首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The "protein machine" for phage T4 homologous recombination has begun to be assembled in vitro. A particularly heavily studied reaction has been the uvsX protein (a RecA-like strand transferase)-mediated homologous pairing reaction between single and double-stranded DNAs, a key step in the recombination cycle in vivo. A necessary prerequisite for uvsX protein-mediated pairing is the polymerization of this factor along the invading single strand, a process known as presynapsis. Recent work has indicated that at least two other T4 recombination factors are involved in this process as well, the uvsY and gene 32 products. These proteins are also ssDNA-binding factors and exhibit an affinity for UvsX and each other. In order to begin to sort out the potential functional roles played by these protein-protein interactions in presynapsis, I have examined the ability of the uvsX protein to form stable filaments along ssDNA in the presence of these proteins. It is shown that the uvsY protein relieves the inhibition to filament formation due to the presence of the gene 32 protein, but experiments with the E. coli SSB protein (the bacterial analogue of gp32) suggest that this effect does not involve a direct interaction between UvsY and gp32.  相似文献   

2.
3.
A strand exchange reaction between a single-stranded DNA circle and a homologous linear double-stranded DNA molecule is catalyzed by a mixture of two T4 bacteriophage proteins, the uvsX protein (a DNA-dependent ATPase that resembles the recA protein) and the gene 32 protein (a helix-destabilizing protein). The products are different from those formed in the corresponding recA protein-catalyzed reaction; rather than producing a linear single strand plus a nicked circular double-stranded (form II) DNA molecule as the final products, interlinked DNA networks are rapidly generated. Electron microscopy reveals that these networks form from multiple pairing reactions that involve the recombination intermediates. Since the uvsX protein is present in substoichiometric quantities, it presumably recycles to catalyze these successive pairing events. Recycling of the uvsX protein has been more directly examined in an assay that monitors the rate of uvsX protein-catalyzed branch migration. The branch migration reaction is rapidly inhibited by dilution of the uvsX protein or by the addition of a heterologous competitor DNA, showing that the uvsX protein-DNA filaments that catalyze strand exchange are dynamic structures. The evidence suggests that individual uvsX protein monomers are continuously entering and leaving the cooperatively formed filament in a cycle that is strongly affected by their ATP hydrolysis.  相似文献   

4.
Homologous pairing in vitro initiated by DNA synthesis   总被引:2,自引:0,他引:2  
A number of models have been proposed for the initiation of general genetic recombination. One of these, originally proposed by Meselson and Radding, imagines that the single-stranded 5' tail that results from strand displacement DNA repair synthesis can initiate homologous recombination by invading a homologous duplex. The resultant D-loop intermediate is then processed into mature products. We demonstrate here that an in vitro system composed of the bacteriophage T4 uvsX protein (a RecA-like "strand transferase") and part of the T4 DNA polymerase holoenzyme efficiently mediates pairing between nicked double-stranded circular and linear duplex DNAs, thereby demonstrating the feasibility of a key step in the Meselson-Radding model.  相似文献   

5.
Inhibition of protein-mediated homologous pairing by a DNA helicase.   总被引:6,自引:0,他引:6  
Protein-mediated exchange of homologous DNA strands is a central reaction in general genetic recombination and the mechanism by which proteins mediate this process in vivo is a topic of keen interest. The dda protein of the bacteriophage T4 is a DNA helicase that has been shown to accelerate branch migration catalyzed by the phage uvsX and gene 32 proteins in vitro (Kodadek, T., and Alberts, B.M. (1987) Nature 326, 312-314). This study did not address the potential role of the helicase in protein-mediated homologous pairing, the first phase of the overall strand-exchange reaction. It is shown here that the dda protein inhibits uvsX protein-mediated pairing between homologous single and double-stranded DNAs. Experiments using deproteinized heteroduplex joints demonstrate that the dda helicase is capable of unwinding these structures to some extent and suggests that this activity may be responsible for the observed inhibition of pairing. It is found that the helicase also reduces the level of uvsX protein-mediated, single-stranded DNA-dependent ATP hydrolysis in the strand-exchange reactions, suggesting that the helicase may also act to destabilize the uvsX protein-DNA filaments that are important intermediates in the pairing reaction. Three other helicases are found to have no effect on the uvsX protein-mediated pairing reaction. A model rationalizing the ability of the dda protein to both inhibit homologous pairing and stimulate branch migration is presented and possible in vivo roles for this interesting activity are discussed.  相似文献   

6.
T4 phage gene uvsX product catalyzes homologous DNA pairing.   总被引:12,自引:2,他引:10       下载免费PDF全文
Gene uvsX of phage T4 controls genetic recombination and the repair of DNA damage. We have recently purified the gene product, and here describe its properties. The protein has a single-stranded DNA-dependent ATPase activity. It binds efficiently to single- and double-stranded DNAs at 0 degrees C in a cooperative manner. At 30 degree C the double-stranded DNA-protein complex was stable, but the single-stranded DNA-protein complex dissociated rapidly. The instability of the latter complex was reduced by ATP. The protein renatured heat-denatured double-stranded DNA, and assimilated linear single-stranded DNA into homologous superhelical duplexes to produce D-loops. The reaction is stimulated by gene 32 protein when the uvsX protein is limiting. With linear double-stranded DNA and homologous, circular single-stranded DNA, the protein catalyzed single-strand displacement in the 5' to 3' direction with the cooperation of gene 32 protein. All reactions required Mg2+, and all except DNA binding required ATP. We conclude that the uvsX protein is directly involved in strand exchange and is analogous to the recA protein of Escherichia coli. The differences between the uvsX protein and the recA protein, and the role of gene 32 protein in single-strand assimilation and single-strand displacement are briefly discussed.  相似文献   

7.
When recA protein promotes homologous pairing and strand exchange involving circular single strands and linear duplex DNA, the protein first polymerizes on the single-stranded DNA to form a nucleoprotein filament which then binds naked duplex DNA to form nucleoprotein networks, the existence of which is independent of homology, but requires the continued presence of recA protein (Tsang, S. S., Chow, S. A., and Radding, C. M. (1985) Biochemistry 24, 3226-3232). Further experiments revealed that within a few minutes after the beginning of homologous pairing and strand exchange, these networks began to be replaced by a distinct set of networks with inverse properties: their formation depended upon homology, but they survived removal of recA protein by a variety of treatments. Formation of this second kind of network required that homology be present specifically at the end of the linear duplex molecule from which strand exchange begins. Escherichia coli single-stranded DNA-binding protein or phage T4 gene 32 protein largely suppressed the formation of this second population of networks by inactivating the newly formed heteroduplex DNA, which, however, could be reactivated when recA protein was dissociated by incubation at 0 degrees C. We interpret these observations as evidence of reinitiation of strand invasion when recA protein acts in the absence of auxiliary helix-destabilizing proteins. These observations indicate that the nature of the nucleoprotein products of strand exchange determines whether pairing and strand exchange are reversible or not, and they further suggest a new explanation for the way in which E. coli single-stranded DNA-binding protein and gene 32 protein accelerate the apparent forward rate of strand exchange promoted by recA protein, namely by suppressing initiation of the reverse reaction.  相似文献   

8.
Purification and characterization of the T4 bacteriophage uvsX protein   总被引:21,自引:0,他引:21  
Gene uvsX of bacteriophage T4 encodes a 40,000-dalton protein that plays a key role in the major pathway for genetic recombination in T4-infected cells. Mutations at the uvsX locus lead to increased sensitivity to various DNA-damaging agents, reduced phage bursts, decreased genetic recombination, and early arrest of DNA synthesis. Like the Escherichia coli recA protein, the purified uvsX protein is a DNA-dependent ATPase that catalyzes pairing between homologous single- and double-stranded DNA molecules in vitro (Yonesaki, T., Ryo, Y., Minagawa, T., and Takahashi, H., (1985) Eur. J. Biochem. 148, 127-134). At physiological salt concentrations, the uvsX protein binds tightly and cooperatively to single-stranded DNA, covering about five nucleotides per protein monomer; at lower salt concentrations, a similar type of binding to double-stranded DNA is detected (Griffith, J., and Formosa, T., (1985) J. Biol. Chem. 260, 4484-4491). We show here that the ATPase activity of this protein is unusual in producing both ADP plus Pi and AMP plus PPi as products. Generating the fully active form of the ATPase is a cooperative process, apparently requiring that a protein monomer be bound to single-stranded DNA while surrounded by other ATP-bound monomers. The catalysis of homologous pairing by the uvsX protein is shown to be greatly stimulated by the presence of the T4 gene 32 protein, a helix-destablizing protein previously studied in this laboratory, and it requires continued ATP hydrolysis. We present a method that allows the purification of the uvsX protein to essential homogeneity. We also describe the complete purification of two proteins that bind to the uvsX protein: the T4 uvsY protein (16,000 daltons) and an E. coli host protein of 32,000 daltons whose gene is unknown. The host protein is likely to play a role in DNA metabolism, because it also binds to the T4 gene 32 protein and to DNA; the sequence of its amino-terminal 29 amino acids has been determined.  相似文献   

9.
A DNA helicase, dependent on the multisubunit human single-stranded DNA binding protein (HSSB), was isolated from HeLa cells. At low levels of helicase, only the multisubunit SSBs, HSSB and yeast SSB, stimulated DNA helicase activity. At high levels of the helicase Escherichia coli SSB partially substituted for HSSB whereas other SSBs such as T4 gene 32 and adenovirus DNA binding protein did not stimulate the enzyme activity. Maximal activation of helicase activity occurred in the presence of one molecule of HSSB for every 20 nucleotides of single-stranded DNA. The addition of E. coli SSB significantly lowered the amount of HSSB required for strand displacement, suggesting that the HSSB plays at least two roles in the activation of the helicase. One is to bind single-stranded DNA, thereby preventing sequestration of the helicase, the other involves the interaction of the HSSB with the helicase. Monoclonal antibodies that interact with the 70- and 34-kDa subunits of HSSB inhibited its stimulation of the helicase activity. The DNA helicase acted catalytically in displacing duplex DNA and translocated in the 3' to 5' direction. The helicase displaced fragments from both ends of a DNA substrate that contained duplex region at both termini, but the 3' to 5' fragment was displaced 20 times faster than the 5' to 3' fragment. Since this helicase also displaced fully duplex DNA, the release of the 5' to 3' fragment may have occurred by entry of the helicase through the duplex end in a 3' to 5' direction.  相似文献   

10.
The phage T4 uvs Y recombination protein stabilizes presynaptic filaments   总被引:3,自引:0,他引:3  
The bacteriophage T4 uvsY protein is required for efficient recombination in T4-infected Escherichia coli cells. Previous in vitro work has shown that the purified uvsY protein is an accessory protein; it stimulates homologous pairing catalyzed by the phage uvsX protein (a RecA-like recombinase) under certain conditions. We show here that this effect can be traced, at least in part, to a UvsY-dependent stabilization of uvsX protein-single-stranded DNA complexes. These presynaptic filaments are one of the early obligatory intermediates in the strand exchange reaction between homologous single- and double-stranded DNAs. The mechanism of filament stabilization seems to involve a slower loss of UvsX subunits. A model that accounts for the data is presented in which both recombination proteins are incorporated into the presynaptic filament.  相似文献   

11.
The uvsX protein of bacteriophage T4 is a recA-type recombinase. This protein has previously been shown to help initiate DNA replication on a double-stranded DNA template by catalyzing synapsis between the template and a homologous DNA single strand that serves as primer. Here, we demonstrate that this replication-initiating activity of the uvsX protein greatly amplifies the snap-back (hairpin-primed) DNA synthesis that is catalyzed by the T4 DNA polymerase holoenzyme on linear, single-stranded DNA templates. Amplification requires the presence of uvsX protein, the DNA polymerase holoenzyme, T4 gene 32 protein, and a T4 DNA helicase, in a reaction that is modulated by the T4 uvsY protein (an accessory protein to the uvsX recombinase). The reaction products consist primarily of large networks of double-stranded and single-stranded DNA. With alkali or heat treatment, these networks resolve into dimer-length single-stranded DNA chains that renature instantaneously to reform a monomer-length double helix. A simple model can explain this uvsX protein-dependent amplification of snap-back DNA synthesis; the mechanism proposed makes several predictions that are confirmed by our experiments.  相似文献   

12.
A human protein of approximately 120 kilodaltons has been purified to homogeneity based on its ability to catalyze the homology-dependent transfer of the complementary strand from a linear duplex DNA to a circular single-strand DNA. The activity was purified from an immature T-cell acute leukemic tumor cell line, with the majority of enrichment obtained by chromatography on a novel Z-DNA affinity column. The human homologous pairing protein was found to absolutely require homologous DNA substrates in a reaction that needs nearly stoichiometric amounts of protein. The homologous pairing activity is not stimulated by addition of exogenous ATP; however, the photo-cross-linking ATP analog 8-azidoadenosine 5'-[32P] triphosphate (8-N3-[32P]ATP) binds specifically to the homologous pairing protein. Electron microscopic analysis demonstrated the formation of all expected products. Intermediate strand-exchange products were shown to conserve the displaced DNA strands, eliminating many alternate explanations for the homologous pairing activity. These and other biochemical properties described in this report suggest that the nature of homologous pairing by the human protein is functionally similar to that of the bacterial RecA protein, although the exact mechanism of strand exchange may be somewhat different.  相似文献   

13.
Interactions between helicases and the tracking strand of a DNA substrate are well-characterized; however, the role of the displaced strand is a less understood characteristic of DNA unwinding. Dda helicase exhibited greater processivity when unwinding a DNA fork compared to a ss/ds DNA junction substrate. The lag phase in the unwinding progress curve was reduced for the forked DNA compared to the ss/ds junction. Fewer kinetic steps were required to unwind the fork compared to the ss/ds junction, suggesting that binding to the fork leads to disruption of the duplex. DNA footprinting confirmed that interaction of Dda with a fork leads to two base pairs being disrupted whereas no disruption of base pairing was observed with the ss/ds junction. Neutralization of the phosphodiester backbone resulted in a DNA-footprinting pattern similar to that observed with the ss/ds junction, consistent with disruption of the interaction between Dda and the displaced strand. Several basic residues in the 1A domain which were previously proposed to bind to the incoming duplex DNA were replaced with alanines, resulting in apparent loss of interaction with the duplex. Taken together, these results suggest that Dda interaction with the tracking strand, displaced strand and duplex coordinates DNA unwinding.  相似文献   

14.
The purification of a Drosophila strand transfer protein is described, which involves Bio-Rex 70, Superose 6, Mono S, and single-stranded DNA-agarose chromatography. A 105,000-dalton polypeptide copurifies with the strand transfer activity on the last two column steps. The strand transferase carries out strand transfer at an unusually low protein:single-stranded DNA ratio and requires neither a nucleotide cofactor nor exogenous single-strand DNA binding protein to form heteroduplex DNA. Biochemical analysis of the reaction products has established that one strand of the DNA duplex is displaced during the reaction. Several properties, including the kinetics and stoichiometry of strand transfer, differentiate this activity from previously characterized strand transferases.  相似文献   

15.
Using gapped circular DNA and homologous duplex DNA cut with restriction nucleases, we show that E. coli RecA protein promotes strand exchanges past double-strand breaks. The products of strand exchange are heteroduplex DNA molecules that contain nicks, which can be sealed by DNA ligase, thereby effecting the repair of double-strand breaks in vitro. These results show that RecA protein can promote pairing interactions between homologous DNA molecules at regions where both are duplex. Moreover, pairing leads to strand exchanges and the formation of heteroduplex DNA. In contrast, strand exchanges are unable to pass a double-strand break in the gapped substrate. This apparent paradox is discussed in terms of a model for RecA-DNA interactions in which we propose that each RecA monomer contains two nonequivalent DNA-binding sites.  相似文献   

16.
Rad51 protein forms nucleoprotein filaments on single-stranded DNA (ssDNA) and then pairs that DNA with the complementary strand of incoming duplex DNA. In apparent contrast with published results, we demonstrate that Rad51 protein promotes an extensive pairing of long homologous DNAs in the absence of replication protein A. This pairing exists only within the Rad51 filament; it was previously undetected because it is lost upon deproteinization. We further demonstrate that RPA has a critical postsynaptic role in DNA strand exchange, stabilizing the DNA pairing initiated by Rad51 protein. Stabilization of the Rad51-generated DNA pairing intermediates can be can occur either by binding the displaced strand with RPA or by degrading the same DNA strand using exonuclease VII. The optimal conditions for Rad51-mediated DNA strand exchange used here minimize the secondary structure in single-stranded DNA, minimizing the established presynaptic role of RPA in facilitating Rad51 filament formation. We verify that RPA has little effect on Rad51 filament formation under these conditions, assigning the dramatic stimulation of strand exchange nevertheless afforded by RPA to its postsynaptic function of removing the displaced DNA strand from Rad51 filaments.  相似文献   

17.
Bacteriophage T4 gene 41 protein is one of the two phage proteins previously shown to be required for the synthesis of the pentaribonucleotide primers which initiate the synthesis of new chains in the T4 DNA replication system. We now show that a DNA helicase activity which can unwind short fragments annealed to complementary single-stranded DNA copurifies with the gene 41 priming protein. T4 gene 41 is essential for both the priming and helicase activities, since both are absent after infection by T4 phage with an amber mutation in gene 41. A complete gene 41 product is also required for two other activities previously found in purified preparations of the priming activity: a single-stranded DNA-dependent GTPase (ATPase) and an activity which stimulates strand displacement synthesis catalyzed by T4 DNA polymerase, the T4 gene 44/62 and 45 polymerase accessory proteins, and the T4 gene 32 helix-destabilizing protein (five-protein reaction). The 41 protein helicase requires a single-stranded DNA region adjoining the duplex region and begins unwinding at the 3' terminus of the fragment. There is a sigmoidal dependence on both nucleotide (rGTP, rATP) and protein concentration for this reaction. 41 Protein helicase activity is stimulated by our purest preparation of the T4 gene 61 priming protein, and by the T4 gene 44/62 and 45 polymerase accessory proteins. The direction of unwinding is consistent with the idea that 41 protein facilitates DNA synthesis on duplex templates by destabilizing the helix as it moves 5' to 3' on the displaced strand.  相似文献   

18.
An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.  相似文献   

19.
Vaccinia virus infection induces expression of a protein which can catalyze joint molecule formation between a single-stranded circular DNA and a homologous linear duplex. The kinetics of appearance of the enzyme parallels that of vaccinia virus DNA polymerase and suggests it is an early viral gene product. Extracts were prepared from vaccinia virus-infected HeLa cells, and the strand exchange assay was used to follow purification of this activity through five chromatographic steps. The most highly purified fraction contained three major polypeptides of 110 +/- 10, 52 +/- 5, and 32 +/- 3 kDa. The purified protein requires Mg2+ for activity, and this requirement cannot be satisfied by Mn2+ or Ca2+. One end of the linear duplex substrate must share homology with the single-stranded circle, although this homology requirement is not very high, as 10% base substitutions had no effect on the overall efficiency of pairing. As with many other eukaryotic strand exchange proteins, there was no requirement for ATP, and ATP analogs were not inhibitors. Electron microscopy was used to show that the joint molecules formed in these reactions were composed of a partially duplex circle of DNA bearing a displaced single-strand and a duplex linear tail. The recovery of these structures shows that the enzyme catalyzes true strand exchange. There is also a unique polarity to the strand exchange reaction. The enzyme pairs the 3' end of the duplex minus strand with the plus-stranded homolog, thus extending hybrid DNA in a 3'-to-5' direction with respect to the minus strand. Which viral gene (if any) encodes the enzyme is not yet known, but analysis of temperature-sensitive mutants shows that activity does not require the D5R gene product. Curiously, v-SEP appears to copurify with vaccinia virus DNA polymerase, although the activities can be partially resolved on phosphocellulose columns.  相似文献   

20.
Summary Recombination of T4 phage is not controlled by the host recA gene but by an analogous phage gene, uvsX. We have tested the hypothesis that recA protein is inactive in T4-infected cells because it is unable to catalyze reactions involving single stranded DNA containing glucosyl-hydroxylmethyl-deoxycytidine. We found, however, that with modified and unmodified deoxycytidine containing DNAs, uvsX protein and recA protein catalyze in vitro reactions related to DNA recombination, but in T4-infected cells recA protein fails to promote strand transfer of DNA which contains unmodified deoxycytidine.Abbreviations dC-DNA deoxycytidine containing DNA - dC-T4 T4 phage containing dC-DNA - dHMC-DNA glucosyl-hydroxymethyl-deoxycytidine containing DNA - dsDNA double stranded DNA - gp gene product - ssDNA single stranded DNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号