首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
This study examined the effects of a nerve transection on monoamine release from primary somatosensory cortex. The technique of microdialysis was employed to sample extracellular levels of norepinephrine (NE), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindole-3-acetic acid (5-HIAA) and homovanillic acid (HVA) in the barrel field of freely moving rats following the surgical transection of the contralateral infraorbital nerve. Microdialysates obtained 3, 4, and 5 days after deafferentation were analyzed using high-performance liquid chromatography with electrochemical detection. We found a significant increase in the release of the dopamine metabolites, DOPAC and HVA from the deafferented cortex. Three days after deafferentation the release of DOPAC was three-fold higher in the deafferented than in the control animals, and remained about 100% higher in the next two days in this group of animals. The release of HVA showed a gradual increase following the deafferentation procedure, since a 92% larger value on day 3 increased to a 338% difference on day 5. On the other hand, the release rate of NE and the levels of the serotonin metabolite 5-HIAA were not significantly affected by the deafferentation procedure. These results are discussed in the context of the possible participation of dopamine in the reorganization of the deafferented somatosensory cortex.  相似文献   

2.
Complete deafferentation of the medial basal hypothalamus (MBH) in 13 primiparous Sprague-Dawley rats was performed on or about Day 14 of gestation. The most significant result was a depression in litter growth as evidenced by the marked number of dead pups by the postpartal Day 5 and the loss of weight in those that survived. Control animals deafferented in the same region but only along one side (the incomplete deafferented rats, n = 9) adequately maintained young. Animals in both groups gave birth as expected. There were no significant differences in the latency and duration of retrieving and crouching behaviors. Therefore, nursing behavior appeared normal. Only milk ejection seemed disturbed, judging from the fact that suckling alone could not release milk, oxytocin in addition was needed. Thus, by the methods we employed, the MBH appears to be necessary for lactation but not for nursing behavior in the primiparous rat.  相似文献   

3.
P Redecker 《Histochemistry》1989,91(6):507-515
The postnatal development (day of birth up to the end of the third month) of neurohypophyseal pituicytes and tanycytes of the median eminence (ME) and the medial basal hypothalamus (MBH) was studied immunohistochemically in the Mongolian gerbil (Meriones unguiculatus) with antibodies directed against glial fibrillary acidic protein (GFAP; the major protein subunit of glial filaments). Weak GFAP-immunoreactivity (IR) was scattered in the neural lobe (NL), the ME and the lining of the ventral 3rd ventricle at the first postnatal days. By the end of the second postnatal week, the intensity of the IR had reached a level comparable to that of adult animals. Generally, in the whole neurohypophysis a cytoarchitectonic pattern, which essentially corresponded to adult conditions, was reached around the beginning of the second month. During the first week postnatum, solely perinuclear stainings, mostly unipolar pituicytes with short processes and isolated fibers were discernible in the NL. In the course of the second and third postnatal week, a growing number of the densely arranged pituicytes appeared in form of bi- and multipolar cells. Thickness and length of pituicyte processes, as well as their degree of branching, increased progressively in the first month. The number of GFAP-positive tanycytes in the ventral 3rd ventricle and in the ME most markedly augmented in the first week postnatum. In the MBH, long tanycyte processes emerged from the ventricular lining to cross the arcuate nucleus in large bows, delimiting groups of neurons. Ependymal and subependymal tanycytes in the ME gave rise to radial processes extending to the external zone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In the present study glial fibrillary acidic protein (GFAP) expression was assessed following intravermian injection of kainic acid (KA) or physiological saline to adult rat cerebellum. After 2- to 30-day recovery period, free-floating sections cut with a microtome were obtained and were proccessed for immunocytochemistry against GFAP. Injection of both kainate and physiological saline elicited significant astrogliotic reaction, i.e. in the area around the lesion thick GFAP-positive Bergmann fibers with typical orientation appeared in the molecular and hypertrophied astrocytes abundantly appeared in the granular layer. However, following kainate intoxication lesion was not surrounded by typical demarcation glial scar during 30-day recovery period in contrast to the appearance of usual glial scar in the group injected with physiological saline, as early as 7-day postlesion. Preserved spatial organization of Bergmann fibers and the absence of typical demarcating glial scar after kainate-induced cerebellar lesion suggest distinct pattern of astrogliosis that presents an interesting model system to study the importance of glial scar in the recovery after ischemic brain insults.  相似文献   

5.
6.
Summary The postnatal development (day of birth up to the end of the third month) of neurohypophyseal pituicytes and tanycytes of the median eminence (ME) and the medial basal hypothalamus (MBH) was studied immunohistochemically in the Mongolian gerbil (meriones unguiculatus) with antibodies directed against glial fibrillary acidic protein (GFAP; the major protein subunit of glial filaments). Weak GFAP-immunoreactivity (IR) was scattered in the neural lobe (NL), the ME and the lining of the ventral 3rd ventricle at the first postnatal days. By the end of the second postnatal week, the intensity of the IR had reached a level comparable to that of adult animals. Generally, in the whole neurohypophysis a cytoarchitectonic pattern, which essentially corresponded to adult conditions, was reached around the beginning of the second month. During the first week postnatum, solely perinuclear stainings, mostly unipolar pituicytes with short processes and isolated fibers were discernible in the NL. In the course of the second and third postnatal week, a growing number of the densely arranged pituicytes appeared in form of bi- and multipolar cells. Thickness and length of pituicyte processes, as well as their degree of branching, increased progressively in the first month. The number of GFAP-positive tanycytes in the ventral 3rd ventricle and in the ME most markedly augmented in the first week postnatum. In the MBH, long tanycyte processes emerged from the ventricular lining to cross the arcuate nucleus in large bows, delimiting groups of neurons. Ependymal and subependymal tanycytes in the ME gave rise to radial processes extending to the external zone. Moreover, in this zone several tanycyte-like cells, whose number increased considerably in the second postnatal week, contributed to the palisadal arrangement of glial processes. In the third month, the arcuate nucleus was still penetrated by many immunopositive tanycyte processes. It was characteristic of the adult staining pattern that the highly branched processes of tanycytes and tanycyte-like cells in the ME were thicker and more variable in size than the less densely arranged tanycyte processes of the MBH. The postnatal increase of GFAP-IR intensity was paralleled by a similar development of vasopressin-IR in the ME and NL, indicating that the maturation of neurohypophyseal glia is closely linked to the functional differentiation of the neurosecretory axons.  相似文献   

7.
The postnatal development of LTP in CA1 area of hippocampus was studied in hippocampal slices from 13-20-day-old intact rats, after unilateral resection of n. medianus on the 13th day, and sham-operated animals. In slices from the intact rats prepared on the 15th-16th-day of postnatal development, the LTP magnitude and duration were significantly larger than in adult animals. Partial deafferentation eliminated this overshoot. However, a less pronounced increase in synaptic plasticity was observed in operated animals on the 17th day. The LTP suppression in the experimental animals may be explained by a decrease in the NMDA receptor activity due to enhanced synaptic activity in the hippocampus. We think that the limited sensory inflow from the partially deafferented forelimb to the hippocampus via the entorhinal cortex may be compensated by activation of other inputs from specific or/and nonspecific pathways. In contrast, the LTP magnitude and duration were significantly increased in slices from the sham-operated rats. This increase may be explained by a decline of synaptic activation of the hippocampus under anesthesia.  相似文献   

8.
Using Falck fluorescent technique in combination with microspectrofluorometry the measurement of catecholamine and 5-hydroxytriptamine level was performed in popliteal lymph nodes of normal dogs and 2 weeks after deafferentation. Maximal catecholamine and 5-hydroxytriptamine content was observed in adrenergic nerve fibers, elements of trabecular-elastic complex and monoaminocytes of medullary substance of intact animals. Biogenic amine level decreased deafferented limb lymph nodes. Monoamine imbalance according to divergent type was registered in a colateral limb, i. e. 5-hydroxytriptamine level was increased and catecholamine level was decreased.  相似文献   

9.
The study is focused on the influence of a partial limitation of the sensory inflow in rat pups on the development of the sensory systems, which mature earlier and later. In accordance with the ontogenetic rule of proximal-distal maturation, the sensory inflow from the forelimbs matures faster than that from the hindlimbs. Fourteen Wistar rat pups (from 28) were deafferented on the 13th day of postnatal ontogeny (a small portion of the median nerve was unilaterally dissected). The background and evoked activity of single neurons was recorded in 26-47-day-old pups in the somatosensory cortex (in the projection areas of the intact n. medianus, which matures earlier, and n. ischiadicus, which matures later). The changes in firing activity produced by deafferentation were observed. In the projection area of the intact forelimb of the denervated rats, the incidence of inhibitory responses significantly increased, whereas the incidence of completes responses significantly decreased. In the hindlimb projection area of the denervated animals the background firing rate was significantly lower and the incidence of activation responses was increased.  相似文献   

10.
The present study analyzes the effect of selective deafferentation on the reperfusion injury of the skeletal muscle when nociceptive sensory fibers of the left sciatic nerve are selectively damaged by capsaicin pretreatment in a rat model following tourniquet ischemia (ISC) applied for 30 min, 1 h, and 2 h on the left hind limb. The isometric tetanic contractile force of the extensor digitorum longus (EDL) muscle was measured after 1 h, and 1, 3, or 7 days of reperfusion. Contractile force of the damaged muscle was compared to the intact contralateral muscle. In another group, ISC was used without capsaicin pre-treatment. After 30 min of ISC, there was no difference between deafferented and non-pretreated groups. Following 1 h ISC, with the exception of 1 h reperfusion, the non-pretreated group produced stronger contractions than the deafferented group. After 2 h ISC, the contractile force of the deafferented muscle was significantly stronger compared to the non-deafferented muscle force at all reperfusion times. In conclusions, it was found that the absence of peptidergic sensory fibers after long-lasting (2 h) ischemia is beneficial in reperfusion injury, whereas the absence of vasodilator peptides has unfavorable effects if tissue damage is milder (after 1 h ischemia).  相似文献   

11.
Summary Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.  相似文献   

12.
Summary Using the immunoperoxidase method, the effect of the anterior deafferentations on the (1) LHRH-neuronal system in the hypothalamus and (2) gonadotropic cells in the adenohypophysis of the ewe were investigated. Two kinds of the anterior deafferentations were placed in the hypothalamus of cycling ewes. The first was performed at the level of caudal border of the chiasma opticum (CB deafferentation) and separated the medio-basal hypothalamus (MBH) from the anterior hypothalamic area (AHA). The second, was placed above the midline of the optic chiasma (MB deafferentation) and detached the AHA from the area praeoptica (AP). Estrous cycles and ovulation ceased in all CB-deafferentation. Immunocytochemical observations revealed a complete lack of LHRH-material both in the hypothalamic nuclei and in all parts of the median eminence (ME) and disappearance of LH-cells in the pituitary gland. In MB deafferented animals, only a diminished density of LHRH-material occurred in the rostral and central parts of the ME, but the ewes continued estrous cycles. Furthermore, numerous LHRH-axons and some LHRH-perikarya were visible in the regions of the AP and AHA. From these results the author is of the opinion, that in the ewe, principally AHA, but not MBH, retains the ability to produce LHRH. Difficulties in staining LHRH-perikarya suggest that in this species LHRH may be synthesized in an immunologically inactive (prohormonal) form.  相似文献   

13.
The aim of the present investigations was to study involvement of fiber systems to and from the insular cortex above the amygdala in the neural control of the hypophysio-testicular axis in male rats. Animals were subjected to a unilateral paramedian-sagittal brain cut above the amygdala, extending from the level of the anterior commissure to the midlevel of the third ventricle and causing among others partial deafferentation of the insular cortex. Right-sided cut induced a significant rise in basal testosterone secretion in vitro of both testes as compared to intact or sham-operated controls without affecting serum testosterone level. By contrast, left-sided cut slightly suppressed testicular steroidogenesis and significantly decreased serum testosterone concentration. In animals underwent sham or actual cut on either side, serum luteinizing hormone levels were similar, but significantly lower than those in intact controls. No change was observed in serum FSH concentration of any experimental group. The results indicate that afferent and efferent connections of the partially deafferented cortical regions including among others the insular cortex are involved in the control of testosterone secretion. The data further suggest functional laterality of the interrupted structures.  相似文献   

14.
J Kucera  J M Walro 《Histochemistry》1988,90(2):151-160
Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles were excised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

15.
Summary Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles wereexcised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

16.
The OX-2 and GAP-43 glycoproteins are two proteins involved in neuronal cell-to-cell interaction and/or growing of dendrites and axons. Therefore, for the auditory receptor the expression of these proteins could provide information on the afferent and efferent nerve fiber organization. The expression and distribution of OX-2 and GAP-43 were analyzed during the auditory receptor development and maturation (from embryonic day E13 to postnatal day P22). Both glycoproteins were early recognized in the cochleae of E13 rats. Then, they slowly but progressively disappeared, being absent when the animals reached the P22 postnatal day. At E13, a weak OX-2 expression was restricted to the perikaryon of the spiral ganglion neurons, while in the same period a strong GAP-43 immunostaining was found in both the neuronal perikaryon and the neurites. During the rat embryonic period (E13 to birth) the expression of both glycoproteins appeared progressively restricted to the neurites. During the rat postnatal period (P0 to P22), OX-2 and GAP-43 exhibited a dissimilar distribution pattern. The OX-2 glycoprotein appeared in the afferent, efferent and fibers of the auditory nerve, while the GAP-43 glycoprotein only appeared in the efferent nerve fibers. Present data suggest that OX-2 and GAP-43 could act as two complementary glycoproteins during the development, organization, and maturation of the cochlear nerve fibers. While both glycoproteins could participate in axonal growing and orientation, OX-2 could also be involved in a similar process for auditory dendrites.  相似文献   

17.
Summary A time course study with enkephalin(Enk)-like immunoreactivity has revealed that nerve fibers intensely immunoreactive for Enk-8 appeared transiently only during the postnatal week 2 and 4 within the acini as well as in the inter- and intralobular connective tissues of the submandibular gland of rats. At these stages numerous nerve fibers immunoreactive for tyrosine hydroxylase (TH) appeared also in the inter- and intralobular connective tissues and within the acini. Coincidently with these postnatal stages, abundant Enk-immunoreactive principal ganglion cells appeared in the superior cervical ganglion. These were not immunoreactive for neuropeptide tyrosine (NPY). A substantial number of Enk-immunoreactive ganglion cells were also present in the submandibular ganglia at these younger postnatal stages. Superior cervical ganglionectomy at these stages resulted in a marked decrease in number of the inter- and intralobular Enk-immunoreactive nerve fibers, a slight decrease in number of the intraacinar Enk-immunoreactive nerve fibers, and almost complete disappearance of intraglandular TH-immunoreactive nerve fibers. Immuno-electron-microscopic analysis revealed that Enk-immunoreactive nerve fibers in the submandibular gland were identified as electron-dense neuronal profiles enclosed by Schwann cells in the inter- and intralobular connective tissues and those directly apposed to secretory cells within the acini. They contained small clear vesicles mixed with some large granular vesicles. After postnatal week 6, no Enk-immunoreactive nerve fibers were detected in the submandibular gland, and no TH-immunoreactive nerve fibers were seen within the acini, while TH-immunoreactive nerve fibers remained numerous in the inter- and intralobular connective tissues. These findings indicate that both sympathetic and parasympathetic nerve fibers exhibit Enk-like immunoreactivity transiently during postnatal weeks 2 and 4. It is further indicated that the inter- and intralobular nerve fibers lose Enk-like immunoreactivity while the intraacinar fibers disappear at the adult stage.  相似文献   

18.
After axonal injury on postnatal day 14 (P14), but not P21, motoneurons in the spinal nucleus of the bulbocavernosus (SNB) do not display their normal response to circulating testosterone levels. This could result from a permanent disruption of communication between motoneurons and their testosterone-sensitive target muscles. We assessed the extent of reinnervation of one of these target muscles, the levator ani (LA) muscle, 5 months after the pudendal nerve was cut either on P14 or P21. The number of motoneurons innervating the LA in control and nerve cut animals was determined using retrograde labeling procedures. Functional recovery of the LA muscle was determined via the testing of its in situ contractile properties. Compared to control muscles, reinnervated LA muscles were smaller, had fewer muscle fibers, generated a lower maximum tetanic tension, and were more fatigable. In spite of the fact that fewer motoneurons reinnervated the LA muscle after nerve cut on P14 than on P21, there were no differences in the weight or contractile properties of the LA muscle between these two groups. These data suggest that motoneurons that survived injury on P14 innervated more muscle fibers than normal and exhibited a similar ability to functionally reinnervate the target muscle as those motoneurons that survived injury on P21.  相似文献   

19.
Cho KS  Chen DF 《Neurochemical research》2008,33(10):2126-2133
Our previous research has suggested that lack of Bcl-2-supported axonal growth mechanisms and the presence of glial scarring following injury are major impediments of optic nerve regeneration in postnatal mice. Mice overexpressing Bcl-2 and simultaneously carrying impairment in glial scar formation supported robust optic nerve regeneration in the postnatal stage. To develop a therapeutic strategy for optic nerve damage, the combined effects of chemicals that induce Bcl-2 expression and selectively eliminate mature astrocytes—scar forming cells—were examined in mice. Mood-stabilizer, lithium, has been shown to induce Bcl-2 expression and stimulate axonal outgrowth in retinal ganglion cells in culture and in vivo. Moreover, astrotoxin (alpha-aminoadipate), a glutamate analogue, selectively kills astrocytes while has minimal effects on surrounding neurons. In the present study, we sought to determine whether concurrent applications of lithium and astrotoxin were sufficient to induce optic nerve regeneration in mice. Induction of Bcl-2 expression was detected in the ganglion cell layer (GCL) of mice that received a lithium diet in compared with control-treated group. Moreover, efficient elimination of astrocytes and glial scarring was observed in the optic nerve of mice treated with astrotoxin. Simultaneous application of lithium and astrotoxin, but not any of the drugs alone, induced robust optic nerve regeneration in adult mice. These findings further support that a combinatorial approach of concurrent activation of Bcl-2-supported growth mechanism and suppression of glial scarring is required for successful regeneration of the severed optic nerve in adult mice. They suggest a potential therapeutic strategy for treating optic nerve and CNS damage. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

20.
It has been known from clinical and experimental observations that the peripheral nervous system is involved in the development of long bones. Expression of growth-associated protein 43 (GAP-43/B-50) was found in axonal growth cones during embryonic and postnatal ontogeny as well as in regenerating axons after nerve injury. The aim of the present study was to examine the occurrence of growing nerve fibers in rat tibia from gestational day 16 (GD 16) to postnatal day 28 (PD28). An indirect immunoenzymatic reaction using antibodies raised against GAP-43 was applied to detect outgrowing nerve fibers penetrating into the developing bone. On GD 16 and GD 17 no GAP-43-immunoreactive (IR) fibers were observed in the close vicinity of bone rudiments. On GD19 GAP-43-IR fibers were scarcely present within the periosteum of the central portion of the diaphysis. In the perichondrium surrounding the proximal epiphysis, nerve fibers were first detected around birth. From PD1 onward, numerous fibers were seen in the fibrous buds of the perichondrium at the epi-metaphyseal junction (Ranvier's grooves), some of them being adjacent to the blood vessels. Nerve fibers penetrating into the bone and located in the bone marrow, predominantly associated with blood vessels, were first observed on GD21 and their number increased with further development. They were initially located in the central portion of the diaphysis and later extended towards the metaphyses. On PD4 an increased number of GAP-43-IR fibers appeared in the perichondrium of proximal and distal epiphyses. In the fibrous strands penetrating into the epiphyses and in the secondary ossification centers, nerve fibers were first observed on PD10. From PD14 onward the pattern of tibial innervation remained unchanged but the intensity of GAP-43 immunostaining visibly decreased. The present study demonstrates that developing long bones of rat hindlimbs are supplied by growing nerve fibers immunoreactive for GAP-43 from GD 19 onward. Time and location of their appearance were at least partially correlated with known events taking place during long bone development, e.g. formation of primary and secondary ossification centers. Decreased expression of GAP-43 immunoreactivity in later developmental stages is believed to reflect nerve fiber maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号