首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The results of analysis in the blood of healthy and ones infected with the plerocercoides Ligula intestinalis Bream Abramis brama L. over index common lipids (CL) and them quality content, peroxidation (POL), peroxide gemoliz erythrocytes (PGE), common antioxidant activity (CAA) are displayed. It is plerocercoids L. intestinalis effects points character lipids exchanges. At ones infected individual comparatively with healthy increase of CL, alteration correlation lipids fraction, intensification POI and PGE as well as a decrease of CAA, that negative effects on vital function of the blood.  相似文献   

2.
The results of the comparative analysis of the spleen in healthy individuals of bream Abramis brama and those infected by the Ligula intestinalis plerocercoids are given. Two age groups of bream were studied. The comparison was carried out by the index of common lipids (CL), the content of common lipids, the intensity of lipid peroxidation (POL), and the common antioxidant activity (CAA). The dependence of the lipid exchange character in the fishes infected by Ligula on age, as well as on different levels of the infestation is demonstrated.  相似文献   

3.
Increased iron stores are associated with free radical generation and carcinogenesis. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of tumor initiation. Melatonin and structurally related indoles are effective in protecting against oxidative stress. The aim of the study was to compare the relative efficacies of melatonin, N-acetylserotonin (NAS), indole-3-propionic acid (IPA), and 5-hydroxy-indole-3-acetic acid (5HIAA) in altering basal and iron-induced lipid peroxidation in homogenates of hamster testes. To determine the effect of the indoles on the autoxidation of lipids, homogenates were incubated in the presence of each agent in concentrations of 0.0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 2.5, or 5.0 mM. To study their effects on induced lipid peroxidation, homogenates were incubated with FeSO(4) (30 microM + H(2)O(2) (0.1 mM) + each of the indoles in the same concentrations as above. The degree of lipid peroxidation was expressed as concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. The indoles decreased both basal and iron-related lipid peroxidation in a concentration-dependent manner. Melatonin reduced basal MDA + 4-HDA levels when used at the concentrations of 0.25 mM or higher, and prevented iron-induced lipid peroxidation at concentrations of 1.0, 2.0, 2.5, or 5.0 mM. The lowest effective concentrations of NAS required to lower basal and iron-related lipid peroxidation were 0.05 mM and 0.25 mM, respectively. IPA, only when used in the highest concentrations of 2.5 mM or 5 mM inhibited basal lipid peroxidation levels and it was ineffective on the levels of MDA + 4-HDA due to iron damage. 5HIAA reduced basal lipid peroxidation when used at concentrations of 0.25 mM or higher, and it prevented iron-induced lipid peroxidation only at the highest applied concentration (5 mM). In conclusion, melatonin and related indoles at pharmacological concentrations protect against both the autoxidation of lipids as well as induced peroxidation of lipids in testes. In doing so, these agents would be expected to reduce testicular cancer that is initiated by products of lipid peroxidation.  相似文献   

4.
Although orally administered malondialdehyde (MDA), a reactive hepatotoxic and mutagenic product of lipid peroxidation, is extensively metabolized to CO2, a portion is excreted in the urine in acid labile "bound" forms. Since much of the MDA in the diet is apparently bound to protein, the metabolism of protein-bound MDA was investigated. MDA was reacted with serum albumin and fed to rats. A urinary metabolite was detected which was shown to be identical to a metabolite of the lysine-MDA enaminal N epsilon-(2-propenal)lysine. After isolation by ion exchange and high performance liquid chromatography the metabolite was identified using high field nuclear magnetic resonance spectroscopy and fast atom bombardment-mass spectroscopy as N alpha-acetyl-epsilon-(2-propenal)lysine. This compound also was a major urinary metabolite of the Na enol salt of MDA administered by stomach intubation, and was excreted in increased amounts by rats fed a diet containing a highly peroxidizable oil (cod liver oil). It was also detected in the urine of fasted animals after injection with NaMDA, indicating that it is formed as a product of lipid peroxidation in vivo as well as of peroxidation of dietary lipids.  相似文献   

5.
Membrane lipids in soybean nodules may undergo oxidative degradation resulting in the loss of membrane structural integrity and physiological activities. One of the final products of lipid peroxidation is malondialdehyde (MDA), which can react with thiobarbituric acid (TBA) in vitro to form a chromogenic adduct, a Schiff base product that can be measured spectrophotometrically. MDA formation was quantified in the nodules as well as in the adjacent root tissue. Lipid peroxidation was initially high in soybean nodules induced by Bradyrhizobium japonicum, but sharply declined following an increase in both leghemoglobin content and nitrogen fixation rate. Lipid peroxidation was 2 to 4 times higher in the nodules than in their corresponding adjoining root tissue. Malondialdehyde levels in ineffective nodules were 1.5 times higher than those in effective nodules. MDA formation was also shown to occur in the ‘leghemoglobin-free’ cytosolic fraction, the ‘leghemoglobin’ fraction, and the nodule tissue pellet. Antioxidants, such as reduced ascorbic acid, glutathione, and 8-hydroxyquinoline, caused a partial suppression of lipid peroxidation, whereas ferrous sulfate, hydrogen peroxide, iron EDTA, disodium-EDTA, and β-carotene induced MDA formation. In contrast, quenchers of oxygen free radicals such as HEPES, MES, MOPS, PIPES, phenylalanine, Tiron, thiourea, sodium azide, and sodium cyanide (uncouplers of oxidative phosphorylation) caused somewhere between a 12 to 70 percnt; reduction in MDA production. TBA-reactive products were formed despite the incorporation of superoxide dismutase, proxidase, and catalase into the reaction mixture.  相似文献   

6.
Kumar G  Knowles NR 《Plant physiology》1993,102(1):115-124
Previous research has shown that cell membranes of potato (Solanum tuberosum L. cv Russet Burbank) seed-tubers lose integrity between 7 and 26 months of storage (4[deg]C, 95% relative humidity), and this loss coincides with a significant decrease in growth potential. The age-induced decline in membrane integrity is apparently due to increased peroxidative damage of membrane lipids. Malondialdehyde (MDA) and ethane concentrations (sensitive markers of lipid peroxidation and membrane damage) increased in seed-tuber tissues with advancing age. Moreover, in vivo ethane production from discs of cortex tissue from 13- and 25-month-old seed-tubers was 87% greater (on average) than that from discs from 1-month-old tubers. Calcium suppressed ethane production from all ages of tissue discs, and the effect was concentration dependent. Linoleic acid enhanced ethane production from 5- and 17-month-old tubers by 61 and 228%, respectively, suggesting that older tissue may contain a higher free-radical (FR) titer and/or lower free polyunsaturated fatty acid content. In addition, throughout plant establishment, the internal ethane concentration of older seed-tubers was 54% higher than that of younger seed-tubers. MDA concentration of tuber tissue declined by about 65% during the initial 7 months of storage and then increased 267% as tuber age advanced to 30 months. The age-induced trend in tuber reducing sugar concentration was similar to that of MDA, and the two were linearly correlated. The age-dependent increase in reducing sugars may thus reflect peroxidative degeneration of the amyloplast membrane, leading to increased starch hydrolysis. Compared with 5-month-old seed tubers, 17- and 29-month-old seed-tubers had significantly higher levels of lipofuscin-like fluorescent compounds (FCs), which are produced when MDA reacts with free amino acids. Age-dependent increases in MDA, ethane, and FCs were not associated with higher activities of phospholipase and lipoxygenase in tissue from older tubers. In fact, 8-month-old seed-tubers had significantly higher activities of these enzymes than 20-month-old seed-tubers. However, the activities of superoxide dismutase, peroxidase, and catalase in 20-month-old tubers were substantially higher out of storage, and increased at a faster rate during plant establishment, than in 8-month-old seed-tubers. Collectively, these results suggest that a gradual build-up of FRs leads to peroxidative damage of membrane lipids during aging of potato seed-tubers.  相似文献   

7.
During hibernation, animals undergo metabolic changes that result in reduced utilization of glucose and oxygen. Fat is known to be the preferential source of energy for hibernating animals. Malonyldialdehyde (MDA) is an end product of fatty acid oxidation, and is generally used as an index of lipid peroxidation. We report here that peroxidation of lipids is increased in the plasma and in the membranes of red blood cells in black bears during hibernation. The plasma MDA content was about four fold higher during hibernation as compared to that during the active, non-hibernating state (P < 0.0001). Similarly, MDA content of erythrocyte membranes was significantly increased during hibernation (P < 0.025). The activity of Ca(2+)/Mg(2+)-ATPase in the erythrocyte membrane was significantly decreased in the hibernating state as compared to the active state. Na(+)/K(+)-ATPase activity was also decreased, though not significant, during hibernation. These results suggest that during hibernation, the bears are under increased oxidative stress, and have reduced activities of membrane-bound enzymes such as Ca(2+)/Mg(2+)-ATPase and Na(+)/K(+)-ATPase. These changes can be considered part of the adaptive for survival process of metabolic depression.  相似文献   

8.
本文研究莲心碱对实验性高脂血症大鼠血脂和抗氧化能力的影响.将32只大鼠随机分为4组,对照组饲喂基础饲料;诱导组饲喂高脂饲料;试验组给予高脂饲料+莲心碱灌胃2.5和5.0 mg·kg-1.测血清中血脂和丙二醛(MDA)水平,以及谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)活性;取肝脏测绝对和相对肝重及MDA含量.结果表明莲心碱可显著降低实验性高脂血症大鼠血清中总胆固醇、甘油三酯、低密度脂蛋白胆固醇水平和动脉粥样硬化指数;显著升高血清高密度脂蛋白胆固醇、GSH-Px和SOD水平;同时还可显著降低血清和肝脏中MDA的含量;其绝对和相对肝重均低于诱导组.  相似文献   

9.
In 11 chronic uremic patients superoxide anion (O2-.) generation and lipid peroxidation processes were determined during hemodialyses with cuprophan dialyzers used three times. Intradialytic changes observed during the first 20 min of hemodialysis, that is the period of the most marked alterations, with consecutive uses of the same dialyzer included: decreased whole blood O2-. generation at rest and following stimulation with opsonized zymosan, decreased reductions in the erythrocyte superoxide dismutase (SOD-1) activity, increased reductions in the plasma malonyldialdehyde (MDA) concentrations, and unchanged erythrocyte MDA concentrations. However, immediately before hemodialysis with third-used dialyzer whole blood O2-. generation at rest and following opsonized-zymosan stimulation, and erythrocyte SOD-1 activity were slightly, but statistically significantly, lower (p less than 0.05), while plasma MDA concentrations were higher (p less than 0.05) than those before hemodialysis with first-used dialyzer; erythrocyte MDA concentrations remained unchanged. The results seem to indicate that dialyzer reuse may exert beneficial effects on whole blood O2-. generation and protect erythrocyte membrane lipids from peroxidation, but, however, it leads to slightly increasing predialysis plasma lipid peroxidation.  相似文献   

10.
Addition of ferrous sulfate, but not ferric chloride, in micromolar concentrations to rat liver mitochondria induced high rates of consumption of oxygen. The oxygen consumed was several times in excess of the reducing capacity of ferrous-iron (O: Fe ratios 5–8). This occurred in the absence of NADPH or any exogenous oxidizable substrate. The reaction terminated on oxidation of ferrous ions. Malondialdehyde (MDA), measured as thiobarbituric acid-reacting material, was produced indicating peroxidation of lipids. The ratio of O2: MDA was about 4: 1. Pretreatment of mitochondria with ferrous sulfate decreased the rate of oxidation (state 3) with glutamate (+malate) as the substrate by about 40% but caused little damage to energy tranduction process as represented by ratios of ADP: O and respiratory control, as well as calcium-stimulated oxygen uptake and energy-dependent uptake of [45Ca]-calcium. Addition of succinate or ubiquinone decreased ferrous iron-induced lipid peroxidation in intact mitochondria. In frozen-thawed mitochondria, addition of succinate enhanced lipid peroxidation whereas ubiquinone had little effect. These results suggest that ferrous-iron can cause peroxidation of mitochondrial lipids without affecting the energy transduction systems, and that succinate and ubiquinone can offer protection from damage due to such ferrous-iron released from the stores within the cells.  相似文献   

11.
Increased free radical production and oxidative stress have been proposed as pathogenic mechanisms in several neurodegenerative disorders. Free radicals interact with biological macromolecules, such as lipids, which can lead to lipid peroxidation. A well-established marker of oxidative damage to lipids is malondialdehyde (MDA). We measured tissue MDA levels in the subthalamic nucleus (STN) and cerebellum from 11 progressive supranuclear palsy (PSP) cases and 11 age-matched control cases using sensitive HPLC techniques. In PSP, a significant increase in tissue MDA levels was observed in the STN when compared with the age-matched control group. By contrast, no significant difference between tissue MDA content was observed in cerebellar tissue from the same PSP and age-matched control cases. These results indicate that lipid peroxidation may play a role in the pathogenesis of PSP.  相似文献   

12.
Lipid peroxidation is a degenerative chain reaction in biological membranes that may be initiated by exposure to free radicals. This process is associated with changes in the membrane fluidity and loss of several cell membrane-dependent functions. 5-methoxytryptophol (ML) is an indole isolated from the mammalian pineal gland. The purpose of this study was to investigate the effects of ML (0. 01mM-10mM) on membrane fluidity modulated by lipid peroxidation. Hepatic microsomes obtained from rats were incubated with or without ML (0.01-10 mM). Then lipid peroxidation was induced by FeCl(3), ADP, and NADPH. Membrane fluidity was determined using fluorescence spectroscopy. Malonaldehyde (MDA) +4-hydroxyalkenals (4-HDA) concentrations were estimated as an indicator of the degree of lipid peroxidation. With oxidative stress, membrane fluidity decreased and MDA+4-HDA levels increased. ML (0.01-3 mM) reduced membrane rigidity and the rise in MDA+4-HDA formation in a concentration-dependent manner. 10 mM ML protected against lipid peroxidation but failed to prevent the membrane rigidity. In the absence of oxidative reagents, ML (0.3-10 mM) decreased membrane fluidity whereas MDA+4-HDA levels remained unchanged. This indicates that ML may interact with membrane lipids. The results presented here suggest that ML may be another pineal indoleamine (in addition to melatonin) that resists membrane rigidity due to lipid peroxidation.  相似文献   

13.
Increasing appreciation of the causative role of oxidative injury in many disease states places great importance on the reliable assessment of lipid peroxidation. Malondialdehyde (MDA) is one of several low-molecular-weight end products formed via the decomposition of certain primary and secondary lipid peroxidation products. At low pH and elavated temperature, MDA readily participates in nucleophilic addition reaction with 2-thiobarbituric acid (TBA), generating a red, fluorescent 1:2 MDA:TBA adduct. These facts, along with the availability of facile and sensitive methods to quantify MDA (as the free aldehyde or its TBA derivative), have led to the routine use of MDA determination and, particularly, the “TBA test” to detect and quantify lipid peroxidation in a wide array of sample types. However, MDA itself participates in reactions with molecules other than TBA and is a catabolic substrate. Only certain lipid peroxidation products generate MDA (invariably with low yields), and MDA is neither the sole end product of fatty peroxide formation and decomposition nor a substance generated exclusively through lipid peroxidation. Many factors (e.g., stimulus for and conditions of peroxidation) modulate MDA formation from lipid. Additional factors (e.g., TBA-test reagents and constituents) have profound effects on test response to fatty peroxide-derived MDA. The TBA test is intrinsically nonspecific for MDA: nonlipid-related materials as well as fatty peroxide-derived decomposition products other than MDA are TBA positive. These and other considerations from the extensive literature on MDA, TBA reactivity, and oxidative lipid degradation support the conclusion that MDA determination and the TBA test can offer, at best, a narrow and somewhat empirical window on the complex process of lipid peroxidation. The MDA content and/or TBA reactivity of a system provides no information on the precise structures of the “MDA precursor(s),” their molecular origins, or the amount of each formed. Consequently, neither MDA determination nor TBA-test response can generally be regarded as a diagnostic index of the occurrence/extent of lipid peroxidation, fatty hydroperoxide formation, or oxidative injury to tissue lipid without independent chemical evidence of the analyte being measured and its source. In some cases, MDA/TBA reactivity is an indicator of lipid peroxidation; in other situations, no qualitative or quantitative relationship exists among sample MDA content, TBA reactivity, and fatty peroxide tone. Utilization of MDA analysis and/or the TBA test and interpretation of sample MDA content and TBA test response in studies of lipid peroxidation require caution, discretion, and (especially in biological systems) correlative data from other indices of fatty peroxide formation and decomposition.  相似文献   

14.
To assess whether lipid peroxidation of hepatic mitochondria is associated with cholestatic hepatic injury we examined the effect of bile duct ligation (BDL) versus sham surgery on mitochondrial lipids of rats maintained on one of seven diets. Diets included vitamin E-deficient (E-) and vitamin E-sufficient (E+) combined with normal lipid (11.9% calories as stripped corn oil), high lipid (35% calories as stripped corn oil), or n-3 fatty acid (fish oil) supplementation. Rats were killed 17 days after surgery, mitochondria were isolated by differential centrifugation, and lipid-conjugated dienes and thiobarbituric acid-reacting substances (TBARS) were measured in mitochondrial lipids as indices of lipid peroxidation. BDL resulted in significant increases in lipid peroxidation in all dietary groups. The E- high lipid diets (with either corn oil or fish oil) were associated with higher lipid peroxide and serum bilirubin values in BDL rats compared to the normal lipid diets. Fish oil supplementation did not ameliorate cholestatic or oxidative injury. Serum alanine aminotransferase, bilirubin, alkaline phosphatase, and cholylglycine levels correlated significantly with levels of mitochondrial conjugated dienes and TBARS. These data suggest that free radical stress occurs during BDL in the rat and may result in mitochondrial lipid peroxidation, and that diets high in lipid may increase free radical damage to hepatic mitochondria. The role of free radicals in cholestatic hepatic injury requires further investigation.  相似文献   

15.
Glutathione (GSH) is an antioxidant synthesized from three constitutive amino acids (CAA): cysteine (Cys), glycine (Gly) and glutamate (Glu). Glutathione plays an important role in oocyte maturation, fertilization and early embryo development. This study aimed to investigate the effect of Cys (0.6 mM), Gly (0.6 mM) and Glu (0.9 mM) supplementation during in vitro fertilization (IVF) of cattle oocytes. In a Pilot Experiment, de novo synthesis of GSH in bovine zygote was evaluated using a modified TALP medium prepared without MEM-essential and MEM-non-essential amino acids (mTALP): mTALP + CAA (constitutive amino acids); mTALP + CAA+5 mMBSO (buthionine sulfoximide); mTALP + Cys + Gly; mTALP + Cys + Glu and mTALP + Gly + Glu. This evidence led us to investigate the impact of CAA supplementation to TALP medium (with essential and non-essential amino acids) on zygote viability, lipid peroxidation, total intracellular GSH content (include reduced and oxidized form; GSH-GSSG), pronuclear formation in zygotes and subsequent embryo development. IVF media contained a) TALP; b) TALP + Cys + Gly + Glu (TALP + CAA); c) TALP + Cys + Gly; d) TALP + Cys + Glu; e) TALP + Gly + Glu, were used. Total GSH-GSSG concentration was increased in TALP, TALP + CAA, and TALP + Cys + Gly. The viability of zygote was similar among treatments. Lipid peroxidation was increased in zygote fertilized with TALP + Cys + Gly; TALP + Cys + Glu; TALP + Gly + Glu and TALP + CAA. The percentage of penetrated oocytes decreased in TALP + CAA and TALP + Cys + Gly. The cleavage rate was lower in TALP + CAA and TALP + Gly + Glu. The percentage of embryos developing to the blastocyst stage was lower in TALP + Cys + Glu and TALP + CAA. In conclusion, we have demonstrated the synthesis of GSH during IVF. However, Cys, Gly and Glu supplementation to TALP medium had negative effects on embryonic development.  相似文献   

16.
The binding of products derived from the peroxidation of liver microsomal lipids to the non-lipid constituents of the microsomes was studied. To this end arachidonic acid labelled with tritium at the positions of the double bonds was given to rats and allowed to incorporate into the membrane lipids of the liver cell. When liver microsomes containing labelled arachidonic acid were incubated aerobically in the NADPH-dependent system, a marked production of malonic dialdehyde (MDA) occurred and, concomitantly, there was a consistent release of radioactivity from the microsomes into the incubation medium. The addition of EDTA to the incubation medium prevented, to a large extent, both the MDA formation and the release of radioactivity. Chromatographic studies showed that the bulk of the radioactivity released from the incubated microsomes is not MDA. In the incubated microsomes, the radioactivity decreased in total lipids, while it increased by about 15 times in the non-lipoidal residue. A similar increase in radioactivity was seen in microsomal protein, while no increase was observed in microsomal RNA (the radioactivity was negligible in both the incubated and the non-incubated samples). It seems therefore that products originating from lipoperoxidation of arachidonic acid covalently bind to the microsomal protein. In order to investigate whether alterations similar to those observed in the in vitro peroxidation of liver microsomes could be detected in the in vivo intoxication with carbon tetrachloride, rats given labelled arachidonic acid as above, were poisoned with CCl4. Sixty minutes after poisoning, the radioactivity present in the microsomal lipids was generally lower in the intoxicated rats than in the controls, while the labelling of the non-lipoidal residue and of the protein was higher in the CCl4-poisoned rats.  相似文献   

17.
The influence of L-arginine (600 mg/kg) and NO-synthase blocator N omega-nitro-L-arginine L-NNA (35 mg/kg) on processes of ADP-stimulated respiration (under using 0.35 mM succinate, 1 mM alpha-ketoglutarate, 2 mM pyruvate, 2 mM glutamate, 2 Mm malate and succinate dehydrohenase blocator--2 mM malonate as substrates of oxidation), lipid peroxidation (concentration of DK and MDA), activities of succinate dehydrohenase and aminotransferases in rats tissues with different resistance to hypoxia under stress conditions have been investigated. It have been shown that the energy metabolism indices (respiration rate and efficiency of phosphorilation ADP/O) are higher in high resistent (HR) animals in the control group. Stress causes the increase of ADP-stimulated respiration in low resistent (LR) under succinate oxidation and decrease of NADPH-dependent utilization, indicative of more effort of energy system in LR animals. Stress conditions are connected with the increase of lipid peroxidation products in blood both in LR and in HR animals, though in hepar their concentration change unimportantly. Injection of L-arginine decreases aerobic component of energy metabolism on the background decreasing aminotransferases ways of oxidation and succinate dehydrohenase activity. L-arginine causes decrease of lipid peroxidation products in LR, in HR the same effect reaches by L-NNA injection. The has been made conclusion about tight correlation between energy metabolism, processes of lipid peroxidation with resistance to hypoxia and functioning of nitric oxide cycle under stress conditions.  相似文献   

18.
NADPH-supported lipid peroxidation monitored by malondialdehyde (MDA) production in the presence of ferric pyrophosphate in liver microsomes was inactivated by heat treatment or by trypsin and the activity was not restored by the addition of purified NADPH-cytochrome P450 reductase (FPT). The activity was differentially solubilized by sodium cholate from microsomes, and the fraction solubilized between 0.4 and 1.2% sodium cholate was applied to a Sephadex G-150 column and subfractionated into three pools, A, B, and C. MDA production was reconstituted by the addition of microsomal lipids and FPT to specific fractions from the column, in the presence of ferric pyrophosphate and NADPH. Pool B, after removal of endogenous FPT, was highly active in catalyzing MDA production and the disappearance of arachidonate and docosahexaenoate, and this activity was abolished by heat treatment and trypsin digestion, but not by carbon monoxide. The rate of NADPH-supported lipid peroxidation in the reconstituted system containing fractions pooled from Sephadex G-150 columns was not related to the content of cytochrome P450. p-Bromophenylacylbromide, a phospholipase A2 inhibitor, inhibited NADPH-supported lipid peroxidation in both liver microsomes and the reconstituted system, but did not block the peroxidation of microsomal lipid promoted by iron-ascorbate or ABAP systems. Another phospholipase A2 inhibitor, mepacrine, poorly inhibited both microsomal and pool-B'-promoted lipid peroxidation, but did block both iron-ascorbate-driven and ABAP-promoted lipid peroxidation. The phospholipase A2 inhibitor chlorpromazine, which can serve as a free radical quencher, blocked lipid peroxidation in all systems. The data presented are consistent with the existence of a heat-labile protein-containing factor in liver microsomes which promotes lipid peroxidation and is not FPT, cytochrome P450, or phospholipase A2.  相似文献   

19.
The aim of this study was to determine the extent to which zinc depletion leads to lipoprotein modifications by measuring both lipoprotein-fraction distribution and peroxidation in zinc-depleted rats. The animals were divided into three groups and fed for 8 wk a zinc-adequate diet (100 ppm) ad libitum (AL), a zinc-deficient diet (0.2 ppm) ad libitum (ZD), or a zinc-adequate diet according to the pair feeding method (PF). Trace-element status, tissular lipids, and lipoprotein-fraction study were performed. The MDA production by the lipoprotein fraction was measured before and after induced peroxidation. Cholesterol and phospholipids were increased in ZD rats. An important increase of VLDL and IDL was observed and a significant enhanced production of MDA by the LDL was related to zinc deficiency. From this observation, we may conclude that LDL fractions of ZD rats are more susceptible to induced oxidative damage. These results suggest that in zinc deficiency, the lipoprotein fragility is an aggravating factor of peroxidation and the dyslipoproteinemia may lead to an atherogenic risk.  相似文献   

20.
储玲  邵登辉  晋松  吴学峰 《应用生态学报》2007,18(11):2594-2599
通过盆栽实验研究了Cu胁迫下接种病原菌链格孢菌(Alternaria tenuis Nees)对白车轴草(Trifolium repens L.)生理生态指标的影响.结果表明:在未接种的对照组中,随着Cu浓度的增大(0~3000mg.kg-1),植株叶片失绿,生物量下降,叶绿素a、b、a b和类胡萝卜素及叶片可溶性蛋白质含量下降;植物体内丙二醛(MDA)高度积累,细胞膜结构遭到损坏,电导率增大;植株活性氧清除系统受损,不能保持原有平衡,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性显著降低,过氧化物酶(POD)活性升高.接种链格孢菌后,植株叶片色素、膜系统及保护酶系统的损伤均加重,与不接种对照组相比,相同浓度Cu处理的叶绿素a、b、a b和类胡萝卜素、可溶性蛋白质含量、SOD和CAT活性均呈不同程度的下降,而电导率、MDA含量和POD活性则有所上升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号