Vascular cell adhesion molecule (VCAM)-1 has been implicated in interactions between leukocytes and connective tissue, including rheumatoid arthritis (RA) synovial tissue fibroblasts. Such interactions within the synovium contribute to RA inflammation. Using phosphoinositide 3-kinase (PI3-kinase) inhibitor LY294002 and Src inhibitor PP2, we show that interleukin (IL)-18-induced ERK1/2 activation is Src kinase-dependent. Antisense (AS) c-Src oligonucleotide (ODN) treatment reduced IL-18-induced ERK1/2 expression by 32% compared with control, suggesting an upstream role of Src in ERK1/2 activation. AS c-Src ODN treatment also inhibited Akt expression by 74% compared with sense control. PI3-kinase inhibitor LY294002 or AS PI3-kinase ODN inhibited Akt expression. AS c-Src ODN inhibited Akt phosphorylation, confirming Src is upstream of PI3-kinase in IL-18-induced RA synovial fibroblast signaling. IL-18 induced a time-dependent activation of c-Src, Ras, and Raf-1, suggesting this signaling cascade plays a role in ERK activation. IL-18 directly activated Src kinase by more than 4-fold over basal levels by enzymatic assay. Electrophoretic mobility shift assay showed that activator protein-1 (AP-1) is activated by IL-18 through ERK and Src but not through PI3-kinase. In an alternate pathway, inhibition of IL-1 receptor-associated kinase-1 (IRAK) with AS ODN to IRAK reduced IL-18-induced expression of nuclear factor kappaB (NFkappaB). Finally, IL-18-induced cell surface VCAM-1 expression was inhibited by treatment with AS ODNs to c-Src, IRAK, PI3-kinase, and ERK1/2 by 57, 43, 41, and 32% compared with control sense ODN treatment, respectively. These data support a role for IL-18 activation of three distinct pathways during RA synovial fibroblast stimulation: two Src-dependent pathways and the IRAK/NFkappaB pathway. Targeting VCAM-1 signaling mechanisms may represent therapeutic approaches to inflammatory and angiogenic diseases characterized by adhesion molecule up-regulation.  相似文献   

12.
13.
Mast cells play a critical role in IgE-dependent immediate hypersensitivity. Monomeric IgE binding to its high affinity receptor (FcepsilonRI) results in a number of biological outcomes in mouse mast cells, including increased surface expression of FcepsilonRI and enhanced survival. IgE molecules display heterogeneity in inducing cytokine production; highly cytokinergic IgEs cause extensive FcepsilonRI aggregation, leading to potent enhancement of survival and other activation events, whereas poorly cytokinergic IgEs can do so less efficiently. In this study, we demonstrate that IgE-induced receptor up-regulation is not sensitive to monovalent hapten, which can prevent receptor aggregation induced by IgE, whereas other activation events such as receptor internalization, degranulation, IL-6 production, and survival are sensitive to monovalent hapten. IgE-induced receptor up-regulation is also unique in that no Src family kinases, Syk, or Btk are required for it. By contrast, highly cytokinergic IgE-induced receptor internalization is dependent on Lyn, but not other Src family kinases, Syk, or Btk, whereas degranulation, IL-6 production, and survival require Syk. Weak to moderate stimulation with IgE plus anti-IgE or IgE plus Ag enhances survival, while stronger signals are required for degranulation and IL-6 production. Collectively, signals emanated from IgE-bound FcepsilonRI for receptor up-regulation and internalization are shown to diverge at the receptor or receptor-proximal levels from those for other biological outcomes.  相似文献   

14.
IL-15 plays a seminal role in innate immunity through enhancing the cytotoxic function as well as cytokine production by NK and T cells. We have previously shown that exposure of PBMC as well as monocytic cells to different viruses results in immediate up-regulation of IL-15 gene expression and subsequent NK cell activation as an innate immune response of those cells to these viruses. However, no signaling pathway involved in this up-regulation has been identified. Here we show for the first time that HSV-1-induced up-regulation of IL-15 gene expression is independent of viral infectivity/replication. IL-15 gene is up-regulated by HSV-1 in human monocytes, but not in CD3+ T cells. HSV-1 induces the phosphorylation of protein tyrosine kinases (PTKs) and protein kinase C (PKC) for inducing IL-15 expression in monocytic cells. Inhibitors for PTKs reduced HSV-1-induced PTK activity, DNA binding activity of NF-kB as well as IL-15 gene expression. In contrast, an inhibitor for membrane-bound tyrosine kinases had no effect on these events. Experiments using PKC inhibitors revealed that phosphorylation of PKC zeta/lambda (PKC zeta/lambda), DNA binding activity of NF-kB and HSV-1-induced up-regulation of IL-15 were all decreased. Furthermore, we found that HSV-1-induced IL-15 up-regulation was also dependent on PTKs regulation of PKC phosphorylation. Thus, we conclude that IL-15 up-regulation in HSV-1-treated monocytic cells is dependent on the activity of both PTKs and PKC zeta/lambda.  相似文献   

15.
16.
17.
Monocytic differentiation of HL60 cells induced by 1,25-dihydroxyvitamin D(3) (1,25 D(3)) has been recently shown (Exp Cell Res 258, 425, 2000) to be enhanced by an exposure to SB203580 or to SB202190, specific inhibitors of p38MAP kinase, with concomitant up-regulation of the c-jun N terminal kinase (JNK) pathway. In the present study we inquired if this enhancement and the JNK up-regulation are limited to 1,25 D(3)-induced differentiation, or if they occur more generally in HL60 cell differentiation. We found that dimethylsulfoxide (DMSO)-induced differentiation, and to a lesser extent tetradecanoylphorbol acetate (TPA)-induced macrophage differentiation were also potentiated by the p38MAPK inhibitors, but that granulocytic differentiation in response to all-trans retinoic acid (RA) was not. The enhancement of differentiation by p38MAPK inhibitors was accompanied by an activation of the JNK MAPK pathway, as shown by the phosphorylation levels of these kinases and by AP-1 binding, but only in 1,25 D(3)-treated cells. This shows that an up-regulation of the JNK stress pathway during 1,25 D(3)-induced monocytic differentiation occurs selectively in this lineage of differentiation and is not necessary for the expression of the differentiated phenotype.  相似文献   

18.
19.
20.
Phospholipase D1 plays a key role in TNF-alpha signaling   总被引:1,自引:0,他引:1  
The primary characteristic features of any inflammatory or infectious lesions are immune cell infiltration, cellular proliferation, and the generation of proinflammatory mediators. TNF-alpha is a potent proinflammatory and immuno-regulatory cytokine. Decades of research have been focused on the physiological/pathophysiological events triggered by TNF-alpha. However, the signaling network initiated by TNF-alpha in human leukocytes is still poorly understood. In this study, we report that TNF-alpha activates phospholipase D1 (PLD1), in a dose-dependent manner, and PLD1 is required for the activation of sphingosine kinase and cytosolic calcium signals. PLD1 is also required for NFkappaB and ERK1/2 activation in human monocytic cells. Using antisense oligonucleotides to reduce specifically the expression of PLD isozymes showed PLD1, but not PLD2, to be coupled to TNF-alpha signaling and that PLD1 is required to mediate receptor activation of sphingosine kinase and calcium transients. In addition, the coupling of TNF-alpha to activation of the phosphorylation of ERK1/2 and the activation of NFkappaB were inhibited by pretreating cells with antisense to PLD1, but not to PLD2; thus, demonstrating a specific requirement for PLD1. Furthermore, use of antisense oligonucleotides to reduce expression of PLD1 or PLD2 demonstrated that PLD1 is required for TNF-alpha-induced production of several important cytokines, such as IL-1beta, IL-5, IL-6, and IL-13, in human monocytes. These studies demonstrate the critical role of PLD1 in the intracellular signaling cascades initiated by TNF-alpha and its functional role for coordinating the signals to inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号