首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies were made on the mechanism by which livers of ethanol-treated rats take up an increased fraction of the total flux of unesterified fatty acid in serum. It was found that ethanol (0.7g/kg) causes a twofold rise in the serum content of liver, and that this serum is in rapid equilibrium with the general circulation. The fractional hepatic uptake from serum of group of compounds with varying uptake mechanisms and metabolic fates was studied in control and ethanol-treated animals. All the compounds tested, including unesterified fatty acid, showed an enhanced uptake when ethanol was given. For one of the compounds, carbon tetrachloride, a dose/response relationship was established between the amount administered, the amount taken up by liver, and the amount metabolized. These findings were interpreted to mean that this dose of ethanol causes the liver to receive an increased flow of blood, and as a result all compounds present and capable of being taken by liver are taken up at an increased rate. Hepatic blood flow was measured by a technique that monitors the rate of clearance of a colloidal lipid emulsion. It was found that ethanol increased hepatic blood flow by about 60%. This effect of ethanol on hepatic blood flow provides an explanation for the fatty liver and the synergistic effect between an acute dose of ethanol and carbon tetrachloride. A hypothesis to explain why a moderate dose of ethanol causes triglyceride to accumulate in liver is presented.  相似文献   

2.
The present study was undertaken to evaluate quantitatively the turnover of serum triacylglycerol (triglyceride) in the starved rat and to determine whether serum triacylglycerol recycled to liver contributes a significant fraction of the total hepatic triacylglycerol turnover. Serum was labelled in vitro with [3H]trioleoylglycerol (glycerol [3H]trioleate) to provide uniform labelling of all lipoprotein species. By using the curves describing disappearance of isotope from serum and its appearance in liver, rate constants for movement of triacylglycerol out of serum (0.29 min-1) and the uptake of serum triacylglycerol by liver (0.22 min-1) were calculated. The total rate of movement (flux) of triacylglycerol in these processes, the product of rate constant and serum pool size, was calculated to be 0.39 and 0.29 mg/min per 100 g body wt. respectively. A model is postulated for whole-body triacylglycerol metabolism consistent with the present data as well as most observations in the literature. From the model it can be predicted that: (1) the entire turnover of liver triacylglycerol in the starved rat can be accounted for on the basis of contributions from serum non-esterified fatty acid and serum triacylglycerol; (2) the entire turnover of the serum triacylglycerol pool can be accounted for quantitatively on the basis of contributions from intestine and liver; (3) the release rate for triacylglycerol from liver should be 0.34 to 0.35 mg/min per 100 g body wt.; (4) triacylglycerol synthesized by liver from non-esterified fatty acid of serum and by intestine can account quantitatively for the irreversible disposal rate of triacylglycerol from serum.  相似文献   

3.
High carbohydrate diets enhance the hepatic output of very low density lipoprotein triglycerides. The fatty acids of these triglycerides could come from exogenous sources (i.e., diet or adipose tissue) or from de novo fatty acid synthesis in the liver. The role of exogenous free fatty acids was evaluated in rats fed Purina Chow or diets containing 10% fructose for up to 14 wk. In carbohydrate-fed rats, serum triglycerides were twice normal, and VLDL accounted for about 60% of the increases. Pre-beta-lipoprotein was increased and alpha- and beta-lipoprotein were decreased. Phospholipid and cholesterol levels were unchanged. Livers were perfused with glucose and free fatty acids. Perfusate free fatty acids rose from 180 to 1800 micro eq/liter as the infused acids increased from 0 to 992 micro eq/3 hr; simultaneously, net free fatty acid uptake rose from < 1 to 18 micro eq/g/hr and triglyceride output by the liver doubled. However, rates of secretion of triglyceride became constant, and triglyceride accumulated in liver at uptakes of free fatty acids > 13 micro eq/g/hr. More lauric and myristic acid appeared in the perfusate than was infused, suggesting the hepatic discharge of free fatty acids. Livers of fructose-fed rats secreted twice as much oleate-(14)C-labeled triglyceride as controls at all levels of free fatty acid uptake. The ratios of the specific activities of perfusate triglyceride to free oleate-(14)C were unaffected by diet and were about 0.6 and 1.0 at low and high triglyceride secretion rates, respectively. Thus, carbohydrate feeding did not result in altered uptakes of free fatty acids or preferential secretion of triglycerides containing endogenously synthesized fatty acid. Instead, the increased secretion of triglyceride was accomplished by enhanced formation of VLDL triglyceride from exogenous free fatty acids.  相似文献   

4.
After an intravenous injection of a pulse of [U-14C]palmitate to starved rats, the time-dependent radioactivity profiles were determined in the triacylglycerol (triglyceride) of hepatic microsomal fractions, floating fat, mitochondria and nuclei. The profile of activity in serum gave a value of 0.08 mg/min per 100 g body wt. for the irreversible disposal rate of triacylglycerol from serum. This value, combined with the previously estimated rate of movement of triacylglycerol from serum to liver, and the reported rate from intestine to serum, gave a calculated value of 0.35 mg/min per 100 g body wt. for release rate of triacylglycerol from liver to serum. The rate of release of hepatic triacylglycerol into serum was also measured by the widely used Triton WR-1339 method. The rate obtained with this technique (0.15 mg of triacylglycerol/min per 100 g body wt.) was identical with that reported previously. During the interval from 45 min to 3h after ethanol administration this rate increased to 0.18 mg/min per 100 g body wt. It was concluded that the use of Triton underestimates the true rate of movement of triacylglyerol from liver to serum.  相似文献   

5.
1. Concentrations and compositions of liver, serum and milk lipids of cows were measured during 6 days' starvation and serum lipids during 60 days' re-feeding. 2. The concentration of free fatty acid in serum increased fivefold during starvation. 3. The content of total lipid in liver (g/100g of liver dry matter) doubled owing to a 20-fold increase in triglyceride, an eightfold increase in cholesterol ester, a three fold increase in free fatty acid and a 20% increase in cholesterol. There were no changes in the content or composition of liver phospholipids. 4. Starvation lowered the concentrations of total lipid, phospholipid and cholesterol ester of dextran sulphate-precipitable serum lipoproteins. Total lipid and cholesterol ester concentrations in lipoproteins of d greater than 1.055 and in lipoproteins not precipitable by dextran sulphate decreased from day 4 of the starvation period and during the first 20 days' re-feeding. 5. During starvation there were decreases in percentages of stearic acid and increases in oleic acid in serum free fatty acids and triglycerides and in liver neutral lipid. 6. Throughout starvation total milk lipid yield decreased, yields and percentages of C4-14 fatty acids decreased and percentages of C18 fatty acids increased. 7. It is suggested that accumulation of triglyceride in liver may be caused by increased uptake of plasma free fatty acids without corresponding increase in lipoprotein secretion.  相似文献   

6.
Normal female rats were given 15mug of ethynyloestradiol/kg body wt. for 14 days and were killed on day 15 after starvation for 12-14h. The livers were isolated and were perfused with a medium containing washed bovine erythrocytes, bovine serum albumin, glucose and [1-(14)C]oleic acid; 414mumol of oleate were infused/h during a 3h experimental period. The output of bile and the flow of perfusate/g of liver were decreased in livers from animals pretreated with ethynyloestradiol, whereas the liver weight was increased slightly. The rates of uptake and of utilization of [1-(14)C]oleate were measured when the concentration of unesterified fatty acid in the perfusate plasma was constant. The uptake of unesterified fatty acid was unaffected by pretreatment of the animal with oestrogen; however, the rate of incorporation of [1-(14)C]oleate into hepatic and perfusate triacylglycerol was stimulated, whereas the rate of conversion into ketone bodies was impaired by treatment of the rat with ethynyloestradiol. Pretreatment of the rat with ethynyloestradiol increased the output of very-low-density lipoprotein triacylglycerol, cholesterol, phospholipid and protein. The production of (14)CO(2) and the incorporation of radioactivity into phospholipid, cholesteryl ester and diacylglycerol was unaffected by treatment with the steroid. The net output of glucose by livers from oestrogen-treated rats was impaired despite the apparent increased quantities of glycogen in the liver. The overall effect of pretreatment with oestrogen on hepatic metabolism of fatty acids is the channeling of [1-(14)C]oleate into synthesis and increased output of triacylglycerol as a moiety of the very-low-density lipoprotein, whereas ketogenesis is decreased. The effect of ethynyloestradiol on the liver is apparently independent of the nutritional state of the animal from which the liver was obtained. It is pertinent that hepatocytes prepared from livers of fed rats that had been treated with ethynyloestradiol produced fewer ketone bodies and secreted more triacylglycerol than did hepatocytes prepared from control animals. In these respects, the effects of the steroid were similar in livers from fed or starved (12-14h) rats. Oestrogens may possibly inhibit hepatic oxidation of fatty acid, making more fatty acid available for the synthesis of triacylglycerol, or may stimulate the biosynthesis of triacylglycerol, or may be active on both metabolic pathways.  相似文献   

7.
Rats with carnitine deficiency due to trimethylhydrazinium propionate (mildronate) administered at 80 mg/100 g body weight per day for 10 days developed liver steatosis only upon fasting. This study aimed to determine whether the transient steatosis resulted from triglyceride accumulation due to the amount of fatty acids preserved through impaired fatty acid oxidation and/or from up-regulation of lipid exchange between liver and adipose tissue. In liver, mildronate decreased the carnitine content by approximately 13-fold and, in fasted rats, lowered the palmitate oxidation rate by 50% in the perfused organ, increased 9-fold the triglyceride content, and doubled the hepatic very low density lipoprotein secretion rate. Concomitantly, triglyceridemia was 13-fold greater than in controls. Hepatic carnitine palmitoyltransferase I activity and palmitate oxidation capacities measured in vitro were increased after treatment. Gene expression of hepatic proteins involved in fatty acid oxidation, triglyceride formation, and lipid uptake were all increased and were associated with increased hepatic free fatty acid content in treated rats. In periepididymal adipose tissue, mildronate markedly increased lipoprotein lipase and hormone-sensitive lipase activities in fed and fasted rats, respectively. On refeeding, carnitine-depleted rats exhibited a rapid decrease in blood triglycerides and free fatty acids, then after approximately 2 h, a marked drop of liver triglycerides and a progressive decrease in liver free fatty acids. Data show that up-regulation of liver activities, peripheral lipolysis, and lipoprotein lipase activity were likely essential factors for excess fat deposit and release alternately occurring in liver and adipose tissue of carnitine-depleted rats during the fed/fasted transition.  相似文献   

8.
Liver fatty acid-binding protein (L-Fabp) is an abundant cytosolic lipid-binding protein with broad substrate specificity, expressed in mammalian enterocytes and hepatocytes. We have generated mice with a targeted deletion of the endogenous L-Fabp gene and have characterized their response to alterations in hepatic fatty acid flux following prolonged fasting. Chow-fed L-Fabp-/- mice were indistinguishable from wild-type littermates with regard to growth, serum and tissue lipid profiles, and fatty acid distribution within hepatic complex lipid species. In response to 48-h fasting, however, wild-type mice demonstrated a approximately 10-fold increase in hepatic triglyceride content while L-Fabp-/- mice demonstrated only a 2-fold increase. Hepatic VLDL secretion was decreased in L-Fabp-/- mice suggesting that the decreased accumulation of hepatic triglyceride was not the result of increased secretion. Fatty acid oxidation, as inferred from serum beta-hydroxybutyrate levels, was increased in response to fasting, although the increase in L-Fabp-/- mice was significantly reduced in comparison to wild-type controls, despite comparable induction of PPAR alpha target genes. Studies in primary hepatocytes revealed indistinguishable initial rates of oleate uptake, but longer intervals revealed reduced rates of uptake in fasted L-Fabp-/- mice. Oleate incorporation into cellular triglyceride and diacylglycerol was reduced in L-Fabp-/- mice although incorporation into phospholipid and cholesterol ester was no different than wild-type controls. These data point to an inducible defect in fatty acid utilization in fasted L-Fabp-/- mice that involves targeting of substrate for use in triglyceride metabolism.  相似文献   

9.
Effects of ethanol on lipid metabolism.   总被引:11,自引:0,他引:11  
Alcohol promotes accumulation of fat in the liver mainly by substitution of ethanol for fatty acids as the major hepatic fuel. The degree of lipid accumulation depends on the supply of dietary fat. Progressive alteration of the mitochondria, which occurs during chronic alcohol consumption, decreases fatty acid oxidation by interfering with citric acid cycle activity. This block is partially compensated for by increased ketone body production, which results in ketonemia. Thus, mitochondrial damage perpetuates fatty acid accumulation even in the absence of ethanol oxidation. Alcohol facilitates esterification of the accumulated fatty acids to triglycerides, phospholipids, and cholesterol esters, all of which accumulate in the liver. The accumulated lipids are disposed of in part as serum lipoprotein, resulting in moderate hyperlipemia. In some individuals with pre-existing alterations of lipid metabolism, small ethanol dose may provoke marked hyperlipemia which responds to alcohol withdrawal. Inhibition of the catabolism of cholesterol to bile salt may contribute to the hepatic accumulation and hypercholesterolemia. The capacity of lipoprotein production and hyperlipemia development increases during chronic alcohol consumption, probably as a result of the concomitant hypertrophy of the endoplasmic reticulum and Golgi apparatus. However, this compensation is relatively inefficient in ridding the liver of fat. This inefficiency may be linked to alterations of hepatic microtubules induced by ethanol or its metabolites, which interfere with the export of protein from liver to serum, promoting hepatic accumulation of proteins as well as fat. As liver injury aggravates, hyperlipemia wanes and liver steatosis is exaggerated. Derangements of serum lipids similar to those found in other types of liver disease also become apparent. The changes in serum lipids may be a sensitive indicator of the progression of liver damage in the alcoholic.  相似文献   

10.
1. The effect of ethanol on liver fatty acid synthesis was studied in vivo in 24h-starved and ;meal-fed' rats (i.e. fed for 3h per day and not ad libitum). 2. In the fed animal (3)H(2)O was incorporated into fat at a rate of 0.46mumol of C(2) units/min per g wet wt. of liver. Administration of either ethanol (3.2g/kg) or equicaloric amounts of glucose had no effect on the rate of (3)H(2)O incorporation into lipid. 3. In the 24h-starved animal, administration of the same dose of ethanol produced an increase in the rate of (3)H(2)O incorporation from 0.06 to 0.12mumol of C(2) units/min per g fresh wt. after 3h whereas [malonyl-CoA] increased from 0.006 to 0.009mumol/g. Glucose given in amounts equicaloric to ethanol was significantly more lipogenic, increasing both the (3)H(2)O incorporation from 0.06 to 0.20mumol of C(2) units/min per g and the malonyl-CoA content from 0.006 to 0.013 mumol/g wet wt. at 3h. 4. The decrease in the redox state of free cytoplasm NAD or NADP couples or the changes in content of citrate, glucose 6-phosphate and pyruvate of liver after ethanol administration had no measurable effect on the rate of fatty acid synthesis in vivo. 5. Under the conditions of the experiments there was no significant difference, among any of the groups, in the activity of liver fatty acid synthetase measured in vitro. A double-reciprocal plot of the rate of (3)H(2)O incorporation and the total tissue malonyl-CoA concentrations showed a striking relationship. It has been concluded that the rate of fatty acid synthesis in vivo is determined principally by the V(max.) of fatty acid synthetase and the concentration of free malonyl-CoA. 6. It has also been concluded that under the conditions of the present study, the synthesis of fatty acids de novo is unlikely to be an important factor in the increased liver lipid content associated with ethanol administration.  相似文献   

11.
1. The effect of ethanol on the metabolism of [1-(14)C]palmitate in rat liver was investigated in a single-pass perfusion system at concentrations of 10mm- or 80mm-ethanol and 0.2mm- or 1mm-palmitate. 2. After the perfusion the hepatic lipid was isolated in subcellular fractions. The two major fractions contained triacylglycerol from cytoplasmic lipid droplets and from endoplasmic reticulum plus Golgi apparatus respectively. 3. In experiments with 0.2mm-palmitate perfusion with 10mm- or 80mm-ethanol did not measurably increase the esterification, and the oxidation was markedly decreased and the fatty acid uptake was not affected. 4. Perfusion with ethanol, at 1mm-palmitate, increased the fatty acid uptake, increased esterification and decreased oxidation. The effects of 10mm- and 80mm-ethanol were similar. The incorporation of [1-(14)C]palmitate into triacylglycerol in cytoplasmic lipid droplets was not affected statistically significantly by ethanol. Ethanol increased the incorporation of [1-(14)C]palmitate into di- and tri-acylglycerol in the membranous fraction. Estimated chemically, the contents of di- and tri-acylglycerol were only slightly affected by ethanol. These results suggest that the effect of ethanol was to increase the turnover of fatty acids in triacylglycerol rather than to increase its accumulation. 5. The results indicate that an increased concentration of fatty acids is more important for the formation of acute fatty liver in fed rats than are the direct effects of ethanol on hepatic fatty acid metabolism.  相似文献   

12.
Besides ethanol, other aliphatic alcohols such as n-propanol and isopropanol induce a triacylglycerol (TAG) accumulation in the liver. To determine whether a common mechanism is responsible for the effects of these three alcohols on hepatic lipid metabolism, each was administered by gastric tube to female Wistar rats at the dose of 50 mmol/kg body wt. Whichever alcohol was administered, the hepatic triacylglycerol accumulation was found to be related to the duration of elevated blood alcohol concentration. After administration of n-propanol or isopropanol, the liver [14C]palmitate uptake was increased whereas hepatic palmitate oxidation to 14CO2 was impaired and palmitate esterification into TAG enhanced; these perturbations were however more discrete than after ethanol administration. In contrast to ethanol and n-propanol which, at the dose presently used, increase precursor incorporation into blood TAG, isopropanol inhibits this incorporation. Interference with the process of very low density lipoprotein (VLDL) synthesis and/or secretion, which appears only at a late stage of isopropanol intoxication, is probably responsible for the intensity and duration of the fatty liver observed after administration of this alcohol.  相似文献   

13.
The aim of the present study was to investigate whether unsaturated 2-acyl-lysophosphatidylcholine bound to plasma albumin is a relevant delivery form of unsaturated fatty acids to the developing brain. Twenty-day-old rats were perfused for 30 s with labeled palmitic, oleic, linoleic, and arachidonic acids in either their unesterified form or esterified in 2-acyl-lysophosphatidylcholine labeled on the choline and fatty acid moieties. Both forms were bound to albumin. Incorporation in brain lipid classes was followed within 1 h. The brain uptake of the unesterified fatty acids reached a plateau at 5-15 min and was maximal for arachidonic acid (0.45% of the perfused dose). The brain uptake of palmitoyl-lysophosphatidylcholine was similar to that of palmitic acid, whereas that of other lysophosphatidylcholines increased with the degree of unsaturation (rate and maximal uptake) and was six- to 10-fold higher than that of the corresponding unesterified fatty acid. 2-Acyl-lysophosphatidylcholines were taken up without prior hydrolysis and reacylated into doubly labeled phosphatidylcholine, which was the most labeled lipid class, whereas lipid distribution of the unesterified fatty acid was more diversified. Partial hydrolysis of 2-acyl-lysophosphatidylcholine occurred in the brain tissue, and redistribution of the fatty acyl moiety into other phospholipid classes was also observed and was the highest for arachidonic acid. In this case, the percentage of esterification of this fatty acid in phosphatidylinositol (expressed as a percentage of the total lipid fraction) was relatively lower than that observed when the unesterified form was used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
PURPOSE OF REVIEW: Nonalcoholic fatty liver disease is a spectrum of diseases ranging from simple steatosis to cirrhosis. The hallmark of nonalcoholic fatty liver disease is hepatocyte accumulation of triglycerides. We will review the role of triglyceride synthesis in nonalcoholic fatty liver disease progression and summarize recent findings about triglyceride synthesis inhibition and prevention of progressive disease. RECENT FINDINGS: Attempts to inhibit triglyceride synthesis in animal models have resulted in improvement in hepatic steatosis. Studies in animal models of nonalcoholic fatty liver disease demonstrate that inhibition of acyl-coenzyme A:diacylglycerol acyltransferase, the enzyme that catalyzes the final step in triglyceride synthesis, results in improvement in hepatic steatosis and insulin sensitivity. We recently confirmed that hepatic specific inhibition of acyl-coenzyme A:diacylglycerol acyltransferase with antisense oligonucleotides improves hepatic steatosis in obese, diabetic mice but, unexpectedly, exacerbated injury and fibrosis in that model of progressive nonalcoholic fatty liver disease. When hepatocyte triglyceride synthesis was inhibited, free fatty acids accumulated in the liver, leading to induction of fatty acid oxidizing systems that increased hepatic oxidative stress and liver damage. These findings suggest that the ability to synthesize triglycerides may, in fact, be protective in obesity. SUMMARY: Nonalcoholic fatty liver disease is strongly associated with obesity and peripheral insulin resistance. Peripheral insulin resistance increases lipolysis in adipose depots, promoting increased free fatty acid delivery to the liver. In states of energy excess, such as obesity, the latter normally triggers hepatic triglyceride synthesis. When hepatic triglyceride synthesis is unable to accommodate increased hepatocyte free fatty acid accumulation, however, lipotoxicity results. Thus, rather than being hepatotoxic, liver triglyceride accumulation is actually hepato-protective in obese, insulin-resistant individuals.  相似文献   

15.
The formation and transport of hepatic triglyceride fatty acids (TGFA) were studied after intravenous administration of palmitate-1-(14)C or palmitate-9,10-(3)H in rabbits pretreated with ethanol or ethionine. Administration of ethanol produced significant hypertriglyceridemia without consistent accumulation of hepatic fat. The isotopic studies suggest that plasma free fatty acids were the major precursors of TGFA in d < 1.006 lipoproteins and that fatty acids synthesized in the liver were not the source of the hypertriglyceridemia in the ethanol-treated animals. Administration of ethionine resulted in an increased concentration of TGFA in the liver, a decreased level of TGFA in d < 1.006 lipoproteins and a very low specific activity in this plasma fraction. These findings suggest that the development of fatty liver after administration of ethionine is in part accompanied by impaired release of TGFA from the liver.  相似文献   

16.
The NADPH is one of the cofactors in ethanol metabolism. The aim of the study was to investigate the effect of ethanol on a NADPH generating enzyme (G6P-DH) and on some metabolic parameters of the liver. After a 2-day starvation period rats were fed a lipid free diet for three days. During this refeeding period the animals were divided into three groups; they received a single daily dose of 4 g per kg b.w. ethanol, isocaloric aqueous glucose solution or water by gastric tube. In response to ethanol the activity of hepatic G6P-DH decreased. The amount of triglyceride remained unchanged, certain changes occurred in the fatty acid composition of total lipid. The liver glycogen content was elevated. In female rats treated with ethanol the activity of glucose-6-phosphatase increased.  相似文献   

17.
The metabolic syndrome and the hepatic fatty acid drainage hypothesis   总被引:4,自引:0,他引:4  
Much data indicates that lowering of plasma triglyceride levels by hypolipidemic agents is caused by a shift in the liver metabolism towards activation of peroxisome proliferator activated receptor (PPAR)alpha-regulated fatty acid catabolism in mitochondria. Feeding rats with lipid lowering agents leads to hypolipidemia, possibly by increased channeling of fatty acids to mitochondrial fatty acid oxidation at the expense of triglyceride synthesis. Our hypothesis is that increased hepatic fatty acid oxidation and ketogenesis drain fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects on fat mass accumulation and improved peripheral insulin sensitivity. To investigate this theory we employ modified fatty acids that change the plasma profile from atherogenic to cardioprotective. One of these novel agents, tetradecylthioacetic acid (TTA), is of particular interest due to its beneficial effects on lipid transport and utilization. These hypolipidemic effects are associated with increased fatty acid oxidation and altered energy state parameters of the liver. Experiments in PPAR alpha-null mice have demonstrated that the effects hypolipidemic of TTA cannot be explained by altered PPAR alpha regulation alone. TTA also activates the other PPARs (e.g., PPAR delta) and this might compensate for deficiency of PPAR alpha. Altogether, TTA-mediated clearance of blood triglycerides may result from a lowered level of apo C-III, with a subsequently induction of hepatic lipoprotein lipase activity and (re)uptake of fatty acids from very low density lipoprotein (VLDL). This is associated with an increased hepatic capacity for fatty acid oxidation, causing drainage of fatty acids from the blood stream. This can ultimately be linked to hypolipidemia, anti-adiposity, and improved insulin sensitivity.  相似文献   

18.
The effects of one-time ethanol intoxication on ascorbic acid and lipid metabolism and on drug-metabolizing enzymes in liver of rats were investigated. Male Donryu rats that had been fed semi-purified feed were given 5 g/kg ethanol solution (25%, w/v) via a stomach tube and killed 16 h after intubation. The amount of ascorbic acid excreted in the urine after ethanol administration increased, but renal and adrenal concentrations of ascorbic acid decreased. The serum levels of total cholesterol, high-density-lipoprotein cholesterol, triglycerides, phospholipids, and non-esterified fatty acids were elevated in rats given ethanol, but hepatic level of total lipids, cholesterol, triglycerides, phospholipids were not. The hepatic concentrations of cytochrome P-450 and cytochrome b5 did not increase, but this large dose of ethanol increased the activities of aminopyrine N-demethylase and cytochrome c reductase.

These results indicated that the single dose of ethanol affected the ascorbic acid and lipid metabolism of rats, and induced drug-metabolizing enzymes in their liver.  相似文献   

19.
Obesity is associated with an increased risk for malignant lymphoma development. We used Bcr/Abl transformed B cells to determine the impact of aggressive lymphoma formation on systemic lipid mobilization and turnover. In wild-type mice, tumor size significantly correlated with depletion of white adipose tissues (WAT), resulting in increased serum free fatty acid (FFA) concentrations which promote B-cell proliferation in vitro. Moreover, B-cell tumor development induced hepatic lipid accumulation due to enhanced hepatic fatty acid (FA) uptake and impaired FA oxidation. Serum triglyceride, FFA, phospholipid and cholesterol levels were significantly elevated. Consistently, serum VLDL/LDL-cholesterol and apolipoprotein B levels were drastically increased. These findings suggest that B-cell tumors trigger systemic lipid mobilization from WAT to the liver and increase VLDL/LDL release from the liver to promote tumor growth. Further support for this concept stems from experiments where we used the peroxisome proliferator-activated receptor α (PPARα) agonist and lipid-lowering drug fenofibrate that significantly suppressed tumor growth independent of angiogenesis and inflammation. In addition to WAT depletion, fenofibrate further stimulated FFA uptake by the liver and restored hepatic FA oxidation capacity, thereby accelerating the clearance of lipids released from WAT. Furthermore, fenofibrate blocked hepatic lipid release induced by the tumors. In contrast, lipid utilization in the tumor tissue itself was not increased by fenofibrate which correlates with extremely low expression levels of PPARα in B-cells. Our data show that fenofibrate associated effects on hepatic lipid metabolism and deprivation of serum lipids are capable to suppress B-cell lymphoma growth which may direct novel treatment strategies. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.  相似文献   

20.
The possibility that ethanol or acetaldehyde has a direct effect on the activity of acyl-CoA-ligases or sn-glycerophosphate acyltransferases or on the biosynthesis of phosphatidic acid and triglycerides from free fatty acids was studied with subcellular preparations from rat liver. No stimulatory effect of ethanol or acetaldehyde could be observed in any case. It was further shown that the microsomal fraction of homogenate of livers of rats treated with ethanol (single peroral dose of 4.5 g of ethanol per kg body weight) did not have an increased capacity to biosynthesize phosphatidic acid. The possibility was excluded that excess cofactors necessary for formation of phosphatidic acid are responsible for the higher accumulation of triglycerides in livers of rats treated with ethanol.The results indicate that the increased formation of triglycerides in liver of rats treated with ethanol is not due to increased activity of acyl-CoA-ligase or sn-glycerophosphate acyltransferase or due to increased availability of sn-glycerophosphate, ATP or CoA-SH. It is suggested that increased availability of fatty acids is the major explanation for the increased accumulation of triglycerides in the liver after ethanol administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号